Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LongLoRA and LongAlpaca for Long-context LLMs
|
2 |
+
|
3 |
+
|
4 |
+
[![Huggingface Models](https://img.shields.io/badge/Models-Huggingface%20Models-bron)](https://huggingface.co/Yukang)
|
5 |
+
[![Github](https://img.shields.io/badge/Github-Repo-cyan)](https://github.com/dvlab-research/LongLoRA)
|
6 |
+
[![Data](https://img.shields.io/badge/Data-LongAlpaca%2012k-light)](https://huggingface.co/datasets/Yukang/LongAlpaca-12k)
|
7 |
+
[![Paper](https://img.shields.io/badge/Paper-Arvix-blue)](https://arxiv.org/abs/2309.12307)
|
8 |
+
|
9 |
+
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-yellow.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/LICENSE)
|
10 |
+
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-orange.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/DATA_LICENSE)
|
11 |
+
[![Weight License](https://img.shields.io/badge/Weight%20License-CC%20By%20NC%204.0-red)](https://github.com/dvlab-research/LongLoRA/blob/main/WEIGHT_LICENSE)
|
12 |
+
|
13 |
+
For detailed usage and codes, please visit the [Github project](https://github.com/dvlab-research/LongLoRA).
|
14 |
+
## TABLE OF CONTENTS
|
15 |
+
1. [News](#news)
|
16 |
+
2. [Examples](#examples)
|
17 |
+
3. [Highlights](#highlights)
|
18 |
+
4. [How to contribute](#how-to-contribute)
|
19 |
+
5. [Requirements](#usage-requirements)
|
20 |
+
6. [Installation and quick guide](#installation-and-quick-guide)
|
21 |
+
7. [LongAlpaca Data](#longalpaca-data)
|
22 |
+
8. [Models](#models)
|
23 |
+
9. [Training](#training)
|
24 |
+
10. [Evaluation](#evaluation)
|
25 |
+
11. [Demo](#demo)
|
26 |
+
12. [Data Generation via Pdf2Text](#data-generation-via-pdf2text)
|
27 |
+
13. [Citation](#citation)
|
28 |
+
14. [Acknowledgement](#acknowledgement)
|
29 |
+
15. [License](#license)
|
30 |
+
|
31 |
+
## News
|
32 |
+
- [x] [2023.10.8] **We release the long instruction-following dataset**, [LongAlpaca-12k](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) and **the corresponding models**, [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B), and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B).
|
33 |
+
- (*The previous sft models*, [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) and [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), *have been depreciated*.)
|
34 |
+
- [x] [2023.10.3] We add support GPTNeoX models. Please refer to this [PR](https://github.com/dvlab-research/LongLoRA/pull/32) for usage. Thanks for @naubull2 for this contribution.
|
35 |
+
- [x] [2023.9.22] We release all our fine-tuned [models](https://huggingface.co/Yukang), including **70B-32k models**, [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft). Welcome to check them out!
|
36 |
+
- [x] [2023.9.22] We release [Paper](http://arxiv.org/abs/2309.12307) and this GitHub repo, including training and evaluation code.
|
37 |
+
|
38 |
+
**LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [[Paper](http://arxiv.org/abs/2309.12307)]** <br />
|
39 |
+
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
|
40 |
+
[Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ),
|
41 |
+
[Haotian Tang](https://scholar.google.com/citations?user=WxL13BAAAAAJ&hl),
|
42 |
+
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
|
43 |
+
[Zhijian Liu](https://scholar.google.com/citations?user=3coYSTUAAAAJ&hl=en),
|
44 |
+
[Song Han](https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=zh-CN),
|
45 |
+
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />
|
46 |
+
|
47 |
+
## Highlights
|
48 |
+
1. In LongLoRA approach, The proposed shifted short attention is easy to implement, compatible with Flash-Attention, and is not required during inference.
|
49 |
+
2. We released all our models, including models from 7B to 70B, context length from 8k to 100k, including [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft), [LLaMA2-LongLoRA-13B-64k](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k), and [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k).
