File size: 36,141 Bytes
96c0ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
#!/usr/bin/env python
# encoding: utf-8
import math
import os, csv, json
import io, textwrap, itertools
import subprocess
from Bio import SeqIO
import torch
import numpy as np
import sys, random
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pynvml, requests
from collections import OrderedDict
plt.rcParams.update({'font.size': 18})
plt.rcParams['axes.unicode_minus'] = False
from .file_operator import file_reader
from .multi_label_metrics import prob_2_pred, relevant_indexes, metrics_multi_label
from .metrics import metrics_multi_class, metrics_binary, metrics_regression
common_nucleotide_set = {'A', 'T', 'C', 'G', 'U', 'N'}
# not {'O', 'U', 'Z', 'J', 'B'}
# Common amino acids
common_amino_acid_set = {'R', 'X', 'S', 'G', 'W', 'I', 'Q', 'A', 'T', 'V', 'K', 'Y', 'C', 'N', 'L', 'F', 'D', 'M', 'P', 'H', 'E'}
def to_device(device, batch):
'''
input to device
:param device:
:param batch:
:return:
'''
new_batch = {}
sample_num = 0
tens = None
for item1 in batch.items():
new_batch[item1[0]] = {}
if isinstance(item1[1], dict):
for item2 in item1[1].items():
new_batch[item1[0]][item2[0]] = {}
if isinstance(item2[1], dict):
for item3 in item2[1].items():
if item3[1] is not None and not isinstance(item3[1], int) and not isinstance(item3[1], str) and not isinstance(item3[1], float):
new_batch[item1[0]][item2[0]][item3[0]] = item3[1].to(device)
tens = item3[1]
else:
new_batch[item1[0]][item2[0]][item3[0]] = item3[1]
else:
if item2[1] is not None and not isinstance(item2[1], int) and not isinstance(item2[1], str) and not isinstance(item2[1], float):
new_batch[item1[0]][item2[0]] = item2[1].to(device)
tens = item2[1]
else:
new_batch[item1[0]][item2[0]] = item2[1]
else:
if item1[1] is not None and not isinstance(item1[1], int) and not isinstance(item1[1], str) and not isinstance(item1[1], float):
new_batch[item1[0]] = item1[1].to(device)
tens = item1[1]
else:
new_batch[item1[0]] = item1[1]
if tens is not None:
sample_num = tens.shape[0]
return new_batch, sample_num
def get_parameter_number(model):
'''
colc the parameter number of the model
:param model:
:return:
'''
param_size = 0
param_sum = 0
trainable_size = 0
trainable_num = 0
for param in model.parameters():
cur_size = param.nelement() * param.element_size()
cur_num = param.nelement()
param_size += cur_size
param_sum += cur_num
if param.requires_grad:
trainable_size += cur_size
trainable_num += cur_num
buffer_size = 0
buffer_sum = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
'''
total_num = sum(p.numel() for p in model.parameters())
total_size = sum(p.numel() * p.element_size() for p in model.parameters())
total_num += sum(p.numel() for p in model.buffers())
total_size += sum(p.numel() * p.element_size() for p in model.buffers())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
trainable_size = sum(p.numel() * p.element_size() for p in model.parameters() if p.requires_grad)
'''
return {
'total_num': "%fM" % round((buffer_sum + param_sum)/(1024 * 1024), 2),
'total_size': "%fMB" % round((buffer_size + param_size)/(1024 * 1024), 2),
'param_sum': "%fM" % round(param_sum/(1024 * 1024), 2),
'param_size': "%fMB" % round(param_size/(1024 * 1024), 2),
