Update README.md
Browse files
README.md
CHANGED
@@ -4,197 +4,128 @@ license: apache-2.0
|
|
4 |
basemodel: Qwen/Qwen1.5-14B
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
##
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
[
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
4 |
basemodel: Qwen/Qwen1.5-14B
|
5 |
---
|
6 |
|
7 |
+
## Model Card for Firefly-Qwen1.5-14B-En-Alpha
|
8 |
+
|
9 |
+
[firefly-qwen1.5-en-14b-alpha](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-14b-alpha) is a preview version model of our new model.
|
10 |
+
It outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) and [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)' single-turn task.
|
11 |
+
|
12 |
+
**Note: More importantly, it is not trained with neither SFT nor RLHF, maybe we will share our method later.**
|
13 |
+
|
14 |
+
What's exciting is that our experimental method can achieve good performance, even though it's still in a very preliminary stage.
|
15 |
+
|
16 |
+
Although our model is trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated
|
17 |
+
the performance in Chinese yet.
|
18 |
+
|
19 |
+
We advise you to install transformers>=4.37.0.
|
20 |
+
|
21 |
+
Because this is a validation experiment and our training resources are limited, we use QLoRA to train this model with the max length of 1024, it may limit the performance of this model.
|
22 |
+
|
23 |
+
## Performance
|
24 |
+
We automatically evaluate models on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) and [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) with **gpt-4o**.
|
25 |
+
|
26 |
+
We evaluate models on [AlpacaEval 2.0](https://github.com/tatsu-lab/alpaca_eval) with 805 questions, our model outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat).
|
27 |
+
The win rate is **52.17% : 47.83%**.
|
28 |
+
|
29 |
+
| Task | Ours wins | Qwen1.5-14B-Chat wins |
|
30 |
+
|---------------|-----------|-----------------------|
|
31 |
+
| helpful_base | **67** | 62 |
|
32 |
+
| koala | **80** | 76 |
|
33 |
+
| oasst | **100** | 88 |
|
34 |
+
| selfinstruct | **127** | 125 |
|
35 |
+
| vicuna | **46** | 34 |
|
36 |
+
| total | **420** | 385 |
|
37 |
+
|
38 |
+
We also evaluate models on [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). Though the overall performance of our model is not as good as [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat),
|
39 |
+
we find that our model outperforms [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) in almost all single-turn tasks. Our model is worse than [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) in almost all multi-turn tasks.
|
40 |
+
We conjecture that it may be caused by the training length, and we will dive into this phenomenon later.
|
41 |
+
|
42 |
+
Overall Performances on MT-Bench:
|
43 |
+
|
44 |
+
| Task | Ours | Qwen1.5-14B-Chat |
|
45 |
+
|-------------------|----------|-------------------|
|
46 |
+
| Avg Score | 7.03 | **7.21** |
|
47 |
+
| Single-turn Score | **8.01** | 7.66 |
|
48 |
+
| Multi-turn Score | 6.05 | **6.75** |
|
49 |
+
|
50 |
+
Performances on MT-Bench' single-turn tasks:
|
51 |
+
|
52 |
+
| Task | Ours | Qwen1.5-14B-Chat |
|
53 |
+
|---------------|----------|------------------|
|
54 |
+
| writing | **9.1** | 8.9 |
|
55 |
+
| roleplay | **8.5** | 8.3 |
|
56 |
+
| extraction | **8.6** | 8.2 |
|
57 |
+
| stem | **8.8** | 8.5 |
|
58 |
+
| humanities | **9** | 8.8 |
|
59 |
+
| reasoning | **6.8** | 5.3 |
|
60 |
+
| math | **7.5** | 7.1 |
|
61 |
+
| coding | 5.8 | **6.2** |
|
62 |
+
|
63 |
+
Performances on MT-Bench' multi-turn tasks:
|
64 |
+
|
65 |
+
| Task | Ours | Qwen1.5-14B-Chat |
|
66 |
+
|----------------|----------|--------------------|
|
67 |
+
| writing | 6.5 | **7.7** |
|
68 |
+
| roleplay | 7.7 | **8.3** |
|
69 |
+
| extraction | 5.1 | **6.7** |
|
70 |
+
| stem | 6.3 | **6.9** |
|
71 |
+
| humanities | 8.3 | **8.8** |
|
72 |
+
| reasoning | 4.7 | **5.7** |
|
73 |
+
| math | 4.9 | **5.5 ** |
|
74 |
+
| coding | **4.9** | 4.4 |
|
75 |
+
|
76 |
+
|
77 |
+
## Usage
|
78 |
+
The chat templates of our chat models are the same as Official Qwen1.5-14B-Chat:
|
79 |
+
```text
|
80 |
+
<|im_start|>system
|
81 |
+
You are a helpful assistant.<|im_end|>
|
82 |
+
<|im_start|>user
|
83 |
+
hello, who are you?<|im_end|>
|
84 |
+
<|im_start|>assistant
|
85 |
+
I am a AI program developed by Firefly<|im_end|>
|
86 |
+
```
|
87 |
+
|
88 |
+
You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).
|
89 |
+
|
90 |
+
You can also use the following code:
|
91 |
+
```python
|
92 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
93 |
+
import torch
|
94 |
+
|
95 |
+
model_name_or_path = "YeungNLP/firefly-qwen1.5-en-14b-alpha"
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
model_name_or_path,
|
98 |
+
trust_remote_code=True,
|
99 |
+
low_cpu_mem_usage=True,
|
100 |
+
torch_dtype=torch.float16,
|
101 |
+
device_map='auto',
|
102 |
+
)
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
104 |
+
|
105 |
+
prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
|
106 |
+
messages = [
|
107 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
108 |
+
{"role": "user", "content": prompt}
|
109 |
+
]
|
110 |
+
text = tokenizer.apply_chat_template(
|
111 |
+
messages,
|
112 |
+
tokenize=False,
|
113 |
+
add_generation_prompt=True
|
114 |
+
)
|
115 |
+
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
|
116 |
+
|
117 |
+
generated_ids = model.generate(
|
118 |
+
model_inputs.input_ids,
|
119 |
+
max_new_tokens=1500,
|
120 |
+
top_p = 0.8,
|
121 |
+
temperature = 0.6,
|
122 |
+
repetition_penalty = 1.0,
|
123 |
+
eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False)
|
124 |
+
)
|
125 |
+
generated_ids = [
|
126 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
127 |
+
]
|
128 |
+
|
129 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
130 |
+
print(response)
|
131 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|