Yamei commited on
Commit
36f5c13
·
1 Parent(s): d237f93

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-large-uncased-v10-ES-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-large-uncased-v10-ES-ner
19
+
20
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5047
23
+ - Precision: 0.6503
24
+ - Recall: 0.7107
25
+ - F1: 0.6792
26
+ - Accuracy: 0.9157
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.4056 | 1.75 | 500 | 0.3016 | 0.6128 | 0.6736 | 0.6417 | 0.9118 |
58
+ | 0.1603 | 3.5 | 1000 | 0.3561 | 0.6350 | 0.6756 | 0.6547 | 0.9105 |
59
+ | 0.0727 | 5.24 | 1500 | 0.4252 | 0.6654 | 0.7149 | 0.6892 | 0.9163 |
60
+ | 0.0341 | 6.99 | 2000 | 0.4574 | 0.6542 | 0.6839 | 0.6687 | 0.9124 |
61
+ | 0.0168 | 8.74 | 2500 | 0.5047 | 0.6503 | 0.7107 | 0.6792 | 0.9157 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.26.1
67
+ - Pytorch 1.13.1+cu116
68
+ - Datasets 2.10.0
69
+ - Tokenizers 0.13.2