'buffer_sum': "%fM" % round(buffer_sum/(1024 * 1024), 2),
'buffer_size': "%fMB" % round(buffer_size/(1024 * 1024), 2),
'trainable_num': "%fM" % round(trainable_num/(1024 * 1024), 10),
'trainable_size': "%fMB" % round(trainable_size/(1024 * 1024), 10)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def label_id_2_label_name(output_mode, label_list, prob, threshold=0.5):
'''
convect label id to label name
:param output_mode:
:param label_list:
:param prob:
:param threshold:
:return:
'''
if output_mode in ["multi-label", "multi_label"]:
res = []
pred = prob_2_pred(prob, threshold)
pred_index = relevant_indexes(pred)
for row in range(prob.shape[0]):
label_names = [label_list[idx] for idx in pred_index[row]]
res.append(label_names)
return res
elif output_mode in ["multi-class", "multi_class"]:
pred = np.argmax(prob, axis=1)
label_names = [label_list[idx] for idx in pred]
return label_names
elif output_mode in ["binary-class", "binary_class"]:
if prob.ndim == 2:
prob = prob.flatten(order="C")
pred = prob_2_pred(prob, threshold)
label_names = [label_list[idx] for idx in pred]
return label_names
else:
raise KeyError(output_mode)
def plot_bins(data, xlabel, ylabel, bins, filepath):
'''
plot bins
:param data:
:param xlabel:
:param ylabel:
:param bins: bins number
:param filepath: png save filepath
:return:
'''
plt.figure(figsize=(40, 20), dpi=100)
plt.hist(data, bins=bins)
# plt.xticks(range(min(data), max(data)))
# plt.grid(linestyle='--', alpha=0.5)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if filepath is None:
plt.show()
else:
plt.savefig(filepath)
plt.clf()
plt.close()
def plot_confusion_matrix_for_binary_class(targets, preds, cm=None, savepath=None):
'''
:param targets: ground truth
:param preds: prediction probs
:param cm: confusion matrix
:param savepath: confusion matrix picture savepth
'''
plt.figure(figsize=(40, 20), dpi=100)
if cm is None:
cm = confusion_matrix(targets, preds, labels=[0, 1])
plt.matshow(cm, cmap=plt.cm.Oranges)
plt.colorbar()
for x in range(len(cm)):
for y in range(len(cm)):
plt.annotate(cm[x, y], xy=(y, x), verticalalignment='center', horizontalalignment='center')
plt.ylabel('True')
plt.xlabel('Prediction')
if savepath:
plt.savefig(savepath, dpi=100)
else:
plt.show()
plt.close("all")
def save_labels(filepath, label_list):
'''
save labels
:param filepath:
:param label_list:
:return:
'''
with open(filepath, "w") as wfp:
wfp.write("label" + "\n")
for label in label_list:
wfp.write(label + "\n")
def load_labels(filepath, header=True):
'''
load labels
:param filepath:
:param header: where the file has header or not
:return:
'''
label_list = []
with open(filepath, "r") as rfp:
for label in rfp:
label_list.append(label.strip())
if len(label_list) > 0 and (header or label_list[0] == "label"):
return label_list[1:]
return label_list
def load_vocab(vocab_path):
'''
load vocab
:param vocab_path:
:return:
'''
vocab = {}
with open(vocab_path, "r") as rfp:
for line in rfp:
v = line.strip()
vocab[v] = len(vocab)
return vocab
def subprocess_popen(statement):
'''
execute shell cmd
:param statement:
:return:
'''
p = subprocess.Popen(statement, shell=True, stdout=subprocess.PIPE)
while p.poll() is None:
if p.wait() != 0:
print("fail.")