|
50 |
+
3. We built up a long-context instruction-following dataset, [LongAlpaca-12k](#longalpaca-data). We released the corresponding [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B) and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B) models. To our best knowledge, this is the first open-sourced long-context 70B model.
|
51 |
+
|
52 |
+
## How to Contribute
|
53 |
+
- Make sure to have git installed.
|
54 |
+
- Create your own [fork](https://github.com/dvlab-research/LongLoRA/fork) of the project.
|
55 |
+
- Clone the repository on your local machine, using git clone and pasting the url of this project.
|
56 |
+
- Read both the `Requirements` and `Installation and Quick Guide` sections below.
|
57 |
+
- Commit and push your changes.
|
58 |
+
- Make a pull request when finished modifying the project.
|
59 |
+
|
60 |
+
|
61 |
+
## Usage Requirements
|
62 |
+
To download and use the [pre-trained weights](#pre-trained-weights) you will need:
|
63 |
+
1. Hugging Face (HF) account with valid email. Note, the email used for HF must alse be used for the license agreement.
|
64 |
+
2. Accept the Meta [license and acceptable use policy](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
|
65 |
+
|
66 |
+
|
67 |
+
## Installation and Quick Guide
|
68 |
+
To install and run the application:
|
69 |
+
1. [Fork this repo](https://github.com/dvlab-research/LongLoRA/fork) on github
|
70 |
+
2. Clone the repository on your local machine, using git clone and pasting the url of this project.
|
71 |
+
3. Run the following code:
|
72 |
+
```
|
73 |
+
pip install -r requirements.txt
|
74 |
+
pip install flash-attn --no-build-isolation
|
75 |
+
```
|
76 |
+
4. Use either a [Released model](#released-models) or [Fine tune](#fine-tuning) a model to fit your preferences.
|
77 |
+
5. Test your model by chat.
|
78 |
+
6. Deploy your own demo.
|
79 |
+
|
80 |
+
## LongAlpaca Data
|
81 |
+
|
82 |
+
LongAlpaca-12k contains 9k long QA data that we collected and 3k short QA sampled from the original [Alpaca data](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json). This is to avoid the case that the model might degrade at short instruction following. The data we collect contains various types and amounts as the following figure.
|
83 |
+
|
84 |
+
| Data | Short QA | Long QA | Total | Download |
|
85 |
+
|:---------------|----------|----------|----------|----------|
|
86 |
+
| LongAlpaca-12k | 3k | 9k | 12k | [Link](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) |
|
87 |
+
|
88 |
+
Following the original Alpaca format, our Long QA data uses the following prompts for fine-tuning:
|
89 |
+
- `instruction`: `str`, describes the task the model should perform. For example, to answer a question after reading a book section or paper. We vary the contents and questions to make instructions diverse.
|
90 |
+
- `output`: `str`, the answer to the instruction.
|
91 |
+
|
92 |
+
We did not use the `input` format in the Alpaca format for simplicity.
