File size: 31,402 Bytes
96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 96c0ca2 ca6b592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
#!/usr/bin/env python
# encoding: utf-8
from .loss import *
from .model_utils import AllOutput, create_output_loss_lucagplm
from .alphabet import Alphabet
from .modeling_gplm import *
from .lucaone_gplm_config import LucaGPLMConfig
from transformers import PreTrainedModel
class LucaGPLM(PreTrainedModel):
config_class = LucaGPLMConfig
def __init__(self, config):
super().__init__(config)
self.config = config
self.max_position_embeddings = config.max_position_embeddings
self.type_vocab_size = config.type_vocab_size
self.num_layers = config.num_hidden_layers
self.embed_dim = config.hidden_size
self.attention_heads = config.num_attention_heads
self.no_position_embeddings = config.no_position_embeddings
self.no_token_type_embeddings = config.no_token_type_embeddings
if not isinstance(config.alphabet, Alphabet):
self.alphabet = Alphabet.from_predefined(config.alphabet)
else:
self.alphabet = config.alphabet
self.alphabet_size = len(self.alphabet)
self.padding_idx = self.alphabet.padding_idx
self.mask_idx = self.alphabet.mask_idx
self.cls_idx = self.alphabet.cls_idx
self.eos_idx = self.alphabet.eos_idx
self.prepend_bos = self.alphabet.prepend_bos
self.append_eos = self.alphabet.append_eos
self.token_dropout = config.token_dropout
self.ignore_index = config.ignore_index
self.use_embed_layer_norm = config.use_embed_layer_norm
self.use_last_layer_norm = config.use_last_layer_norm
self.embed_scale = config.embed_scale
self.embedding_inference = True
self._init_submodules()
def _init_submodules(self):
# normal_(0, 1)
self.embed_tokens = nn.Embedding(
self.alphabet_size,
self.embed_dim,
padding_idx=self.padding_idx,
)
self.embed_pos = None
if not self.no_position_embeddings:
self.embed_pos = nn.Embedding(self.max_position_embeddings, self.embed_dim)
self.embed_type = None
if not self.no_token_type_embeddings:
self.embed_type = nn.Embedding(self.type_vocab_size, self.embed_dim)
if self.use_embed_layer_norm:
self.embed_layer_norm = LucaGPLM1bLayerNorm(self.embed_dim)
else:
self.embed_layer_norm = None
self.layers = nn.ModuleList(
[
LucaGPLMTransformerLayer(
self.embed_dim,
4 * self.embed_dim,
self.attention_heads,
add_bias_kv=False,
use_lucagplm1b_layer_norm=True,
use_rotary_embeddings=True,
)
for _ in range(self.num_layers)
]
)
self.layer_size = len(self.layers)
if not self.embedding_inference:
self.contact_head = ContactPredictionHead(
self.num_layers * self.attention_heads,
self.prepend_bos,
self.append_eos,
eos_idx=self.eos_idx,
)
if self.use_last_layer_norm:
self.last_layer_norm = LucaGPLM1bLayerNorm(self.embed_dim)
else:
self.last_layer_norm = None
if not self.embedding_inference:
self.lm_head = RobertaLMHead(
embed_dim=self.embed_dim,
output_dim=self.alphabet_size,
weight=self.embed_tokens.weight,
)
def _init_embedding(self, pretrained_token_matrix, token_matrix):
'''
0->2
1->0
2->3
3->1
4->10
...
