YeungNLP commited on
Commit
a7191ef
1 Parent(s): 4b0c0be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +173 -192
README.md CHANGED
@@ -4,197 +4,178 @@ license: apache-2.0
4
  basemodel: Qwen/Qwen1.5-7B
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
4
  basemodel: Qwen/Qwen1.5-7B
5
  ---
6
 
7
+ ## Unsloth x Qwen2
8
+ [Unsloth](https://github.com/unslothai/unsloth) can speed up training LLM and reduce memory usage, but currently it only supports Llama3, Mistral, Gemma, ORPR, Phi-3 and TinyLlama.
9
+ We can't train Qwen2 with Unsloth, even though Qwen2 is popular in community.
10
+
11
+ It's exciting that we succeed to make Unsloth support Qwen2, it can speed up training and reduce much memory usage.
12
+ If you want to train Qwen2 with Unsloth, you can use [our repo](https://github.com/yangjianxin1/unsloth) rather than the official one. And we will commit our code to the [official repo](https://github.com/unslothai/unsloth).
13
+
14
+ Install our Unsloth:
15
+ ```bash
16
+ pip install git+https://github.com/yangjianxin1/unsloth.git
17
+ ```
18
+
19
+ [Firefly](https://github.com/yangjianxin1/Firefly) already supports training Qwen2 with Unsloth, and the subsequent models are trained with Firefly, you can try it.
20
+
21
+
22
+ ## Model Card for Firefly-Qwen1.5-Unsloth
23
+ [firefly-qwen1.5-en-7b-unsloth](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-unsloth) and [firefly-qwen1.5-en-7b-dpo-v0.1-unloth](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1-unsloth) are trained based on [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) to act as a helpful and harmless AI assistant.
24
+ We use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models on **a single V100 GPU** with QLoRA and [Unsloth](https://github.com/yangjianxin1/unsloth).
25
+ firefly-qwen1.5-en-7b-unsloth is fine-tuned based on Qwen1.5-7B with English instruction data, and firefly-qwen1.5-en-7b-dpo-v0.1-unsloth is trained with [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) based on firefly-qwen1.5-en-7b-unsloth.
26
+
27
+ Our models outperform official [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat), [Gemma-7B-it](https://huggingface.co/google/gemma-7b-it), [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
28
+
29
+ Although our models are trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated
30
+ the performance in Chinese yet.
31
+
32
+ We advise you to install transformers>=4.37.0.
33
+
34
+ ## Performance
35
+ We have evaluated the training gain of Qwen1.5-7B, we use QLoRA and Unsloth to train model for 20 steps on a single V100. The result can be listed as follows.
36
+ **Unsloth can reduce GPU memory by 39.13% and training time by 32.12%, and the training speed can increase by 47.32%.**
37
+
38
+ | max_seq_length | per_device_train_batch_size | gradient_accumulation_steps | use_unsloth | rank | GPU | Time |
39
+ |----------------|----------------------------|-----------------------------|-------------|------|-------------------------|-------------------|
40
+ | 1024 | 1 | 16 | false | 8 | 13.72GB | 448s |
41
+ | 1024 | 1 | 16 | true | 8 | **8.43GB**(**-38.56%**) | 308s(**-31.25%**) |
42
+ | 1024 | 1 | 16 | false | 64 | 16.01GB | 452s |
43
+ | 1024 | 1 | 16 | true | 64 | 11.07GB(**-30.86%**) | 311s(**-31.19%**) |
44
+ | 2048 | 1 | 16 | false | 64 | 18.55GB | 840s |
45
+ | 2048 | 1 | 16 | true | 64 | 12.99GB(**-29.97%**) | 596s(**-29.05%**) |
46
+ | 1024 | 4 | 4 | false | 64 | 24.70GB | 357s |
47
+ | 1024 | 4 | 4 | true | 64 | 14.36GB(**-41.86%**) | 253s(**-29.13%**) |
48
+ | 2048 | 4 | 4 | false | 64 | 32.51GB | 741s |
49
+ | 2048 | 4 | 4 | true | 64 | 19.79GB(**-39.13%**) | 503s(**-32.12%**) |
50
+
51
+
52
+ We evaluate our sft and dpo models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance.