|
93 |
+
|
94 |
+
## Models
|
95 |
+
|
96 |
+
### Models with supervised fine-tuning
|
97 |
+
| Model | Size | Context | Train | Link |
|
98 |
+
|:---------------|------|---------|---------|-----------------------------------------------------------------------------------------------------------------------|
|
99 |
+
| LongAlpaca-7B | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-7B) |
|
100 |
+
| LongAlpaca-13B | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-13B) |
|
101 |
+
| LongAlpaca-70B | 70B | 32768 | LoRA+ | [Model](https://huggingface.co/Yukang/LongAlpaca-70B-lora) |
|
102 |
+
|
103 |
+
|
104 |
+
### Models with context extension via fully fine-tuning
|
105 |
+
| Model | Size | Context | Train | Link |
|
106 |
+
|:----------------------------|------|---------|-------|-------------------------------------------------------------------|
|
107 |
+
| Llama-2-7b-longlora-8k-ft | 7B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k-ft) |
|
108 |
+
| Llama-2-7b-longlora-16k-ft | 7B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft) |
|
109 |
+
| Llama-2-7b-longlora-32k-ft | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k-ft) |
|
110 |
+
| Llama-2-7b-longlora-100k-ft | 7B | 100000 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft) |
|
111 |
+
| Llama-2-13b-longlora-8k-ft | 13B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k-ft) |
|
112 |
+
| Llama-2-13b-longlora-16k-ft | 13B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft) |
|
113 |
+
| Llama-2-13b-longlora-32k-ft | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k-ft) |
|
114 |
+
|
115 |
+
### Models with context extension via improved LoRA fine-tuning
|
116 |
+
| Model | Size | Context | Train | Link |
|
117 |
+
|:----------------------------|------|---------|-------|---------------------------------------------------------------------|
|
118 |
+
| Llama-2-7b-longlora-8k | 7B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k) |
|
119 |
+
| Llama-2-7b-longlora-16k | 7B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k) |
|
120 |
+
| Llama-2-7b-longlora-32k | 7B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k) |
|
121 |
+
| Llama-2-13b-longlora-8k | 13B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k) |
|
122 |
+
| Llama-2-13b-longlora-16k | 13B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k) |
|
123 |
+
| Llama-2-13b-longlora-32k | 13B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k) |
|
124 |
+
| Llama-2-13b-longlora-64k | 13B | 65536 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k) |
|
125 |
+
| Llama-2-70b-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k) |
|
126 |
+
| Llama-2-70b-chat-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k) |
|
127 |
+
|
128 |
+
## Training
|
129 |
+
### Pre-trained weights
|
130 |
+
We use LLaMA2 models as the pre-trained weights and fine-tune them to long context window sizes. Download based on your choices.
|
131 |
+
|
132 |
+
| Pre-trained weights |
|
133 |
+
|:-------------------------------------------------------------------------------------|
|
134 |
+
| [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) |
|
135 |
+
|[Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) |
|
136 |
+
| [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) |
|
137 |
+
| [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
138 |
+
| [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) |
|
139 |
+
| [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
|
140 |
+
|
141 |
+
This project also supports GPTNeoX models as the base model architecture. Some candidate pre-trained weights may include [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b), [Polyglot-ko-12.8B](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) and other variants.
|
142 |
+
|
143 |
+
### Fine-tuning
|
144 |
+
```
|
145 |
+
torchrun --nproc_per_node=8 fine-tune.py \
|
146 |
+
--model_name_or_path path_to/Llama-2-7b-hf \
|
147 |
+
--bf16 True \
|
148 |
+
--output_dir path_to_saving_checkpoints \
|
149 |
+
--cache_dir path_to_cache \
|
150 |
+
--model_max_length 8192 \
|
151 |
+
--use_flash_attn True \
|
152 |
+
--low_rank_training False \
|
153 |
+
--num_train_epochs 1 \
|
154 |
+
--per_device_train_batch_size 1 \
|
155 |
+
--per_device_eval_batch_size 2 \
|
156 |
+
--gradient_accumulation_steps 8 \
|
157 |
+
--evaluation_strategy "no" \
|
158 |
+
--save_strategy "steps" \
|
159 |
+
--save_steps 1000 \
|
160 |
+
--save_total_limit 2 \
|
161 |
+
--learning_rate 2e-5 \
|
162 |
+
--weight_decay 0.0 \
|
163 |
+
--warmup_steps 20 \
|
164 |
+
--lr_scheduler_type "constant_with_warmup" \
|
165 |
+
--logging_steps 1 \
|
166 |
+
--deepspeed "ds_configs/stage2.json" \
|
167 |
+
--tf32 True \
|
168 |
+
--max_steps 1000
|
169 |
+
```
|
170 |
+
|
171 |
+
- Please remember to change `path_to/Llama-2-7b-hf`, `path_to_saving_checkpoints`, `path_to_cache` to your own directory.
|
172 |
+
- Note that you can change `model_max_length` to other values.
|
173 |
+
- You could change `ds_configs/stage2.json` to `ds_configs/stage3.json` if you want.
|
174 |
+
- Please set `use_flash_attn` as `False` if you use V100 machines or do not install flash attention.