28->34
29->36
30->37
31->38
32->4
'''
# print("Load pretrained exists embedding vectors:")
token_matrix[2, :] = pretrained_token_matrix[0, :]
token_matrix[0, :] = pretrained_token_matrix[1, :]
token_matrix[3, :] = pretrained_token_matrix[2, :]
token_matrix[1, :] = pretrained_token_matrix[3, :]
for idx in range(10, 35):
token_matrix[idx, :] = pretrained_token_matrix[idx - 6, :]
token_matrix[36, :] = pretrained_token_matrix[29, :]
token_matrix[37, :] = pretrained_token_matrix[30, :]
token_matrix[38, :] = pretrained_token_matrix[31, :]
token_matrix[4, :] = pretrained_token_matrix[32, :]
return token_matrix
def _init_submodules_new(self, pretrained_model_name):
# print("Load pretrained model exists weights:")
from esm import pretrained
from collections import OrderedDict
pretrained, _ = pretrained.load_model_and_alphabet(pretrained_model_name)
pretrained_state_dict = pretrained.state_dict()
new_state_dict = OrderedDict()
our_model_state_dict = {}
for key, value in self.state_dict().items():
our_model_state_dict[key] = value
for name, weight in pretrained_state_dict.items():
if "final_layer_norm" in name:
name = name.replace("final_layer_norm", "post_layer_norm")
elif "self_attn_layer_norm" in name:
name = name.replace("self_attn_layer_norm", "pre_layer_norm")
elif "emb_layer_norm_after" in name:
name = name.replace("emb_layer_norm_after", "last_layer_norm")
if name.startswith("layers."):
layer_id = name.split(".")[1]
if int(layer_id) >= self.num_layers:
continue
if name == "embed_tokens.weight":
new_state_dict[name] = self._init_embedding(weight, our_model_state_dict[name])
del our_model_state_dict[name]
elif name in our_model_state_dict and our_model_state_dict[name].shape == weight.shape:
del our_model_state_dict[name]
new_state_dict[name] = weight
'''
print("Exists layer names:")
print(new_state_dict.keys())
print("Not exists Layer names:")
print(our_model_state_dict.keys())
'''
new_state_dict.update(our_model_state_dict)
self.load_state_dict(new_state_dict)
def __calc_loss__(self, task_level_type, output_mode, logits, label, label_size, loss_fct, loss_reduction):
if output_mode in ["regression"]:
if task_level_type not in ["seq_level"] and loss_reduction == "meanmean":
# structure-level regression
# logits: N, seq_len, 3
# label: N, seq_len, 3
loss = loss_fct(logits, label)
else:
# structure-level regression
# logits: N * seq_len * 3
# label: N * seq_len * 3
loss = loss_fct(logits.view(-1), label.view(-1))
elif output_mode in ["multi_label", "multi-label"]:
# only for seq-level
if loss_reduction == "meanmean":
# logits: N , label_size
# label: N , label_size
loss = loss_fct(logits, label.float())
else:
# logits: N , label_size
# label: N , label_size
loss = loss_fct(logits.view(-1, label_size), label.view(-1, label_size).float())
elif label_size <= 2 or output_mode in ["binary_class", "binary-class"]:
if task_level_type not in ["seq_level"] and loss_reduction == "meanmean":
# token-level & meanmean
# logits: N ,seq_len, 1
# label: N, seq_len
loss = loss_fct(logits, label.float())
else:
# seq-level || token-level
# logits: N
# label: N
loss = loss_fct(logits.view(-1), label.view(-1).float())
elif output_mode in ["multi_class", "multi-class"]:
if task_level_type not in ["seq_level"] and loss_reduction == "meanmean":
# token-level
# logits: N ,seq_len, label_size
# label: N , seq_len
loss = loss_fct(logits, label)
else:
# token-level
# logits: N * seq_len, label_size
# label: N * seq_len
# seq-level
# logits: N, label_size
# label: N
loss = loss_fct(logits.view(-1, label_size), label.view(-1))
else:
raise Exception("Not support output_mode=%s" % output_mode)
return loss
def __forword__(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_keys: Optional[dict[str, set[str]]] = None,