53
+
54
+ | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
55
+ |--------------------------------------------|---------|--------|-----------|-------|------------|------------|--------|
56
+ | firefly-gemma-7b | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 |
57
+ | **firefly-qwen1.5-en-7b-dpo-v0.1-unsloth** | 62.65 | 56.14 | 75.5 | 60.87 | 58.09 | 70.72 | 54.59 |
58
+ | zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 |
59
+ | **firefly-qwen1.5-en-7b-unsloth** | 61.81 | 54.27 | 76.22 | 61.55 | 50.62 | 70.48 | 57.7 |
60
+ | vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 |
61
+ | Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 |
62
+ | Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 |
63
+ | gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 |
64
+
65
+
66
+
67
+ ## Usage
68
+ The chat templates of our chat models are the same as Official Qwen1.5-7B-Chat:
69
+ ```text
70
+ <|im_start|>system
71
+ You are a helpful assistant.<|im_end|>
72
+ <|im_start|>user
73
+ hello, who are you?<|im_end|>
74
+ <|im_start|>assistant
75
+ I am a AI program developed by Firefly<|im_end|>
76
+ ```
77
+
78
+ You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).
79
+
80
+ You can also use the following code:
81
+ ```python
82
+ from transformers import AutoModelForCausalLM, AutoTokenizer
83
+ import torch
84
+
85
+ model_name_or_path = "YeungNLP/firefly-qwen1.5-en-7b-unsloth"
86
+ model = AutoModelForCausalLM.from_pretrained(
87
+ model_name_or_path,
88
+ trust_remote_code=True,
89
+ low_cpu_mem_usage=True,
90
+ torch_dtype=torch.float16,
91
+ device_map='auto',
92
+ )
93
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
94
+
95
+ prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
96
+ messages = [
97
+ {"role": "system", "content": "You are a helpful assistant."},
98
+ {"role": "user", "content": prompt}
99
+ ]
100
+ text = tokenizer.apply_chat_template(
101
+ messages,
102
+ tokenize=False,
103
+ add_generation_prompt=True
104
+ )
105
+ model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
106
+
107
+ generated_ids = model.generate(
108
+ model_inputs.input_ids,
109
+ max_new_tokens=1500,
110
+ top_p = 0.9,
111
+ temperature = 0.35,
112
+ repetition_penalty = 1.0,
113
+ eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False)
114
+ )
115
+ generated_ids = [
116
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
117
+ ]
118
+
119
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
120
+ print(response)
121
+ ```
122
 
123
  ## Training Details
124
+ Both in SFT and DPO stages, **We only use a single V100 GPU** with QLoRA and Unsloth, and we use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models.
125
+
126
+ ### Training Setting
127
+ The following hyperparameters are used during SFT:
128
+ - num_epochs: 1
129
+ - learning_rate: 2e-4
130
+ - total_train_batch_size: 32
131
+ - max_seq_length: 2048
132
+ - optimizer: paged_adamw_32bit
133
+ - lr_scheduler_type: constant_with_warmup
134
+ - warmup_steps: 600
135
+ - lora_rank: 64
136
+ - lora_alpha: 16
