PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 242.58 +/- 36.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4a94745120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4a947451b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4a94745240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4a947452d0>", "_build": "<function ActorCriticPolicy._build at 0x7a4a94745360>", "forward": "<function ActorCriticPolicy.forward at 0x7a4a947453f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4a94745480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4a94745510>", "_predict": "<function ActorCriticPolicy._predict at 0x7a4a947455a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4a94745630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4a947456c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4a94745750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4a948db640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730254947575080284, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNVYT2fVv+7FCOiPKMncjyV1ku9htJKPQAAgD8AAIA/M+tkvDp+rT+1xze+YIrGvg7Gm7rAVWy9AAAAAAAAAACA3Ts9rlWyuip7tTRJT5cvY0NROnamNrMAAIA/AACAPxq2ar3D0Hg9tidjPhCZ872rkpc9YH1zPQAAAAAAAAAAgBcxvsz7fT+t8o++6vjfvuJPYr79ZNG9AAAAAAAAAABm/1w9CvyBPi+ISL0Q9IG+yi8+vGM/PjsAAAAAAAAAAKCAQT5gZe4+45kcvax3g74JwwQ9TcCavAAAAAAAAAAAzapZPEhPibruG8cxR8UZJwRE0jreufewAACAPwAAgD/Nfl683u2vP3xTp750reO+3Mi7Ox2i6bwAAAAAAAAAADOKaL28rAQ/LC28vQKnqb4vNHi9k1iOvAAAAAAAAAAAABL1PD6MyD19PvQ9/ig/vhWIfLsNqda9AAAAAAAAAADmoEE++xzfvCU46DsbhJm64mtFvir5Z7sAAAAAAACAPzN5v72Vsw4+7VuGPsa/zL1gpcI9f14JPQAAAAAAAAAAs3AwvUpGZT/by988rKTAvlVPQ736+wM9AAAAAAAAAAAAsZ68TWj6PoGrST3GYq2+urF0OusQZbwAAAAAAAAAALp0kD6zH08/czptPkrgib7zsug+ikaVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCuTQVsUIuMAWyUS/aMAXSUR0CdwIIUJv5ydX2UKGgGR0BucS6+WWyDaAdNIwFoCEdAncCOzposZ3V9lChoBkdAcKX6VdHDrWgHS/doCEdAncG7u2JBPnV9lChoBkdAcRxuc+aBqmgHTSkBaAhHQJ3Cx5Qgs9V1fZQoaAZHQHKXIBJZnthoB01YAWgIR0Cdwt/ffoA5dX2UKGgGR0BvYL+ee4CqaAdNEwFoCEdAncL9grpaBHV9lChoBkdAcJyFCb+cY2gHTR4BaAhHQJ3E8FX7tRh1fZQoaAZHQHDrloxpL29oB007AWgIR0Cdxd8baRISdX2UKGgGR0BwjmX6ZYxMaAdNPQFoCEdAncb80xdpqXV9lChoBkdAcWtEit7rs2gHTSYBaAhHQJ3G/i6xxDN1fZQoaAZHQHDHeKfnOjZoB00OAWgIR0CdxyqkuYhMdX2UKGgGR0Bv00N2C/XYaAdNDgFoCEdAncg513dKunV9lChoBkdAcdbG/N7jUGgHTTYBaAhHQJ3JOsr/bTN1fZQoaAZHQCSwnUlRgqpoB03oA2gIR0CdyTfx+a0AdX2UKGgGR0BuTdqxkd3jaAdNLgFoCEdAncqTch1TznV9lChoBkdAcUGu2JBPbmgHTQQBaAhHQJ3LlB6a9bp1fZQoaAZHQHE5LBfrrxBoB00nAWgIR0Cdy8nNPgvUdX2UKGgGR0BxLJF5OafBaAdNNAFoCEdAncxAggX/HnV9lChoBkdAcfHxzJZGKGgHTQ4BaAhHQJ3MzpnpSrJ1fZQoaAZHQG361TR6WxBoB00VAWgIR0CdzPqpLmITdX2UKGgGR0BwbMhNdqtYaAdNPQFoCEdAnc5if6Ggz3V9lChoBkdAcjlWVu76HmgHTQUBaAhHQJ3PR+7UXpJ1fZQoaAZHQG7C4XO4XoFoB00hAWgIR0Cdz2gDA8B/dX2UKGgGR0ByH35eqrBCaAdNBAFoCEdAndA7ILgGbHV9lChoBkdAcjLYEGJN02gHTUYBaAhHQJ3SwtxuKoB1fZQoaAZHQHHVQ8KXv6VoB00XAWgIR0Cd03xaPjn3dX2UKGgGR0BwYoDFId2gaAdNJwFoCEdAndQufAbhnHV9lChoBkdAcIqB3A2ycGgHTXcBaAhHQJ3VHHT7VKB1fZQoaAZHQFb5dNWU8mtoB03oA2gIR0Cd1TOaOPvKdX2UKGgGR0Bs16FoL5RCaAdNHQFoCEdAndVYH5aePXV9lChoBkdAUeyDZlFtsWgHS51oCEdAndWXJkoWpXV9lChoBkdAb3/SNOuaF2gHS/xoCEdAndWt3np0OnV9lChoBkdAbqOWBz3h42gHTWwBaAhHQJ3Vtq0tyxR1fZQoaAZHQHKZWgWac7RoB00WAWgIR0Cd1f7I1cdHdX2UKGgGR0BuUU163RXwaAdNHQFoCEdAndYGIbfgrHV9lChoBkdAcs0QbdadMGgHTRUBaAhHQJ3W9Euxrzp1fZQoaAZHQHBiryc0+C9oB008AWgIR0Cd1/uqFRHgdX2UKGgGR0BxHyJuVHFxaAdNDgFoCEdAndidCRfWtnV9lChoBkdAV0BGy5Zr6GgHS5poCEdAndl93np0OnV9lChoBkdAcp6NliBoVWgHTTkBaAhHQJ3auEeyRjl1fZQoaAZHQHGfCW/rSmZoB015AWgIR0Cd22jLjghsdX2UKGgGR0BAZlFlTWGzaAdL2WgIR0Cd26IMBp6AdX2UKGgGR0BxJ4JqqOtGaAdNFQFoCEdAndvYAjps43V9lChoBkdAbdfS1mapgmgHTRwBaAhHQJ3cljVhCt11fZQoaAZHQHAKH2M85jpoB00DAWgIR0Cd3aqKxcFAdX2UKGgGR0BuS90Rvm5laAdNOgFoCEdAnd4n889wFXV9lChoBkdAcfH/JvHcUWgHTQYBaAhHQJ3eKNvOyFB1fZQoaAZHQHANmEkB0ZFoB00YAWgIR0Cd9V6dlNDddX2UKGgGR0Bwnn2criEQaAdNJAFoCEdAnfV9cGC7LHV9lChoBkdAcYzXt0FKTWgHTRwBaAhHQJ315l8PWhB1fZQoaAZHQG8aGD+R5kdoB00VAWgIR0Cd968xKxs3dX2UKGgGR0BtozImw7koaAdNAgFoCEdAnfflwo9cKXV9lChoBkdAcfFBmPHT7WgHTWwBaAhHQJ35QLCvX9R1fZQoaAZHQHIJe1F6RhdoB00TAWgIR0Cd+VdIXj2jdX2UKGgGR0BywZFvybx3aAdNAgFoCEdAnfrKVMVUM3V9lChoBkdAchXh0yP+42gHTRwBaAhHQJ37ixOclPd1fZQoaAZHQHHRBScbzbxoB00FAWgIR0Cd