labels: Optional[dict[str, dict[str, torch.Tensor]]] = None,
repr_layers=[-1],
need_head_weights=False,
return_contacts=False,
use_last_layer_norm=True):
assert all(-(self.layer_size + 1) <= i <= self.layer_size for i in repr_layers)
repr_layers = [(i + self.layer_size + 1) % (self.layer_size + 1) for i in repr_layers]
if return_contacts:
need_head_weights = True
assert input_ids.ndim == 2
# 动态求mask,(B * Seq_len) 被mask掉位置的值为True
if attention_mask is None:
padding_mask = input_ids.eq(self.padding_idx)
else:
padding_mask = attention_mask.eq(self.padding_idx)
x = self.embed_scale * self.embed_tokens(input_ids)
if self.embed_pos is not None and position_ids is not None:
x += self.embed_scale * self.embed_pos(position_ids)
if self.embed_type is not None and token_type_ids is not None:
x += self.embed_scale * self.embed_type(token_type_ids)
if self.embed_layer_norm is not None:
x = self.embed_layer_norm(x)
# Token dropout
if self.token_dropout:
x.masked_fill_((input_ids == self.mask_idx).unsqueeze(-1), 0.0)
# x: B x L x C
mask_ratio_train = 0.15 * 0.8
src_lengths = (~padding_mask).sum(-1)
mask_ratio_observed = (input_ids == self.mask_idx).sum(-1).to(x.dtype) / src_lengths
x = x * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
# Mask 操作
if padding_mask is not None:
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
# 返回值包括哪些
repr_layers = set(repr_layers)
hidden_representations = {}
# 0:embedding
if 0 in repr_layers:
hidden_representations[0] = x
# 是否需要返回head weights
if need_head_weights:
attn_weights = []
# (B, L, E) => (L, B, E)
x = x.transpose(0, 1)
if not padding_mask.any():
padding_mask = None
for layer_idx, layer in enumerate(self.layers):
x, attn = layer(
x,
self_attn_padding_mask=padding_mask,
need_head_weights=need_head_weights,
)
if (layer_idx + 1) in repr_layers:
hidden_representations[layer_idx + 1] = x.transpose(0, 1)
if need_head_weights:
# (H, B, L, L) => (B, H, L, L)
attn_weights.append(attn.transpose(1, 0))
# (L, B, E)
if self.last_layer_norm is not None and use_last_layer_norm:
# 最后一层隐含层 加一层layernorm
x = self.last_layer_norm(x)
x = x.transpose(0, 1) # (L, B, E) => (B, L, E)
# last hidden representation should have layer norm applied
if (layer_idx + 1) in repr_layers:
hidden_representations[layer_idx + 1] = x
# 最后一层作为表征矩阵
# (B, L, E)
representation_matrix = hidden_representations[self.layer_size]
# mask 任务
# B * Seq_len * vocab_size
if not self.embedding_inference:
lm_mask_logits = self.lm_head(x)
# lm head的输出向量作为表征向量
# (B, E)
representation_vector = representation_matrix[:, 0, :]
logits = {}
losses = {}
outputs = {}
representations = {
"representation_matrix": representation_matrix,
"representation_vector": representation_vector
}
# 每一层的attention值
if need_head_weights:
# attentions: B x Layers x H x L x L
attentions = torch.stack(attn_weights, 1)
if padding_mask is not None:
attention_mask = 1 - padding_mask.type_as(attentions)
attention_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2)
attentions = attentions * attention_mask[:, None, None, :, :]
representations["attentions"] = attentions
# 预测contact矩阵
if return_contacts and hasattr(self, "contact_head") \
and not self.embedding_inference:
contacts = self.contact_head(input_ids, attentions)
representations["contacts"] = contacts
'''
print("output_keys:")
print(output_keys)
'''
if not self.embedding_inference and output_keys:
for item in output_keys.items():
cur_task_level_type = item[0]
if cur_task_level_type not in logits:
logits[cur_task_level_type] = {}
outputs[cur_task_level_type] = {}
for cur_task_level_name in item[1]:
if cur_task_level_type == "token_level":
cur_logits = lm_mask_logits