|
175 |
+
- You can set `low_rank_training` as `False` if you want to use fully fine-tuning. It will cost more GPU memory and slower, but the performance will be a bit better.
|
176 |
+
- When training is finished, to get the full model weight:
|
177 |
+
```
|
178 |
+
cd path_to_saving_checkpoints && python zero_to_fp32.py . pytorch_model.bin
|
179 |
+
```
|
180 |
+
|
181 |
+
### Supervised Fine-tuning
|
182 |
+
```
|
183 |
+
torchrun --nproc_per_node=8 supervised-fine-tune.py \
|
184 |
+
--model_name_or_path path_to_Llama2_chat_models \
|
185 |
+
--bf16 True \
|
186 |
+
--output_dir path_to_saving_checkpoints \
|
187 |
+
--model_max_length 32768 \
|
188 |
+
--use_flash_attn True \
|
189 |
+
--data_path LongAlpaca-12k.json \
|
190 |
+
--low_rank_training True \
|
191 |
+
--num_train_epochs 3 \
|
192 |
+
--per_device_train_batch_size 1 \
|
193 |
+
--per_device_eval_batch_size 2 \
|
194 |
+
--gradient_accumulation_steps 1 \
|
195 |
+
--evaluation_strategy "no" \
|
196 |
+
--save_strategy "steps" \
|
197 |
+
--save_steps 1000 \
|
198 |
+
--save_total_limit 2 \
|
199 |
+
--learning_rate 2e-5 \
|
200 |
+
--weight_decay 0.0 \
|
201 |
+
--warmup_steps 20 \
|
202 |
+
--lr_scheduler_type "constant_with_warmup" \
|
203 |
+
--logging_steps 1 \
|
204 |
+
--deepspeed "ds_configs/stage2.json" \
|
205 |
+
--tf32 True
|
206 |
+
```
|
207 |
+
- There is no need to make supervised fine-tuning upon the fine-tuned context extended models. It is all right to directly use base model as Llama2-chat models, as the amount of long instruction following data is enough for SFT.
|
208 |
+
- Our long instruction following data can be found in [LongAlpaca-12k.json](https://huggingface.co/datasets/Yukang/LongAlpaca-12k).
|
209 |
+
|
210 |
+
|
211 |
+
### Get trainable weights in low-rank training
|
212 |
+
In low-rank training, we set embedding and normalization layers as trainable. Please use the following line to extract the trainable weights `trainable_params.bin` from `pytorch_model.bin`
|
213 |
+
```
|
214 |
+
python3 get_trainable_weights.py --checkpoint_path path_to_saving_checkpoints --trainable_params "embed,norm"
|
215 |
+
```
|
216 |
+
|
217 |
+
### Merge LoRA Weight
|
218 |
+
Merge the LoRA weights of `pytorch_model.bin` and trainable parameters `trainable_params.bin`, save the resulting model into your desired path in the Hugging Face format:
|
219 |
+
```
|
220 |
+
python3 merge_lora_weights_and_save_hf_model.py \
|
221 |
+
--base_model path_to/Llama-2-7b-hf \
|
222 |
+
--peft_model path_to_saving_checkpoints \
|
223 |
+
--context_size 8192 \
|
224 |
+
--save_path path_to_saving_merged_model
|
225 |
+
```
|
226 |
+
For example,
|
227 |
+
```
|
228 |
+
python3 merge_lora_weights_and_save_hf_model.py \
|
229 |
+
--base_model /dataset/pretrained-models/Llama-2-7b-hf \
|
230 |
+
--peft_model /dataset/yukangchen/hf_models/lora-models/Llama-2-7b-longlora-8k \
|
231 |
+
--context_size 8192 \
|
232 |
+
--save_path /dataset/yukangchen/models/Llama-2-7b-longlora-8k-merged
|
233 |
+
```
|
234 |
+
|
235 |
+
|
236 |
+
## Evaluation
|
237 |
+
### Perplexity Validation
|
238 |
+
To evaluate a model that is trained in the low-rank setting, please set both `base_model` and `peft_model`. `base_model` is the pre-trained weight. `peft_model` is the path to the saved checkpoint, which should contain `trainable_params.bin`, `adapter_model.bin` and `adapter_config.json`. For example,
|
239 |
+
```
|
240 |
+
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to/Llama-2-7b-hf --peft_model path_to_saving_checkpoints --data_path pg19/test.bin
|
241 |
+
```
|
242 |
+
|
243 |
+
To evaluate a model that is fully fine-tuned, you only need to set `base_model` as the path to the saved checkpoint, which should contain `pytorch_model.bin` and `config.json`. `peft_model` should be ignored.