/AwrDqGDdX2UKGgGR0Bt+GNBF/hEaAdNLgFoCEdAnfy/Uaya/nV9lChoBkdAcMkdO6/Zd2gHTRcBaAhHQJ3+vLyMDOl1fZQoaAZHQG0tXU6PsAxoB00vAWgIR0Cd//uwosqbdX2UKGgGR0Bs6IWi1y/9aAdNSQJoCEdAngAD4L1EmnV9lChoBkdAbyPeizsyBWgHTToBaAhHQJ4AHCAMDwJ1fZQoaAZHQG5uC9Zid8RoB00pAWgIR0CeAE8cuJ1rdX2UKGgGR0Bxug2NvOyFaAdNXQFoCEdAngDEUj9n9XV9lChoBkdAcOBKB/Zuh2gHTU8BaAhHQJ4AxI7Njb11fZQoaAZHQHH+18b70nRoB00VAWgIR0CeAbr5qM3qdX2UKGgGR0BxL8+X7cfvaAdNIQFoCEdAngHjBEa2nnV9lChoBkdAccrzTWoWHmgHTS0BaAhHQJ4D7kGRmsh1fZQoaAZHQG6OoPbwjMVoB002AWgIR0CeBFQarFOxdX2UKGgGR0BzJV8JD3M7aAdNFwFoCEdAngXDGtITXnV9lChoBkdAcaWX3g1m8WgHTUIBaAhHQJ4GKs4ku6F1fZQoaAZHQHGL90aIeo1oB01CAWgIR0CeBuCaqjrSdX2UKGgGR0BwG97/n4fwaAdNJwFoCEdAngcP9YOlPHV9lChoBkdAcWVirT6SDGgHS/5oCEdAnghAy6+WW3V9lChoBkdAcDeOSGJvYWgHTRUBaAhHQJ4JFmlImPZ1fZQoaAZHQG9ve2d/axpoB00yAWgIR0CeCRbKifxudX2UKGgGR0Bwj5pudf9haAdNDgFoCEdAngkmY4Qz13V9lChoBkdAchNT3Zf2K2gHTRABaAhHQJ4Jr7pFCsx1fZQoaAZHQHJldp7CzkZoB00xAWgIR0CeCg4jKPn0dX2UKGgGR0ByT5A0Kqn4aAdNQQFoCEdAngtLsF+uvHV9lChoBkdAbhBlQMx46mgHTSwBaAhHQJ4LrIp6QeV1fZQoaAZHQHF5bJKaoddoB00wAWgIR0CeC+8fV7QcdX2UKGgGR0BQus2BJ7LMaAdLsGgIR0CeDcuJDVpcdX2UKGgGR0BxbcIKMNtqaAdNJgFoCEdAng3xFEy+H3V9lChoBkdAcXja5f+jumgHTUcBaAhHQJ4OmpXIU8F1fZQoaAZHQHIbjxgAp8ZoB00gAWgIR0CeD0gU1yeadX2UKGgGR0BwsNkCmuTzaAdNHAFoCEdAng99PtUn5XV9lChoBkdAcEoefI0ZWWgHTSIBaAhHQJ4QYC4jKPp1fZQoaAZHQHBmH6hxo7FoB00uAWgIR0CeEJ+ajN6gdX2UKGgGR7/76rvLHMlkaAdLqWgIR0CeETffoA4odX2UKGgGR0BwDG3WnTAnaAdNGwFoCEdAnhIGD15B1XV9lChoBkdAcLQzd1uBMGgHTR0BaAhHQJ4SFOLzf791fZQoaAZHQG7EddE9dNZoB00cAWgIR0CeErS7GvOhdX2UKGgGR0Bt32ilBQenaAdNEAFoCEdAnhK1XiiqQ3V9lChoBkdAYTkIa99MK2gHTegDaAhHQJ4TFfJFLFp1fZQoaAZHQG+ItUXHim5oB00xAWgIR0CeFNkz41xbdX2UKGgGR0BwAMU7CBPLaAdNNgFoCEdAnhVjvNNahnV9lChoBkdAUaICq6vq1WgHS5toCEdAnhV8A7xNI3V9lChoBkdAceHQSi/O+2gHTRcBaAhHQJ4W13aBZp11fZQoaAZHQHM7q9kBjnVoB00BAWgIR0CeFvXE61b8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cc98254e0ff5285750bb5a67bce805375d4b1ab77e7e18afd709f3bc5b3ae06
|
3 |
+
size 148008