elif cur_task_level_type == "seq_level":
cur_logits = self.classifier_dropout[cur_task_level_type][cur_task_level_name](representation_vector)
cur_hidden_layer = self.hidden_layer[cur_task_level_type][cur_task_level_name]
if cur_hidden_layer is not None:
cur_logits = cur_hidden_layer(cur_logits)
cur_hidden_act = self.hidden_act[cur_task_level_type][cur_task_level_name]
if cur_hidden_act is not None:
cur_logits = cur_hidden_act(cur_logits)
cur_logits = self.classifier[cur_task_level_type][cur_task_level_name](cur_logits)
elif cur_task_level_type == "span_level":
cur_logits = self.classifier_dropout[cur_task_level_type][cur_task_level_name](representation_matrix)
cur_hidden_layer = self.hidden_layer[cur_task_level_type][cur_task_level_name]
if cur_hidden_layer is not None:
cur_logits = cur_hidden_layer(cur_logits)
cur_hidden_act = self.hidden_act[cur_task_level_type][cur_task_level_name]
if cur_hidden_act is not None:
cur_logits = cur_hidden_act(cur_logits)
cur_logits = self.classifier[cur_task_level_type][cur_task_level_name](cur_logits)
elif cur_task_level_type == "structure_level":
cur_logits = self.classifier_dropout[cur_task_level_type][cur_task_level_name](representation_matrix)
cur_hidden_layer = self.hidden_layer[cur_task_level_type][cur_task_level_name]
if cur_hidden_layer is not None:
cur_logits = cur_hidden_layer(cur_logits)
cur_hidden_act = self.hidden_act[cur_task_level_type][cur_task_level_name]
if cur_hidden_act is not None:
cur_logits = cur_hidden_act(cur_logits)
cur_logits = self.classifier[cur_task_level_type][cur_task_level_name](cur_logits)
logits[cur_task_level_type][cur_task_level_name] = cur_logits
if cur_task_level_type in self.output and cur_task_level_name in self.output[cur_task_level_type] \
and self.output[cur_task_level_type][cur_task_level_name] is not None:
outputs[cur_task_level_type][cur_task_level_name] = self.output[cur_task_level_type][cur_task_level_name](cur_logits)
else:
outputs[cur_task_level_type][cur_task_level_name] = cur_logits
if labels is not None and cur_task_level_type in labels and cur_task_level_name in labels[cur_task_level_type]:
if cur_task_level_type not in losses:
losses[cur_task_level_type] = {}
cur_label = labels[cur_task_level_type][cur_task_level_name]
cur_label_size = self.label_size[cur_task_level_type][cur_task_level_name]
cur_output_mode = self.output_mode[cur_task_level_type][cur_task_level_name]
cur_loss_fct = self.loss_fct[cur_task_level_type][cur_task_level_name]
cur_loss = self.__calc_loss__(
task_level_type=cur_task_level_type,
output_mode=cur_output_mode,
logits=cur_logits,
label=cur_label,
label_size=cur_label_size,
loss_fct=cur_loss_fct,
loss_reduction="meanmean")
losses[cur_task_level_type][cur_task_level_name] = cur_loss
return representations, logits, outputs, losses
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_keys: Optional[dict[str, set[str]]] = None,
labels: Optional[dict[str, dict[str, torch.Tensor]]] = None,
input_ids_b: Optional[torch.Tensor] = None,
attention_mask_b: Optional[torch.Tensor] = None,
global_attention_mask_b: Optional[torch.Tensor] = None,
token_type_ids_b: Optional[torch.Tensor] = None,
position_ids_b: Optional[torch.Tensor] = None,
head_mask_b: Optional[torch.Tensor] = None,
inputs_embeds_b: Optional[torch.Tensor] = None,
output_keys_b: Optional[dict[str, set[str]]] = None,
labels_b: Optional[dict[str, dict[str, torch.Tensor]]] = None,
pair_label: Optional[dict[str, dict[str, torch.Tensor]]] = None,
pair_output_keys: Optional[dict[str, set[str]]] = None,
output_hidden_states: Optional[dict[str, set[str]]] = None,
output_attentions: Optional[dict[str, set[str]]] = None,
need_head_weights: Optional[bool] = None,
return_contacts: Optional[bool] = None,