return False
else:
re = p.stdout.readlines()
result = []
for i in range(len(re)):
res = re[i].decode('utf-8').strip('\r\n')
result.append(res)
return result
def prepare_inputs(input_type, embedding_type, batch):
if input_type == "sequence":
inputs = {
"input_ids_a": batch[0],
"attention_mask_a": batch[1],
"token_type_ids_a": batch[2],
"input_ids_b": batch[4],
"attention_mask_b": batch[5],
"token_type_ids_b": batch[6],
"labels": batch[-1]
}
elif input_type == "embedding":
if embedding_type not in ["vector", "bos"]:
inputs = {
"embedding_info_a": batch[0],
"embedding_attention_mask_a": batch[1],
"embedding_info_b": batch[2],
"embedding_attention_mask_b": batch[3],
"labels": batch[-1]
}
else:
inputs = {
"embedding_info_a": batch[0],
"embedding_attention_mask_a": None,
"embedding_info_b": batch[1],
"embedding_attention_mask_b": None,
"labels": batch[-1]
}
elif input_type == "structure":
inputs = {
"struct_input_ids_a": batch[0],
"struct_contact_map_a": batch[1],
"struct_input_ids_b": batch[2],
"struct_contact_map_b": batch[3],
"labels": batch[-1]
}
elif input_type == "sefn":
if embedding_type not in ["vector", "bos"]:
inputs = {
"input_ids_a": batch[0],
"attention_mask_a": batch[1],
"token_type_ids_a": batch[2],
"embedding_info_a": batch[4],
"embedding_attention_mask_a": batch[5],
"input_ids_b": batch[6],
"attention_mask_b": batch[7],
"token_type_ids_b": batch[8],
"embedding_info_b": batch[10],
"embedding_attention_mask_b": batch[11],
"labels": batch[-1],
}
else:
inputs = {
"input_ids_a": batch[0],
"attention_mask_a": batch[1],
"token_type_ids_a": batch[2],
"embedding_info_a": batch[4],
"embedding_attention_mask_a": None,
"input_ids_b": batch[5],
"attention_mask_b": batch[6],
"token_type_ids_b": batch[7],
"embedding_info_b": batch[9],
"embedding_attention_mask_b": None,
"labels": batch[-1],
}
elif input_type == "ssfn":
inputs = {
"input_ids_a": batch[0],
"attention_mask_a": batch[1],
"token_type_ids_a": batch[2],
"struct_input_ids_a": batch[4],
"struct_contact_map_a": batch[5],
"input_ids_b": batch[6],
"attention_mask_b": batch[7],
"token_type_ids_b": batch[8],
"struct_input_ids_b": batch[10],
"struct_contact_map_b": batch[11],
"labels": batch[-1]
}
else:
inputs = None
return inputs
def gene_seq_replace_re(seq):
'''
Nucleic acid 还原
:param seq:
:return:
'''
new_seq = ""
for ch in seq:
if ch == '1':
new_seq += "A"
elif ch == '2':
new_seq += "T"
elif ch == '3':
new_seq += "C"
elif ch == '4':
new_seq += "G"
else: # unknown
new_seq += "N"
return new_seq
def gene_seq_replace(seq):
'''
Nucleic acid (gene replace: A->1, U/T->2, C->3, G->4, N->5
:param seq:
:return:
'''
new_seq = ""
for ch in seq:
if ch in ["A", "a"]:
new_seq += "1"
elif ch in ["T", "U", "t", "u"]:
new_seq += "2"
elif ch in ["C", "c"]:
new_seq += "3"
elif ch in ["G", "g"]:
new_seq += "4"
else: # unknown
new_seq += "5"
return new_seq
def get_labels(label_filepath, header=True):
'''
get labels from file, exists header
:param label_filepath:
:param header:
:return:
'''
with open(label_filepath, "r") as fp:
labels = []
multi_cols = False
cnt = 0
for line in fp:
line = line.strip()
cnt += 1
if cnt == 1 and (header or line == "label"):
if line.find(",") > 0:
multi_cols = True
continue
if multi_cols:
idx = line.find(",")
if idx > 0:
label_name = line[idx + 1:].strip()
else:
label_name = line
else:
label_name = line
labels.append(label_name)
return labels
def available_gpu_id():
'''
计算可用的GPU id
:return:
'''
pynvml.nvmlInit()
if not torch.cuda.is_available():
print("GPU not available")
return -1
# 获取GPU数量
device_count = pynvml.nvmlDeviceGetCount()
max_available_gpu = -1
max_available_rate = 0
# 遍历所有GPU并检查可用性
for i in range(device_count):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
memory_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
utilization = pynvml.nvmlDeviceGetUtilizationRates(handle)
# 假设如果GPU利用率小于某个阈值(例如10%),我们认为这个GPU目前是空闲的
if utilization.gpu < 10 and max_available_rate < 100 - utilization.gpu:
max_available_rate = 100 - utilization.gpu
max_available_gpu = i
# 打印可用的GPU ID
if max_available_gpu > -1:
print("Available GPU ID: %d, Free Rate: %0.2f%%" % (max_available_gpu, max_available_rate))
else:
print("No Available GPU!")
