File size: 1,653 Bytes
65b2409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from .configuration_projector import ProjectorConfig
class ProjectorModel(PreTrainedModel):
_auto_class = 'AutoModel'
config_class = ProjectorConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
def __init__(self, config: ProjectorConfig) -> None:
super().__init__(config)
self.gradient_checkpointing = False
modules = [
nn.Linear(
config.visual_hidden_size,
config.llm_hidden_size,
bias=config.bias)
]
for _ in range(1, config.depth):
modules.append(ACT2FN[config.hidden_act])
modules.append(
nn.Linear(
config.llm_hidden_size,
config.llm_hidden_size,
bias=config.bias))
self.model = nn.Sequential(*modules)
def enable_input_require_grads(self):
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
self.model.register_forward_hook(make_inputs_require_grad)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ProjectorModel):
module.gradient_checkpointing = value
def forward(self, x):
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x)
else:
layer_outputs = self.model(x)
return layer_outputs
|