repr_layers: Optional[list[int]] = None,
return_dict: Optional[bool] = None,
use_last_layer_norm: Optional[bool] = True
) -> Union[Tuple[torch.Tensor], AllOutput]:
if return_dict is None and self.config is not None:
return_dict = self.config.use_return_dict
if return_dict is None:
return_dict = False
if repr_layers is None or len(repr_layers) == 0:
repr_layers = [-1]
if return_contacts is None:
return_contacts = False
if need_head_weights is None:
need_head_weights = True
has_pair = False
has_pair_b = False
if input_ids is not None or inputs_embeds is not None:
encoding, logits, outputs, losses = self.__forword__(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_keys=output_keys,
labels=labels,
repr_layers=repr_layers,
need_head_weights=need_head_weights,
return_contacts=return_contacts,
use_last_layer_norm=use_last_layer_norm
)
has_pair = True
if input_ids_b is not None or inputs_embeds_b is not None:
encoding_b, logits_b, outputs_b, losses_b = self.__forword__(
input_ids=input_ids_b,
attention_mask=attention_mask_b,
token_type_ids=token_type_ids_b,
position_ids=position_ids_b,
output_keys=output_keys_b,
labels=labels_b,
repr_layers=repr_layers,
need_head_weights=need_head_weights,
return_contacts=return_contacts,
use_last_layer_norm=use_last_layer_norm
)
has_pair_b = True
if not self.embedding_inference:
if has_pair and has_pair_b and pair_output_keys and len(pair_output_keys) > 0:
cur_representation_vector = encoding["representation_vector"]
cur_representation_vector_b = encoding_b["representation_vector"]
pair_logits = {}
pair_outputs = {}
for item1 in pair_output_keys.items():
cur_task_level_type = item1[0]
if cur_task_level_type not in pair_outputs:
pair_outputs[cur_task_level_type] = {}
pair_logits[cur_task_level_type] = {}
for cur_task_level_name in item1[1]:
cur_logits = self.classifier_dropout[cur_task_level_type][cur_task_level_name](
torch.cat((cur_representation_vector, cur_representation_vector_b), dim=-1)
)
cur_hidden_layer = self.hidden_layer[cur_task_level_type][cur_task_level_name]
if cur_hidden_layer is not None:
cur_logits = cur_hidden_layer(cur_logits)
cur_logits = self.classifier[cur_task_level_type][cur_task_level_name](cur_logits)
pair_logits[cur_task_level_type][cur_task_level_name] = cur_logits
pair_outputs[cur_task_level_type][cur_task_level_name] = self.output[cur_task_level_type][cur_task_level_name](cur_logits)
if pair_label is not None:
pair_loss = {}
for item1 in pair_output_keys.items():
cur_task_level_type = item1[0]
if cur_task_level_type not in pair_label:
continue
if cur_task_level_type in pair_label:
pair_loss[cur_task_level_type] = {}
for cur_task_level_name in item1[1]:
if cur_task_level_name not in pair_label[cur_task_level_type]:
continue
cur_label = pair_label[cur_task_level_type][cur_task_level_name]
cur_label_size = self.label_size[cur_task_level_type][cur_task_level_name]
cur_output_mode = self.output_mode[cur_task_level_type][cur_task_level_name]
cur_loss_fct = self.loss_fct[cur_task_level_type][cur_task_level_name]
cur_logits = pair_logits[cur_task_level_type][cur_task_level_name]
cur_loss = self.__calc_loss__(
task_level_type=cur_task_level_type,
output_mode=cur_output_mode, logits=cur_logits,
label=cur_label, label_size=cur_label_size, loss_fct=cur_loss_fct,
loss_reduction="meanmean")
pair_loss[cur_task_level_type][cur_task_level_name] = cur_loss
if not return_dict:
return [[losses, losses_b, pair_loss], [outputs, outputs_b, pair_outputs]] + [[encoding, encoding_b]]
return AllOutput(
losses=losses,
outputs=outputs,
hidden_states=encoding["representation_matrix"] if "representation_matrix" in encoding else None,
attentions=encoding["attentions"] if "attentions" in encoding else None,