# Shutdown NVML
pynvml.nvmlShutdown()
return max_available_gpu
def eval_metrics(output_mode, truths, preds, threshold=0.5):
'''
eval metrics
:param output_mode:
:param truths:
:param preds:
:param threshold:
:return:
'''
print("\ntruths size: ", truths.shape)
print("\npreds size: ", preds.shape)
if output_mode in ["multi-label", "multi_label"]:
return metrics_multi_label(truths, preds, threshold=threshold)
elif output_mode in ["multi-class", "multi_class"]:
return metrics_multi_class(truths, preds)
elif output_mode == "regression":
return metrics_regression(truths, preds)
elif output_mode in ["binary-class", "binary_class"]:
return metrics_binary(truths, preds, threshold=threshold)
else:
raise Exception("Not Support this output mode: %s" % output_mode)
def load_trained_model(model_config, args, model_class, model_dirpath):
# load exists checkpoint
print("load pretrained model: %s" % model_dirpath)
try:
model = model_class.from_pretrained(model_dirpath, args=args)
except Exception as e:
model = model_class(model_config, args=args)
pretrained_net_dict = torch.load(os.path.join(args.model_dirpath, "pytorch.pth"),
map_location=torch.device("cpu"))
model_state_dict_keys = set()
for key in model.state_dict():
model_state_dict_keys.add(key)
new_state_dict = OrderedDict()
for k, v in pretrained_net_dict.items():
if k.startswith("module."):
# remove `module.`
name = k[7:]
else:
name = k
if name in model_state_dict_keys:
new_state_dict[name] = v
# print("diff:")
# print(model_state_dict_keys.difference(new_state_dict.keys()))
model.load_state_dict(new_state_dict)
return model
def clean_seq(protein_id, seq, return_rm_index=False):
seq = seq.upper()
new_seq = ""
has_invalid_char = False
invalid_char_set = set()
return_rm_index_set = set()
for idx, ch in enumerate(seq):
if 'A' <= ch <= 'Z' and ch not in ['J']:
new_seq += ch
else:
invalid_char_set.add(ch)
return_rm_index_set.add(idx)
has_invalid_char = True
if has_invalid_char:
print("id: %s. Seq: %s" % (protein_id, seq))
print("invalid char set:", invalid_char_set)
print("return_rm_index:", return_rm_index_set)
if return_rm_index:
return new_seq, return_rm_index_set
return new_seq
def sample_size(data_dirpath):
if os.path.isdir(data_dirpath):
new_filepaths = []
for filename in os.listdir(data_dirpath):
if not filename.startswith("."):
new_filepaths.append(os.path.join(data_dirpath, filename))
filepaths = new_filepaths
else:
filepaths = [data_dirpath]
total = 0
for filepath in filepaths:
header = filepath.endswith(".tsv") or filepath.endswith(".csv")
print("sample_size filepath: %s" % filepath)
for _ in file_reader(filepath, header=header, header_filter=True):
total += 1
return total
def writer_info_tb(tb_writer, logs, global_step, prefix=None):
'''
write info to tensorboard
:param tb_writer:
:param logs:
:param global_step:
:param prefix:
:return:
'''
for key, value in logs.items():
if isinstance(value, dict):
'''
for key1, value1 in value.items():
tb_writer.add_scalar(key + "_" + key1, value1, global_step)
'''
writer_info_tb(tb_writer, value, global_step, prefix=key)