|
244 |
+
```
|
245 |
+
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to_saving_checkpoints --data_path pg19/test.bin
|
246 |
+
```
|
247 |
+
|
248 |
+
- Note that `--seq_len` is to set the sequence length for evaluation. `--context_size` is to set the context length of the model during fine-tuning. `--seq_len` should not be larger than `--context_size`.
|
249 |
+
|
250 |
+
- We have already tokenized the validation and test splits of PG19 and proof-pile dataset into `pg19/validation.bin`, `pg19/test.bin`, and `proof-pile/test_sampled_data.bin`, with the tokenizer of LLaMA. `proof-pile/test_sampled_data.bin` contains 128 documents that are randomly sampled from the total proof-pile test split. For each document, it has at least 32768 tokens. We also release the sampled ids in [proof-pile/test_sampled_ids.bin](https://drive.google.com/file/d/1cnzWODLRQYAd7HeugzLCIhaqzaLZv7J5/view?usp=share_link). You can download them from the links below.
|
251 |
+
|
252 |
+
| Dataset | Split | Link |
|
253 |
+
|:-----------|------------|--------------------------------------------------------------------------------------------------------------|
|
254 |
+
| PG19 | validation | [pg19/validation.bin](https://drive.google.com/file/d/1rbJvb0qRIf2mQoN2ON7S93TbTzMnlrN6/view?usp=share_link) |
|
255 |
+
| PG19 | test | [pg19/test.bin](https://drive.google.com/file/d/1QANDMdctpacPAYgS04adDXqByGEq-Ret/view?usp=share_link) |
|
256 |
+
| Proof-pile | test | [proof-pile/test_sampled_data.bin](https://drive.google.com/file/d/1bUI5lPDvrqzY_XXJJ2sSuvZx0Y9AZClE/view?usp=share_link) |
|
257 |
+
|
258 |
+
|
259 |
+
### Passkey Retrieval
|
260 |
+
We provide a manner to test the passkey retrieval accuracy. For example,
|
261 |
+
```
|
262 |
+
python3 passkey_retrivial.py \
|
263 |
+
--context_size 32768 \
|
264 |
+
--base_model path_to/Llama-2-7b-longlora-32k \
|
265 |
+
--max_tokens 32768 \
|
266 |
+
--interval 1000
|
267 |
+
```
|
268 |
+
- Note that the `context_size` is the context length during fine-tuning.
|
269 |
+
- `max_tokens` is maximum length for the document in passkey retrieval evaluation.
|
270 |
+
- `interval` is the interval during the document length increasing. It is a rough number because the document increases by sentences.
|
271 |
+
|
272 |
+
## Demo
|
273 |
+
### Local Inference
|
274 |
+
To chat with [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) or [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), you need to run `merge_lora_weights_and_save_hf_model.py` first, and then:
|
275 |
+
```
|
276 |
+
python3 inference.py \
|
277 |
+
--base_model path_to_model \
|
278 |
+
--question $question \
|
279 |
+
--context_size $context_length \
|
280 |
+
--max_gen_len $max_gen_len \
|
281 |
+
--flash_attn True \
|
282 |
+
--material $material_content \
|
283 |
+
--material_type $material_type \
|
284 |
+
--material_title $material_title
|
285 |
+
```
|
286 |
+
To ask a question related to a book:
|
287 |
+
```
|
288 |
+
python3 inference.py \
|
289 |
+
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
|
290 |
+
--question "Why doesn't Professor Snape seem to like Harry?" \
|
291 |
+
--context_size 32768 \
|
292 |
+
--max_gen_len 512 \
|
293 |
+
--flash_attn True \
|
294 |
+
--material "materials/Harry Potter and the Philosophers Stone_section2.txt" \
|
295 |
+
--material_type "book" \
|
296 |
+
--material_title "Harry Potter and the Philosophers Stone"
|
297 |
+
```
|
298 |
+
Note that you can ignore `material_type` or `material_title`.