global_attentions=None,
contacts=encoding["contacts"] if "contacts" in encoding else None,
losses_b=losses_b,
outputs_b=outputs_b,
hidden_states_b=encoding_b["representation_matrix"] if "representation_matrix" in encoding_b else None,
attentions_b=encoding_b["attentions"] if "hidden_states" in encoding_b else None,
global_attentions_b=None,
contacts_b=encoding_b["contacts"] if "contacts" in encoding_b else None,
pair_outputs=pair_outputs,
pair_losses=pair_loss)
else:
if not return_dict:
return [[losses, losses_b], [outputs, outputs_b]] + [[encoding, encoding_b]]
return AllOutput(
losses=losses,
outputs=outputs,
hidden_states=encoding["representation_matrix"] if "representation_matrix" in encoding else None,
attentions=encoding["attentions"] if "attentions" in encoding else None,
global_attentions=None,
contacts=encoding["contacts"] if "contacts" in encoding else None,
losses_b=losses_b,
outputs_b=outputs_b,
hidden_states_b=encoding_b["representation_matrix"] if "representation_matrix" in encoding_b else None,
attentions_b=encoding_b["attentions"] if "attentions" in encoding_b else None,
global_attentions_b=None,
contacts_b=encoding_b["contacts"] if "contacts" in encoding_b else None
)
elif has_pair:
if not return_dict:
return [[losses], [outputs], [encoding]]
return AllOutput(
losses=losses,
outputs=outputs,
hidden_states=encoding["representation_matrix"] if "representation_matrix" in encoding else None,
attentions=encoding["attentions"] if "attentions" in encoding else None,
global_attentions=None,
contacts=encoding["contacts"] if "contacts" in encoding else None
)
else:
if not return_dict:
return [[losses_b], [outputs_b], [encoding_b]]
return AllOutput(
losses_b=losses_b,
outputs_b=outputs_b,
hidden_states_b=encoding_b["representation_matrix"] if "representation_matrix" in encoding_b else None,
attentions_b=encoding_b["attentions"] if "attentions" in encoding_b else None,
global_attentions_b=None,
contacts_b=encoding_b["contacts"] if "contacts" in encoding_b else None
)
else:
if has_pair and has_pair_b:
if not return_dict:
return [[None, None], [None, None]] + [[encoding, encoding_b]]
return AllOutput(
losses=None,
outputs=None,
hidden_states=encoding["representation_matrix"] if "representation_matrix" in encoding else None,
attentions=encoding["attentions"] if "attentions" in encoding else None,
global_attentions=None,
contacts=encoding["contacts"] if "contacts" in encoding else None,
losses_b=None,
outputs_b=None,
hidden_states_b=encoding_b["representation_matrix"] if "representation_matrix" in encoding_b else None,
attentions_b=encoding_b["attentions"] if "attentions" in encoding_b else None,
global_attentions_b=None,
contacts_b=encoding_b["contacts"] if "contacts" in encoding_b else None
)
elif has_pair:
if not return_dict:
return [[None], [None], [encoding]]
return AllOutput(
losses=None,
outputs=None,
hidden_states=encoding["representation_matrix"] if "representation_matrix" in encoding else None,
attentions=encoding["attentions"] if "attentions" in encoding else None,
global_attentions=None,
contacts=encoding["contacts"] if "contacts" in encoding else None
)
else:
if not return_dict:
return [[None], [None], [encoding_b]]
return AllOutput(
losses_b=None,
outputs_b=None,
hidden_states_b=encoding_b["representation_matrix"] if "representation_matrix" in encoding_b else None,
attentions_b=encoding_b["attentions"] if "attentions" in encoding_b else None,
global_attentions_b=None,
contacts_b=encoding_b["contacts"] if "contacts" in encoding_b else None
)
def predict_contacts(self, input_ids, position_ids=None, token_type_ids=None):
return self(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
return_contacts=True)["contacts"]
|