137
+ - lora_dropout: 0.05
138
+ - gradient_checkpointing: true
139
+ - fp16: true
140
+
141
+ The following hyperparameters were used during DPO:
142
+ - num_epochs: 1
143
+ - learning_rate: 2e-4
144
+ - total_train_batch_size: 32
145
+ - max_seq_length: 2048
146
+ - max_prompt_length: 500
147
+ - optimizer: paged_adamw_32bit
148
+ - lr_scheduler_type: constant_with_warmup
149
+ - warmup_steps: 100
150
+ - lora_rank: 64
151
+ - lora_alpha: 16
152
+ - lora_dropout: 0.05
153
+ - gradient_checkpointing: true
154
+ - fp16: true
155
+
156
+
157
+ ### Training metrics
158
+
159
+ The table below shows the full set of DPO training metrics:
160
+
161
+ | Epoch | Step | Loss | Rewards/accuracies | Rewards/margins | Rewards/chosen | Rewards/rejected | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected |
162
+ |-------|------|--------|--------------------|-----------------|----------------|------------------|---------------|-----------------|--------------|----------------|
163
+ | 0.05 | 100 | 0.6128 | 0.6572 | 0.3914 | -0.0622 | -0.4537 | 1.107 | 1.1104 | -283.7632 | -264.5925 |
164
+ | 0.1 | 200 | 0.6066 | 0.6913 | 0.662 | -0.3589 | -1.0209 | 0.9433 | 0.9431 | -279.0002 | -268.6432 |
165
+ | 0.16 | 300 | 0.5803 | 0.7069 | 0.876 | -0.3849 | -1.2609 | 0.8411 | 0.8537 | -289.9482 | -274.3425 |
166
+ | 0.21 | 400 | 0.5624 | 0.7169 | 0.9575 | -0.2447 | -1.2022 | 0.7615 | 0.7497 | -293.8072 | -274.4167 |
167
+ | 0.26 | 500 | 0.5863 | 0.7 | 0.8908 | -0.5283 | -1.4191 | 0.537 | 0.5085 | -284.3388 | -267.9294 |
168
+ | 0.31 | 600 | 0.5612 | 0.7166 | 1.0791 | -0.592 | -1.6711 | 0.7121 | 0.7219 | -293.2425 | -278.5992 |
169
+ | 0.37 | 700 | 0.5741 | 0.7234 | 1.0742 | -0.8469 | -1.9211 | 0.6002 | 0.5769 | -300.8099 | -285.9137 |
170
+ | 0.42 | 800 | 0.582 | 0.7141 | 1.0414 | -1.1658 | -2.2072 | 0.7191 | 0.5934 | -300.458 | -286.1 |
171
+ | 0.47 | 900 | 0.5694 | 0.7178 | 1.2055 | -1.7372 | -2.9426 | 0.4226 | 0.316 | -305.5303 | -290.7548 |
172
+ | 0.52 | 1000 | 0.5827 | 0.7134 | 1.1063 | -1.354 | -2.4603 | 0.535 | 0.4022 | -302.7598 | -286.636 |
173
+ | 0.58 | 1100 | 0.5553 | 0.7306 | 1.3631 | -1.5861 | -2.9492 | 0.7636 | 0.6559 | -312.9375 | -290.3474 |
174
+ | 0.63 | 1200 | 0.5633 | 0.7341 | 1.2689 | -1.7187 | -2.9876 | 0.6555 | 0.5894 | -315.0179 | -298.2406 |
175
+ | 0.68 | 1300 | 0.5705 | 0.7284 | 1.3501 | -1.7762 | -3.1263 | 0.7419 | 0.6874 | -310.9056 | -294.2934 |
176
+ | 0.73 | 1400 | 0.5458 | 0.7347 | 1.4555 | -2.2377 | -3.6932 | 0.7279 | 0.6564 | -309.141 | -299.1613 |
177
+ | 0.79 | 1500 | 0.5797 | 0.7222 | 1.2937 | -2.4483 | -3.742 | 0.8444 | 0.771 | -321.578 | -298.111 |
178
+ | 0.84 | 1600 | 0.5572 | 0.7319 | 1.4824 | -2.9344 | -4.4168 | 0.9202 | 0.8605 | -323.4034 | -307.0114 |
179
+ | 0.89 | 1700 | 0.5518 | 0.7281 | 1.4263 | -2.7301 | -4.1564 | 0.9257 | 0.8785 | -313.694 | -298.1267 |
180
+ | 0.94 | 1800 | 0.5572 | 0.7272 | 1.5121 | -2.9505 | -4.4627 | 0.7899 | 0.7503 | -314.1552 | -305.9873 |
181
+ | 0.99 | 1900 | 0.5763 | 0.7241 | 1.4982 | -2.7064 | -4.2047 | 0.7841 | 0.7023 | -310.6677 | -299.5064 |