|
299 |
+
|
300 |
+
To ask a question related to a paper:
|
301 |
+
```
|
302 |
+
python3 inference.py \
|
303 |
+
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
|
304 |
+
--question "What are the main contributions and novelties of this work?" \
|
305 |
+
--context_size 32768 \
|
306 |
+
--max_gen_len 512 \
|
307 |
+
--flash_attn True \
|
308 |
+
--material "materials/paper1.txt" \
|
309 |
+
--material_type "paper"
|
310 |
+
```
|
311 |
+
|
312 |
+
### Online Demo
|
313 |
+
To deploy your own demo run
|
314 |
+
```
|
315 |
+
python3 demo.py \
|
316 |
+
--base_model path_to_model \
|
317 |
+
--context_size $context_size \
|
318 |
+
--max_gen_len $max_gen_len \
|
319 |
+
--flash_attn True
|
320 |
+
```
|
321 |
+
Example
|
322 |
+
```
|
323 |
+
python3 demo.py \
|
324 |
+
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
|
325 |
+
--context_size 32768 \
|
326 |
+
--max_gen_len 512 \
|
327 |
+
--flash_attn True
|
328 |
+
```
|
329 |
+
- Note that `flash_attn=True` will make the generation slow but save much GPU memory.
|
330 |
+
|
331 |
+
## Data Generation via Pdf2text
|
332 |
+
During our dataset collection, we convert paper and books from pdf to text. The conversion quality has a large influence on the final model quality. We think that this step is non-trivial. We release the tool for the pdf2txt conversion, in the folder `pdf2txt`. It is built upon `pdf2image`, `easyocr`, `ditod` and `detectron2`. Please refer to the [README.md](pdf2txt/README.md) in `pdf2txt` for more details.
|
333 |
+
|
334 |
+
## Citation
|
335 |
+
If you find this project useful in your research, please consider citing:
|
336 |
+
|
337 |
+
```
|
338 |
+
@article{longlora,
|
339 |
+
title={LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models},
|
340 |
+
author={Yukang Chen and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
|
341 |
+
journal={arXiv:2309.12307},
|
342 |
+
year={2023}
|
343 |
+
}
|
344 |
+
```
|
345 |
+
|
346 |
+
|
347 |
+
```
|
348 |
+
@misc{long-alpaca,
|
349 |
+
author = {Yukang Chen and Shaozuo Yu and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
|
350 |
+
title = {Long Alpaca: Long-context Instruction-following models},
|
351 |
+
year = {2023},
|
352 |
+
publisher = {GitHub},
|
353 |
+
journal = {GitHub repository},
|
354 |
+
howpublished = {\url{https://github.com/dvlab-research/LongLoRA}},
|
355 |
+
}
|
356 |
+
```
|
357 |
+
## Acknowledgement
|
358 |
+
- This work is built upon the [LLaMA2](https://ai.meta.com/llama) as the pre-trained models.
|
359 |
+
- This work can also be built upon the [GPTNeoX-HF](https://huggingface.co/docs/transformers/model_doc/gpt_neox) which is based upon [EleutherAI/GPTNeoX](https://github.com/EleutherAI/gpt-neox) as the pre-trained model architecture.
|
360 |
+
- This work is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed), [peft](https://github.com/huggingface/peft), and [Flash-Attention2](https://github.com/Dao-AILab/flash-attention) for acceleration.
|
361 |
+
- Some evaluation code is modified upon [Landmark Attention](https://github.com/epfml/landmark-attention).
|
362 |
+
- We use [LongChat](https://github.com/DachengLi1/LongChat) for the retrieval evaluation.
|
363 |
+
|
364 |
+
## License
|
365 |
+
- LongLoRA is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices.
|
366 |
+
- Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes.
|