YeungNLP commited on
Commit
9d71a7d
·
verified ·
1 Parent(s): c583497

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -194
README.md CHANGED
@@ -4,197 +4,128 @@ license: apache-2.0
4
  basemodel: Qwen/Qwen1.5-14B
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
4
  basemodel: Qwen/Qwen1.5-14B
5
  ---
6
 
7
+ ## Model Card for Firefly-Qwen1.5-14B-En-Alpha
8
+
9
+ [firefly-qwen1.5-en-14b-alpha](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-14b-alpha) is a preview version model of our new model.
10
+ It outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) and [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)' single-turn task.
11
+
12
+ **Note: More importantly, it is not trained with neither SFT nor RLHF, maybe we will share our method later.**
13
+
14
+ What's exciting is that our experimental method can achieve good performance, even though it's still in a very preliminary stage.
15
+
16
+ Although our model is trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated
17
+ the performance in Chinese yet.
18
+
19
+ We advise you to install transformers>=4.37.0.
20
+
21
+ Because this is a validation experiment and our training resources are limited, we use QLoRA to train this model with the max length of 1024, it may limit the performance of this model.
22
+
23
+ ## Performance
24
+ We automatically evaluate models on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) and [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) with **gpt-4o**.
25
+
26
+ We evaluate models on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) with 805 questions, our model outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat).
27
+ The win rate is **52.17% : 47.83%**.
28
+
29
+ | Task | Ours wins | Qwen1.5-14B-Chat wins |
30
+ |---------------|-----------|-----------------------|
31
+ | helpful_base | **67** | 62 |
32
+ | koala | **80** | 76 |
33
+ | oasst | **100** | 88 |
34
+ | selfinstruct | **127** | 125 |
35
+ | vicuna | **46** | 34 |
36
+ | total | **420** | 385 |
37
+
38
+ We also evaluate models on [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). Though the overall performance of our model is not as good as [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat),
39
+ we find that our model outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) in almost all single-turn tasks. Our model is worse than [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) in almost all multi-turn tasks.
40
+ We conjecture that it may be caused by the training length, and we will dive into this phenomenon later.
41
+
42
+ Overall Performances on MT-Bench:
43
+
44
+ | Task | Ours | Qwen1.5-14B-Chat |
45
+ |-------------------|----------|-------------------|
46
+ | Avg Score | 7.03 | **7.21** |
47
+ | Single-turn Score | **8.01** | 7.66 |
48
+ | Multi-turn Score | 6.05 | **6.75** |
49
+
50
+ Performances on MT-Bench' single-turn tasks:
51
+
52
+ | Task | Ours | Qwen1.5-14B-Chat |
53
+ |---------------|----------|------------------|
54
+ | writing | **9.1** | 8.9 |
55
+ | roleplay | **8.5** | 8.3 |
56
+ | extraction | **8.6** | 8.2 |
57
+ | stem | **8.8** | 8.5 |
58
+ | humanities | **9** | 8.8 |
59
+ | reasoning | **6.8** | 5.3 |
60
+ | math | **7.5** | 7.1 |
61
+ | coding | 5.8 | **6.2** |
62
+
63
+ Performances on MT-Bench' multi-turn tasks:
64
+
65
+ | Task | Ours | Qwen1.5-14B-Chat |
66
+ |----------------|----------|--------------------|
67
+ | writing | 6.5 | **7.7** |
68
+ | roleplay | 7.7 | **8.3** |
69
+ | extraction | 5.1 | **6.7** |
70
+ | stem | 6.3 | **6.9** |
71
+ | humanities | 8.3 | **8.8** |
72
+ | reasoning | 4.7 | **5.7** |
73
+ | math | 4.9 | **5.5 ** |
74
+ | coding | **4.9** | 4.4 |
75
+
76
+
77
+ ## Usage
78
+ The chat templates of our chat models are the same as Official Qwen1.5-14B-Chat:
79
+ ```text
80
+ <|im_start|>system
81
+ You are a helpful assistant.<|im_end|>
82
+ <|im_start|>user
83
+ hello, who are you?<|im_end|>
84
+ <|im_start|>assistant
85
+ I am a AI program developed by Firefly<|im_end|>
86
+ ```
87
+
88
+ You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).
89
+
90
+ You can also use the following code:
91
+ ```python
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+ import torch
94
+
95
+ model_name_or_path = "YeungNLP/firefly-qwen1.5-en-14b-alpha"
96
+ model = AutoModelForCausalLM.from_pretrained(
97
+ model_name_or_path,
98
+ trust_remote_code=True,
99
+ low_cpu_mem_usage=True,
100
+ torch_dtype=torch.float16,
101
+ device_map='auto',
102
+ )
103
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
104
+
105
+ prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
106
+ messages = [
107
+ {"role": "system", "content": "You are a helpful assistant."},
108
+ {"role": "user", "content": prompt}
109
+ ]
110
+ text = tokenizer.apply_chat_template(
111
+ messages,
112
+ tokenize=False,
113
+ add_generation_prompt=True
114
+ )
115
+ model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
116
+
117
+ generated_ids = model.generate(
118
+ model_inputs.input_ids,
119
+ max_new_tokens=1500,
120
+ top_p = 0.8,
121
+ temperature = 0.6,
122
+ repetition_penalty = 1.0,
123
+ eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False)
124
+ )
125
+ generated_ids = [
126
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
127
+ ]
128
+
129
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
130
+ print(response)
131
+ ```