ppo-LunarLander-v2-2 / config.json
Yooniel's picture
Upload PPO LunarLander-v2 trained agent
116377d verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78fabcdf72e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78fabcdf7370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78fabcdf7400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78fabcdf7490>", "_build": "<function ActorCriticPolicy._build at 0x78fabcdf7520>", "forward": "<function ActorCriticPolicy.forward at 0x78fabcdf75b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78fabcdf7640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78fabcdf76d0>", "_predict": "<function ActorCriticPolicy._predict at 0x78fabcdf7760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78fabcdf77f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78fabcdf7880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78fabcdf7910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78fabcd80f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735818522062437856, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADQM7uoabM/2kyOvl2s0r41zlA7te6APQAAAAAAAAAAGtuXvWvjlz1OCT0+xLLEvsBPyTyifZE9AAAAAAAAAABN+1+99tBNuhL2WjkmeqUzGzdsu00ZgLgAAIA/AACAPzM8YL3mRZw/5k6CvgYCLb+hRW+9+xv8vQAAAAAAAAAAZoQavCvksj/AWJ2+t19lviBCpTu2GgO7AAAAAAAAAADm8wE9KfAIur0Dpbyznf04mH+WOGM2argAAIA/AACAPwByy7wp6G261o/tOyCXTzYsp4S6hG5ANQAAgD8AAIA/zXzAO0jjr7o/DDK2/B51sVf9I7m41Fg1AACAPwAAgD/aN9W9yesdPUlLpz5eXyu+CQaqPT1O7z0AAAAAAAAAAA3Ktz3sEYS5E1CTvQah87OhsYK7WkjIMwAAgD8AAIA/UyV+PlQjZD7rHt6+/m3wvqcSnz2WZzG+AAAAAAAAAAAzsHK9eeYEP6tYtL22fjq/KjScvQc5DzwAAAAAAAAAAHNBlr0pmxk/dlu3vC9EU7/Qcpy9NkrCvAAAAAAAAAAAMwNSu8O9L7rNaBI9X+PwsaK3FTt1wQC0AACAPwAAgD8mZ/c9qwWcPx77+T5bWSq/n4czPnK2iT4AAAAAAAAAAPqmlj6So8o+a+78vSpM/75mFpo+0LNTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHOeKGcnVqMAWyUS72MAXSUR0CkD8HZkCmudX2UKGgGR0ByUsn/kvK2aAdLkmgIR0CkD/xwZOzqdX2UKGgGR0BwvRpHqeK9aAdLq2gIR0CkEADKxLTQdX2UKGgGR0BxU8UGmk30aAdLumgIR0CkEAHWjGkvdX2UKGgGR0Bzqvcclw98aAdLx2gIR0CkEBD2JzkqdX2UKGgGR0ByDdCZ4Oc2aAdLlmgIR0CkEBP6be/IdX2UKGgGR0Byb4p+c6NmaAdLy2gIR0CkECF2FFlTdX2UKGgGR0BzuH/3nIQwaAdLzGgIR0CkEEJlrdnCdX2UKGgGR0Bx8BCfHxSYaAdLrGgIR0CkEHfiHZbqdX2UKGgGR0ByDxBSk0rLaAdLiWgIR0CkEIGzKLbYdX2UKGgGR0BxB584PwuvaAdLp2gIR0CkEMMR6F/QdX2UKGgGR0By/ZIiC8ODaAdLvmgIR0CkEOGEPDpDdX2UKGgGR0By9OkoF3Y+aAdL22gIR0CkEQHYpUgkdX2UKGgGR0BzVK74BV+7aAdLtmgIR0CkERppvgm7dX2UKGgGR0Bz7D8TBZZCaAdL1mgIR0CkER6+FlCkdX2UKGgGR0BxsXrVvuPWaAdLrmgIR0CkESSxzJZGdX2UKGgGR0BwjQoXsPataAdLnmgIR0CkES3DWK/EdX2UKGgGR0BxCALXtjTbaAdLkGgIR0CkEUXEqDsddX2UKGgGR0BxxU66reZYaAdLi2gIR0CkEU9a2WpqdX2UKGgGR0BwGIv114gSaAdLmmgIR0CkEV4R/ViGdX2UKGgGR0BwPhr8BMi9aAdLlGgIR0CkEW8G1QZXdX2UKGgGR0BxK3FdcB2faAdLsGgIR0CkEYoNNJvpdX2UKGgGR0ByoN34bjtHaAdLz2gIR0CkEdzTfBN3dX2UKGgGR0ByzbIeYD1XaAdLwmgIR0CkEfXyy2QXdX2UKGgGR0Byf9hvze41aAdLjWgIR0CkEf/9P1tgdX2UKGgGR0BwLvbcoH9naAdLs2gIR0CkEg3TVlPKdX2UKGgGR0By+Xx/d69kaAdLtmgIR0CkEh2lMyrQdX2UKGgGR0BwUiUVzp5eaAdLj2gIR0CkEiGthd+odX2UKGgGR0By2gOG0u14aAdLsWgIR0CkErKFqSHNdX2UKGgGR0Bzw7nied08aAdLsWgIR0CkEsustCiRdX2UKGgGR0BwnowZflZHaAdLqGgIR0CkEs5CfHxSdX2UKGgGR0BxA78vVVghaAdLsmgIR0CkEvYO2AoYdX2UKGgGR0BxBGzfJmulaAdLymgIR0CkEvs3IdU9dX2UKGgGR0Bxd3655JK8aAdLuWgIR0CkEy2aDwpfdX2UKGgGR0Bz+HGDL8rJaAdL7GgIR0CkEzM7+1jRdX2UKGgGR0Bxx1VIZqEfaAdLf2gIR0CkE1PI4lyBdX2UKGgGR0BzBmDmKZUlaAdL1WgIR0CkE2SGSIP9dX2UKGgGR0Bzc1vAGjbjaAdL8GgIR0CkE2ciOeasdX2UKGgGR0Bxz0xFiKBNaAdLnGgIR0CkE2scZLqVdX2UKGgGR0BvZpUWEbo9aAdLnGgIR0CkE6aWom5UdX2UKGgGR0BzpoVafSQYaAdL32gIR0CkE60ADJU6dX2UKGgGR0Bz5Rlar3j/aAdLymgIR0CkE+kyDZlGdX2UKGgGR0BzL94nndO7aAdLxmgIR0CkFAxoZhrndX2UKGgGR0By6udqcmShaAdL3GgIR0CkFB2U0Nz9dX2UKGgGR0BxJSqNp/PPaAdLkmgIR0CkFC++ueSTdX2UKGgGR0BxDtIH1OCYaAdLrWgIR0CkFFZaV2RrdX2UKGgGR0ByD2MYMvytaAdLfWgIR0CkFFhOHnEEdX2UKGgGR0BwQwjfNzKcaAdLq2gIR0CkFGeyRjjJdX2UKGgGR0BzcOGbkOqeaAdLwmgIR0CkFMMCLdeqdX2UKGgGR0Bw33XI2fkFaAdLmmgIR0CkFMMgdOqOdX2UKGgGR0Bx6T4EfT1DaAdLw2gIR0CkFMESElE7dX2UKGgGR0BxMU/Y8Md+aAdLp2gIR0CkFNIHcDbKdX2UKGgGR0BxBGNwR5C4aAdLpGgIR0CkFNvG6wt8dX2UKGgGR0BxuwLVnVXnaAdLx2gIR0CkFPuiN83NdX2UKGgGR0BygWp3os7NaAdLtmgIR0CkFQc2aUiZdX2UKGgGR0Bxqk9TxXnyaAdLiWgIR0CkFU9mg8KYdX2UKGgGR0BxNlO+IuXeaAdLumgIR0CkFVLEcbR4dX2UKGgGR0By9TD0lJHzaAdLrWgIR0CkFXUdzXBhdX2UKGgGR0B0AJkWhysCaAdL3mgIR0CkFaKEOAiFdX2UKGgGR0BxeY4wRGtqaAdLu2gIR0CkFbbXHzYmdX2UKGgGR0BzOjNHH3lCaAdLvWgIR0CkFeC6xxDLdX2UKGgGR0BzT+OXE61caAdLsWgIR0CkFezmnwXqdX2UKGgGR0BxTBH+ZPVNaAdLr2gIR0CkFepwKjSHdX2UKGgGR0ByRe/7BO58aAdLrmgIR0CkFfZhBqsVdX2UKGgGR0Bw4jM3ZPEbaAdLomgIR0CkFjSZ8a4udX2UKGgGR0BxQ0kVvddnaAdLvGgIR0CkFnc6/7BPdX2UKGgGR0Bye1tqHoHLaAdLv2gIR0CkFo+3x4IKdX2UKGgGR0Bw1YTTOPeYaAdLyGgIR0CkFpaUqx1QdX2UKGgGR0BxW2YQarFPaAdLjWgIR0CkFqIppeu3dX2UKGgGR0BHE0ypJf6XaAdLVGgIR0CkFrO3UhFFdX2UKGgGR0Bz1VC/oJRgaAdLwmgIR0CkFtBun/DMdX2UKGgGR0ByARfa6BiDaAdLzmgIR0CkFt+6iCardX2UKGgGR0Bwm7GcWj46aAdLpmgIR0CkFt3c580DdX2UKGgGR0Bx3ojyFwkxaAdL4mgIR0CkFuyflIVedX2UKGgGR0BwKZ2t+1BuaAdLjWgIR0CkFwJdB0IUdX2UKGgGR0BxU4khRqGlaAdLpmgIR0CkFyWvB7/odX2UKGgGR0BytRd3Sro4aAdLumgIR0CkFyYVymygdX2UKGgGR0ByZpX1anrIaAdLiGgIR0CkF3J+MIeHdX2UKGgGR0ByWDJKaoddaAdLw2gIR0CkF6Y3WFvidX2UKGgGR0Bxums0YTCcaAdLxWgIR0CkF8FEZzgddX2UKGgGR0BzVrtD2JzlaAdL0WgIR0CkF9NfgJkYdX2UKGgGR0Bxp8AmzBykaAdLgmgIR0CkF9wg1WKedX2UKGgGR0BwHE8yN4qxaAdLomgIR0CkF+/tpmEodX2UKGgGR0ByOKsT37DVaAdLomgIR0CkGBMUAT7EdX2UKGgGR0ByC77JnxrjaAdLqWgIR0CkGBeTV2A5dX2UKGgGR0BwVvXZoPCmaAdLnWgIR0CkGD6KtPpIdX2UKGgGR0BzNn9KmKqGaAdLx2gIR0CkGFQ2/BWQdX2UKGgGR0BzToFfReC1aAdLqGgIR0CkGFrV4HHFdX2UKGgGR0By6ocGTs6aaAdLsWgIR0CkGGA62fCidX2UKGgGR0BvR2xQizLPaAdLpmgIR0CkGGMN+b3HdX2UKGgGR0BwMZCswL3LaAdLqWgIR0CkGKFOoHcDdX2UKGgGR0By4I6ZH/cWaAdLw2gIR0CkGLapHZsbdX2UKGgGR0Bysxv/BFd+aAdLwGgIR0CkGNRnOB1+dX2UKGgGR0BxRTj94u9OaAdLomgIR0CkGQ+YlY2bdX2UKGgGR0Bx3EE7nxJ/aAdLuWgIR0CkGRGDL8rJdX2UKGgGR0ByfINlRP43aAdLrWgIR0CkGULFXJYDdX2UKGgGR0BzxJvybx3FaAdLwGgIR0CkGZQHiWE9dX2UKGgGR0BysnoxHoX9aAdLyGgIR0CkGZ52yLQ5dX2UKGgGR0Bwf4/jbSJCaAdLnGgIR0CkGceCkGiYdX2UKGgGR0B0HI6T4cm0aAdLv2gIR0CkGc4RNATqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}