elif not math.isnan(value) and not math.isinf(value):
tb_writer.add_scalar(prefix + "_" + key if prefix else key, value, global_step)
else:
print("writer_info_tb NaN or Inf, Key-Value: %s=%s" % (key, value))
def get_lr(optimizer):
'''
get learning rate
:param optimizer:
:return:
'''
for p in optimizer.param_groups:
if "lr" in p:
return p["lr"]
def metrics_merge(results, all_results):
'''
merge metrics
:param results:
:param all_results:
:return:
'''
for item1 in results.items():
if item1[0] not in all_results:
all_results[item1[0]] = {}
for item2 in item1[1].items():
if item2[0] not in all_results[item1[0]]:
all_results[item1[0]][item2[0]] = {}
for item3 in item2[1].items():
if item3[0] not in all_results[item1[0]][item2[0]]:
all_results[item1[0]][item2[0]][item3[0]] = item3[1]
else:
all_results[item1[0]][item2[0]][item3[0]] += item3[1]
return all_results
def print_shape(item):
'''
print shape
:param item:
:return:
'''
if isinstance(item, dict):
for item1 in item.items():
print(item1[0] + ":")
print_shape(item1[1])
elif isinstance(item, list):
for idx, item1 in enumerate(item):
print("idx: %d" % idx)
print_shape(item1)
else:
print("shape:", item.shape)
def process_outputs(output_mode, truth, pred, output_truth, output_pred, ignore_index, keep_seq=False):
if keep_seq:
# to do
return None, None
else:
if output_mode in ["multi_class", "multi-class"]:
cur_truth = truth.view(-1)
cur_mask = cur_truth != ignore_index
cur_pred = pred.view(-1, pred.shape[-1])
cur_truth = cur_truth[cur_mask]
cur_pred = cur_pred[cur_mask, :]
sum_v = cur_mask.sum().item()
elif output_mode in ["multi_label", "multi-label"]:
cur_truth = truth.view(-1, truth.shape[-1])
cur_pred = pred.view(-1, pred.shape[-1])
sum_v = pred.shape[0]
elif output_mode in ["binary_class", "binary-class"]:
cur_truth = truth.view(-1)
cur_mask = cur_truth != ignore_index
cur_pred = pred.view(-1)
cur_truth = cur_truth[cur_mask]
cur_pred = cur_pred[cur_mask]
sum_v = cur_mask.sum().item()
elif output_mode in ["regression"]:
cur_truth = truth.view(-1)
cur_mask = cur_truth != ignore_index
cur_pred = pred.view(-1)
cur_truth = cur_truth[cur_mask]
cur_pred = cur_pred[cur_mask]
sum_v = cur_mask.sum().item()
else:
raise Exception("not output mode: %s" % output_mode)
if sum_v > 0:
cur_truth = cur_truth.detach().cpu().numpy()
cur_pred = cur_pred.detach().cpu().numpy()
if output_truth is None or output_pred is None:
return cur_truth, cur_pred
else:
output_truth = np.append(output_truth, cur_truth, axis=0)
output_pred = np.append(output_pred, cur_pred, axis=0)
return output_truth, output_pred
return truth, pred
def print_batch(value, key=None, debug_path=None, wfp=None, local_rank=-1):
'''
print a batch
:param value:
:param key:
:param debug_path:
:param wfp:
:param local_rank:
:return:
'''
if isinstance(value, list):
for idx, v in enumerate(value):
if wfp is not None:
if v is not None:
wfp.write(str([torch.min(v), torch.min(torch.where(v == -100, 10000, v)), torch.max(v)]) + "\n")
wfp.write(str(v.shape) + "\n")
else:
wfp.write("None\n")
wfp.write("-" * 10 + "\n")
else:
if v is not None:
print([torch.min(v), torch.min(torch.where(v == -100, 10000, v)), torch.max(v)])
print(v.shape)
else:
print("None")
print("-" * 50)
if v is not None:
try:
value = v.detach().cpu().numpy().astype(int)
if debug_path is not None:
if value.ndim == 3:
for dim_1_idx in range(value.shape[0]):
np.savetxt(os.path.join(debug_path, "%s_batch_%d.txt" % (key, dim_1_idx)), value[dim_1_idx, :, :], fmt='%i', delimiter=",")
else:
np.savetxt(os.path.join(debug_path, "%d.txt" % idx), value, fmt='%i', delimiter=",")
else:
if value.ndim == 3:
for dim_1_idx in range(value.shape[0]):
np.savetxt(os.path.join(debug_path, "%s_batch_%d.txt" % (key, dim_1_idx)), value[dim_1_idx, :, :], fmt='%i', delimiter=",")
else:
np.savetxt("%d.txt" % idx, value, fmt='%i', delimiter=",")
except Exception as e:
print(e)
elif isinstance(value, dict):
for item in value.items():
if wfp is not None:
wfp.write(str(item[0]) + ":\n")
else:
print(str(item[0]) + ':')
print_batch(item[1], item[0], debug_path, wfp, local_rank)
else:
if wfp is not None:
if value is not None:
wfp.write(str([torch.min(value), torch.min(torch.where(value == -100, 10000, value)), torch.max(value)]) + "\n")
wfp.write(str(value.shape) + "\n")
else:
wfp.write("None\n")
wfp.write("-" * 10 + "\n")
else:
if value is not None:
print([torch.min(value), torch.min(torch.where(value == -100, 10000, value)), torch.max(value)])
print(value.shape)
else:
print("None")
print("-" * 10)
if value is not None:
if key != "prot_structure":
fmt = '%i'
d_type = int
else:
fmt = '%0.4f'
d_type = float
try:
value = value.detach().cpu().numpy().astype(d_type)
if debug_path is not None:
if value.ndim == 3:
for dim_1_idx in range(value.shape[0]):
np.savetxt(os.path.join(debug_path, "%s_batch_%d.txt" % (key, dim_1_idx)), value[dim_1_idx, :, :], fmt=fmt, delimiter=",")
else:
np.savetxt(os.path.join(debug_path, "%s.txt" % key), value, fmt=fmt, delimiter=",")
else:
if value.ndim == 3:
for dim_1_idx in range(value.shape[0]):
np.savetxt("%s_batch_%d.txt" % (key, dim_1_idx), value[dim_1_idx, :, :], fmt=fmt, delimiter=",")
else:
np.savetxt("%s.txt" % key, value, fmt=fmt, delimiter=",")
except Exception as e:
print(e)
def gcd(x, y):
'''
最大公约数
:param x:
:param y:
:return:
'''
m = max(x, y)
n = min(x, y)
while m % n:
m, n = n, m % n
return n
def lcm(x, y):
'''
最小公倍数
:param x:
:param y:
:return:
'''
m = max(x, y)
n = min(x, y)
while m % n:
m, n = n, m % n
return x*y//n
def device_memory(gpu_id):
if gpu_id is None or gpu_id < 0:
return
pynvml.nvmlInit()
device_cnt = pynvml.nvmlDeviceGetCount()
for idx in range(device_cnt):
if gpu_id is not None and gpu_id != idx:
continue
handle = pynvml.nvmlDeviceGetHandleByIndex(idx)
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
print(f"Device {idx}: {pynvml.nvmlDeviceGetName(handle)}")
print(f"Total memory: {info.total / 1024**3:.8f} GB")
print(f"Used memory: {info.used / 1024**3:.8f} GB")
print(f"Free memory: {info.free / 1024**3:.8f} GB")
pynvml.nvmlShutdown()