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a4a94745120>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4a947451b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4a94745240>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4a947452d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a4a94745360>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a4a947453f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4a94745480>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4a94745510>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a4a947455a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4a94745630>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4a947456c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4a94745750>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a4a948db640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1730254947575080284,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNVYT2fVv+7FCOiPKMncjyV1ku9htJKPQAAgD8AAIA/M+tkvDp+rT+1xze+YIrGvg7Gm7rAVWy9AAAAAAAAAACA3Ts9rlWyuip7tTRJT5cvY0NROnamNrMAAIA/AACAPxq2ar3D0Hg9tidjPhCZ872rkpc9YH1zPQAAAAAAAAAAgBcxvsz7fT+t8o++6vjfvuJPYr79ZNG9AAAAAAAAAABm/1w9CvyBPi+ISL0Q9IG+yi8+vGM/PjsAAAAAAAAAAKCAQT5gZe4+45kcvax3g74JwwQ9TcCavAAAAAAAAAAAzapZPEhPibruG8cxR8UZJwRE0jreufewAACAPwAAgD/Nfl683u2vP3xTp750reO+3Mi7Ox2i6bwAAAAAAAAAADOKaL28rAQ/LC28vQKnqb4vNHi9k1iOvAAAAAAAAAAAABL1PD6MyD19PvQ9/ig/vhWIfLsNqda9AAAAAAAAAADmoEE++xzfvCU46DsbhJm64mtFvir5Z7sAAAAAAACAPzN5v72Vsw4+7VuGPsa/zL1gpcI9f14JPQAAAAAAAAAAs3AwvUpGZT/by988rKTAvlVPQ736+wM9AAAAAAAAAAAAsZ68TWj6PoGrST3GYq2+urF0OusQZbwAAAAAAAAAALp0kD6zH08/czptPkrgib7zsug+ikaVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCuTQVsUIuMAWyUS/aMAXSUR0CdwIIUJv5ydX2UKGgGR0BucS6+WWyDaAdNIwFoCEdAncCOzposZ3V9lChoBkdAcKX6VdHDrWgHS/doCEdAncG7u2JBPnV9lChoBkdAcRxuc+aBqmgHTSkBaAhHQJ3Cx5Qgs9V1fZQoaAZHQHKXIBJZnthoB01YAWgIR0Cdwt/ffoA5dX2UKGgGR0BvYL+ee4CqaAdNEwFoCEdAncL9grpaBHV9lChoBkdAcJyFCb+cY2gHTR4BaAhHQJ3E8FX7tRh1fZQoaAZHQHDrloxpL29oB007AWgIR0Cdxd8baRISdX2UKGgGR0BwjmX6ZYxMaAdNPQFoCEdAncb80xdpqXV9lChoBkdAcWtEit7rs2gHTSYBaAhHQJ3G/i6xxDN1fZQoaAZHQHDHeKfnOjZoB00OAWgIR0CdxyqkuYhMdX2UKGgGR0Bv00N2C/XYaAdNDgFoCEdAncg513dKunV9lChoBkdAcdbG/N7jUGgHTTYBaAhHQJ3JOsr/bTN1fZQoaAZHQCSwnUlRgqpoB03oA2gIR0CdyTfx+a0AdX2UKGgGR0BuTdqxkd3jaAdNLgFoCEdAncqTch1TznV9lChoBkdAcUGu2JBPbmgHTQQBaAhHQJ3LlB6a9bp1fZQoaAZHQHE5LBfrrxBoB00nAWgIR0Cdy8nNPgvUdX2UKGgGR0BxLJF5OafBaAdNNAFoCEdAncxAggX/HnV9lChoBkdAcfHxzJZGKGgHTQ4BaAhHQJ3MzpnpSrJ1fZQoaAZHQG361TR6WxBoB00VAWgIR0CdzPqpLmITdX2UKGgGR0BwbMhNdqtYaAdNPQFoCEdAnc5if6Ggz3V9lChoBkdAcjlWVu76HmgHTQUBaAhHQJ3PR+7UXpJ1fZQoaAZHQG7C4XO4XoFoB00hAWgIR0Cdz2gDA8B/dX2UKGgGR0ByH35eqrBCaAdNBAFoCEdAndA7ILgGbHV9lChoBkdAcjLYEGJN02gHTUYBaAhHQJ3SwtxuKoB1fZQoaAZHQHHVQ8KXv6VoB00XAWgIR0Cd03xaPjn3dX2UKGgGR0BwYoDFId2gaAdNJwFoCEdAndQufAbhnHV9lChoBkdAcIqB3A2ycGgHTXcBaAhHQJ3VHHT7VKB1fZQoaAZHQFb5dNWU8mtoB03oA2gIR0Cd1TOaOPvKdX2UKGgGR0Bs16FoL5RCaAdNHQFoCEdAndVYH5aePXV9lChoBkdAUeyDZlFtsWgHS51oCEdAndWXJkoWpXV9lChoBkdAb3/SNOuaF2gHS/xoCEdAndWt3np0OnV9lChoBkdAbqOWBz3h42gHTWwBaAhHQJ3Vtq0tyxR1fZQoaAZHQHKZWgWac7RoB00WAWgIR0Cd1f7I1cdHdX2UKGgGR0BuUU163RXwaAdNHQFoCEdAndYGIbfgrHV9lChoBkdAcs0QbdadMGgHTRUBaAhHQJ3W9Euxrzp1fZQoaAZHQHBiryc0+C9oB008AWgIR0Cd1/uqFRHgdX2UKGgGR0BxHyJuVHFxaAdNDgFoCEdAndidCRfWtnV9lChoBkdAV0BGy5Zr6GgHS5poCEdAndl93np0OnV9lChoBkdAcp6NliBoVWgHTTkBaAhHQJ3auEeyRjl1fZQoaAZHQHGfCW/rSmZoB015AWgIR0Cd22jLjghsdX2UKGgGR0BAZlFlTWGzaAdL2WgIR0Cd26IMBp6AdX2UKGgGR0BxJ4JqqOtGaAdNFQFoCEdAndvYAjps43V9lChoBkdAbdfS1mapgmgHTRwBaAhHQJ3cljVhCt11fZQoaAZHQHAKH2M85jpoB00DAWgIR0Cd3aqKxcFAdX2UKGgGR0BuS90Rvm5laAdNOgFoCEdAnd4n889wFXV9lChoBkdAcfH/JvHcUWgHTQYBaAhHQJ3eKNvOyFB1fZQoaAZHQHANmEkB0ZFoB00YAWgIR0Cd9V6dlNDddX2UKGgGR0Bwnn2criEQaAdNJAFoCEdAnfV9cGC7LHV9lChoBkdAcYzXt0FKTWgHTRwBaAhHQJ315l8PWhB1fZQoaAZHQG8aGD+R5kdoB00VAWgIR0Cd968xKxs3dX2UKGgGR0BtozImw7koaAdNAgFoCEdAnfflwo9cKXV9lChoBkdAcfFBmPHT7WgHTWwBaAhHQJ35QLCvX9R1fZQoaAZHQHIJe1F6RhdoB00TAWgIR0Cd+VdIXj2jdX2UKGgGR0BywZFvybx3aAdNAgFoCEdAnfrKVMVUM3V9lChoBkdAchXh0yP+42gHTRwBaAhHQJ37ixOclPd1fZQoaAZHQHHRBScbzbxoB00FAWgIR0Cd/AwrDqGDdX2UKGgGR0Bt+GNBF/hEaAdNLgFoCEdAnfy/Uaya/nV9lChoBkdAcMkdO6/Zd2gHTRcBaAhHQJ3+vLyMDOl1fZQoaAZHQG0tXU6PsAxoB00vAWgIR0Cd//uwosqbdX2UKGgGR0Bs6IWi1y/9aAdNSQJoCEdAngAD4L1EmnV9lChoBkdAbyPeizsyBWgHTToBaAhHQJ4AHCAMDwJ1fZQoaAZHQG5uC9Zid8RoB00pAWgIR0CeAE8cuJ1rdX2UKGgGR0Bxug2NvOyFaAdNXQFoCEdAngDEUj9n9XV9lChoBkdAcOBKB/Zuh2gHTU8BaAhHQJ4AxI7Njb11fZQoaAZHQHH+18b70nRoB00VAWgIR0CeAbr5qM3qdX2UKGgGR0BxL8+X7cfvaAdNIQFoCEdAngHjBEa2nnV9lChoBkdAccrzTWoWHmgHTS0BaAhHQJ4D7kGRmsh1fZQoaAZHQG6OoPbwjMVoB002AWgIR0CeBFQarFOxdX2UKGgGR0BzJV8JD3M7aAdNFwFoCEdAngXDGtITXnV9lChoBkdAcaWX3g1m8WgHTUIBaAhHQJ4GKs4ku6F1fZQoaAZHQHGL90aIeo1oB01CAWgIR0CeBuCaqjrSdX2UKGgGR0BwG97/n4fwaAdNJwFoCEdAngcP9YOlPHV9lChoBkdAcWVirT6SDGgHS/5oCEdAnghAy6+WW3V9lChoBkdAcDeOSGJvYWgHTRUBaAhHQJ4JFmlImPZ1fZQoaAZHQG9ve2d/axpoB00yAWgIR0CeCRbKifxudX2UKGgGR0Bwj5pudf9haAdNDgFoCEdAngkmY4Qz13V9lChoBkdAchNT3Zf2K2gHTRABaAhHQJ4Jr7pFCsx1fZQoaAZHQHJldp7CzkZoB00xAWgIR0CeCg4jKPn0dX2UKGgGR0ByT5A0Kqn4aAdNQQFoCEdAngtLsF+uvHV9lChoBkdAbhBlQMx46mgHTSwBaAhHQJ4LrIp6QeV1fZQoaAZHQHF5bJKaoddoB00wAWgIR0CeC+8fV7QcdX2UKGgGR0BQus2BJ7LMaAdLsGgIR0CeDcuJDVpcdX2UKGgGR0BxbcIKMNtqaAdNJgFoCEdAng3xFEy+H3V9lChoBkdAcXja5f+jumgHTUcBaAhHQJ4OmpXIU8F1fZQoaAZHQHIbjxgAp8ZoB00gAWgIR0CeD0gU1yeadX2UKGgGR0BwsNkCmuTzaAdNHAFoCEdAng99PtUn5XV9lChoBkdAcEoefI0ZWWgHTSIBaAhHQJ4QYC4jKPp1fZQoaAZHQHBmH6hxo7FoB00uAWgIR0CeEJ+ajN6gdX2UKGgGR7/76rvLHMlkaAdLqWgIR0CeETffoA4odX2UKGgGR0BwDG3WnTAnaAdNGwFoCEdAnhIGD15B1XV9lChoBkdAcLQzd1uBMGgHTR0BaAhHQJ4SFOLzf791fZQoaAZHQG7EddE9dNZoB00cAWgIR0CeErS7GvOhdX2UKGgGR0Bt32ilBQenaAdNEAFoCEdAnhK1XiiqQ3V9lChoBkdAYTkIa99MK2gHTegDaAhHQJ4TFfJFLFp1fZQoaAZHQG+ItUXHim5oB00xAWgIR0CeFNkz41xbdX2UKGgGR0BwAMU7CBPLaAdNNgFoCEdAnhVjvNNahnV9lChoBkdAUaICq6vq1WgHS5toCEdAnhV8A7xNI3V9lChoBkdAceHQSi/O+2gHTRcBaAhHQJ4W13aBZp11fZQoaAZHQHM7q9kBjnVoB00BAWgIR0CeFvXE61b8dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71554383cac305d90e01afdfc3fa5c78178704f26a95636ab2c0bb1345c80bfd
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbc4243186592a1d4f6680e9cd9ed20c199d1c44c92c04defc595c79847efe2a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (155 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.5812755, "std_reward": 36.21994170793647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-30T02:56:22.659410"}
|