def calc_emb_filename_by_seq_id(seq_id, embedding_type):
"""
根据seq_id得到emb_filename
:param seq_id:
:param embedding_type:
:return:
"""
if seq_id[0] == ">":
seq_id = seq_id[1:]
if "|" in seq_id:
strs = seq_id.split("|")
if len(strs) > 1:
emb_filename = embedding_type + "_" + strs[1].strip() + ".pt"
else:
emb_filename = embedding_type + "_" + seq_id.replace(" ", "").replace("/", "_") + ".pt"
else:
emb_filename = embedding_type + "_" + seq_id.replace(" ", "").replace("/", "_") + ".pt"
return emb_filename
def download_file(url, local_filename):
with requests.get(url, stream=True) as r:
r.raise_for_status()
dir_name = os.path.dirname(local_filename)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
return local_filename
def download_folder(base_url, file_names, local_dir):
if not os.path.exists(local_dir):
os.makedirs(local_dir)
for file_name in file_names:
file_url = f"{base_url}/{file_name}"
local_filename = os.path.join(local_dir, file_name)
download_file(file_url, local_filename)
print(f"Downloaded {file_name}")
def download_trained_checkpoint_lucaone(
llm_dir,
llm_type="lucaone_gplm",
llm_version="v2.0",
llm_task_level="token_level,span_level,seq_level,structure_level",
llm_time_str="20231125113045",
llm_step="5600000",
base_url="http://47.93.21.181/lucaone/TrainedCheckPoint"
):
"""
donwload trained checkpoint of LucaOne
:param llm_dir:
:param llm_type:
:param llm_version:
:param llm_task_level:
:param llm_time_str:
:param llm_step:
:param base_url:
:return:
"""
print("------Download Trained LLM(LucaOne)------")
try:
logs_file_names = ["logs.txt"]
models_file_names = ["config.json", "pytorch.pth", "training_args.bin", "tokenizer/alphabet.pkl"]
logs_path = "logs/lucagplm/%s/%s/%s/%s" % (llm_version, llm_task_level, llm_type, llm_time_str)
models_path = "models/lucagplm/%s/%s/%s/%s/checkpoint-step%s" % (llm_version, llm_task_level, llm_type, llm_time_str, llm_step)
logs_local_dir = os.path.join(llm_dir, logs_path)
exists = True
for logs_file_name in logs_file_names:
if not os.path.exists(os.path.join(logs_local_dir, logs_file_name)):
exists = False
break
models_local_dir = os.path.join(llm_dir, models_path)
if exists:
for models_file_name in models_file_names:
if not os.path.exists(os.path.join(models_local_dir, models_file_name)):
exists = False
break
if not exists:
print("*" * 20 + "Downloading" + "*" * 20)
print("Downloading LucaOne TrainedCheckPoint: LucaOne-%s-%s-%s ..." % (llm_version, llm_time_str, llm_step))
print("Wait a moment, please.")
# download logs
if not os.path.exists(logs_local_dir):
os.makedirs(logs_local_dir)
logs_base_url = os.path.join(base_url, logs_path)
download_folder(logs_base_url, logs_file_names, logs_local_dir)
# download models
if not os.path.exists(models_local_dir):
os.makedirs(models_local_dir)
models_base_url = os.path.join(base_url, models_path)
download_folder(models_base_url, models_file_names, models_local_dir)
print("LucaOne Download Succeed.")
print("*" * 50)
except Exception as e:
print(e)
print("Download automatically LucaOne Trained CheckPoint failed!")
print("You can manually download 'logs/' and 'models/' into local directory: %s/ from %s" % (os.path.abspath(llm_dir), os.path.join(base_url, "TrainedCheckPoint/")))
raise Exception(e)
def download_trained_checkpoint_downstream_tasks(
save_dir="../",
dataset_name=["CentralDogma", "GenusTax", "InfA", "ncRNAFam", "ncRPI", "PPI", "ProtLoc", "ProtStab", "SpeciesTax", "SupKTax"],
dataset_type=["gene_protein", "gene", "gene_gene", "gene", "gene_protein", "protein", "protein", "protein", "gene", "gene"],
task_type=["binary_class", "multi_class", "binary_class", "multi_class", "binary_class", "binary_class", "multi_class", "regression", "multi_class", "multi_class"],
model_type=["lucappi2", "luca_base", "lucappi", "luca_base", "lucappi2", "lucappi", "luca_base", "luca_base", "luca_base", "luca_base"],
input_type=["matrix", "matrix", "matrix", "matrix", "matrix", "matrix", "matrix", "matrix", "matrix", "matrix"],
time_str=["20240406173806", "20240412100337", "20240214105653", "20240414155526", "20240404105148", "20240216205421", "20240412140824", "20240404104215", "20240411144916", "20240212202328"],
step=[64000, 24500, 9603, 1958484, 716380, 52304, 466005, 70371, 24000, 37000],
base_url="http://47.93.21.181/lucaone/DownstreamTasksTrainedModels"
):
"""
donwload trained downstream task models
:param save_dir: 本地保存路径
:param dataset_name:
:param dataset_type:
:param task_type:
:param model_type:
:param input_type:
:param time_str:
:param step:
:param base_url:
:return:
"""
assert len(dataset_name) == len(dataset_type) == len(task_type) == \
len(model_type) == len(input_type) == len(time_str) == len(step)
assert isinstance(dataset_name, list)
assert isinstance(dataset_type, list)
assert isinstance(task_type, list)
assert isinstance(model_type, list)
assert isinstance(input_type, list)
assert isinstance(time_str, list)
assert isinstance(step, list)
download_succeed_task_num = 0
print("------Download Trained Models------")
for idx in range(len(dataset_name)):
try:
logs_file_names = ["logs.txt", "label.txt"]
models_file_names = ["config.json", "pytorch_model.bin", "training_args.bin", "tokenizer/alphabet.pkl"]
logs_path = "logs/%s/%s/%s/%s/%s/%s" % (dataset_name[idx], dataset_type[idx], task_type[idx], model_type[idx], input_type[idx], time_str[idx])
models_path = "models/%s/%s/%s/%s/%s/%s/checkpoint-%s" % (dataset_name[idx], dataset_type[idx], task_type[idx], model_type[idx], input_type[idx], time_str[idx], str(step[idx]))
logs_local_dir = os.path.join(save_dir, logs_path)
exists = True
for logs_file_name in logs_file_names:
if not os.path.exists(os.path.join(logs_local_dir, logs_file_name)):
exists = False
break
models_local_dir = os.path.join(save_dir, models_path)
if exists:
for models_file_name in models_file_names:
if not os.path.exists(os.path.join(models_local_dir, models_file_name)):
exists = False
break
if not exists:
print("*" * 20 + "Downloading" + "*" * 20)
print("Downloading Downstream Task: %s TrainedCheckPoint: %s-%s-%s ..." % (dataset_name[idx], dataset_name[idx], time_str[idx], str(step[idx])))
print("Wait a moment, please.")
# download logs
if not os.path.exists(logs_local_dir):
os.makedirs(logs_local_dir)
logs_base_url = os.path.join(base_url, dataset_name[idx], logs_path)
download_folder(logs_base_url, logs_file_names, logs_local_dir)
# download models
if not os.path.exists(models_local_dir):
os.makedirs(models_local_dir)
models_base_url = os.path.join(base_url, dataset_name[idx], models_path)
download_folder(models_base_url, models_file_names, models_local_dir)
print("Downstream Task: %s Trained Model Download Succeed." % dataset_name[idx])
print("*" * 50)
download_succeed_task_num += 1
except Exception as e:
print(e)
print("Download automatically LucaDownstream Task: %s Trained CheckPoint failed!" % dataset_name[idx])
print("You can manually download 'logs/' and 'models/' into local directory: %s/ from %s" % (os.path.abspath(save_dir), os.path.join(base_url, dataset_name[idx])))
raise Exception(e)
print("%d Downstream Task Trained Model Download Succeed." % download_succeed_task_num) |