|
import torch |
|
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel |
|
from torch import nn |
|
from itertools import chain |
|
from torch.nn import MSELoss, CrossEntropyLoss |
|
from cleantext import clean |
|
from num2words import num2words |
|
import re |
|
import string |
|
import pandas as pd |
|
import nltk |
|
nltk.download('punkt') |
|
from nltk.tokenize import sent_tokenize |
|
import json |
|
import tqdm |
|
from transformers import GPT2Tokenizer |
|
from openai import OpenAI |
|
import os |
|
from difflib import SequenceMatcher |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
|
|
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
punct_chars = list((set(string.punctuation) | {'’', '‘', '–', '—', '~', '|', '“', '”', '…', "'", "`", '_'})) |
|
punct_chars.sort() |
|
punctuation = ''.join(punct_chars) |
|
replace = re.compile('[%s]' % re.escape(punctuation)) |
|
|
|
def get_num_words(text): |
|
if not isinstance(text, str): |
|
print("%s is not a string" % text) |
|
text = replace.sub(' ', text) |
|
text = re.sub(r'\s+', ' ', text) |
|
text = text.strip() |
|
text = re.sub(r'\[.+\]', " ", text) |
|
return len(text.split()) |
|
|
|
def number_to_words(num): |
|
try: |
|
return num2words(re.sub(",", "", num)) |
|
except: |
|
return num |
|
|
|
|
|
clean_str = lambda s: clean(s, |
|
fix_unicode=True, |
|
to_ascii=True, |
|
lower=True, |
|
no_line_breaks=True, |
|
no_urls=True, |
|
no_emails=True, |
|
no_phone_numbers=True, |
|
no_numbers=True, |
|
no_digits=False, |
|
no_currency_symbols=False, |
|
no_punct=False, |
|
replace_with_url="<URL>", |
|
replace_with_email="<EMAIL>", |
|
replace_with_phone_number="<PHONE>", |
|
replace_with_number=lambda m: number_to_words(m.group()), |
|
replace_with_digit="0", |
|
replace_with_currency_symbol="<CUR>", |
|
lang="en" |
|
) |
|
|
|
clean_str_nopunct = lambda s: clean(s, |
|
fix_unicode=True, |
|
to_ascii=True, |
|
lower=True, |
|
no_line_breaks=True, |
|
no_urls=True, |
|
no_emails=True, |
|
no_phone_numbers=True, |
|
no_numbers=True, |
|
no_digits=False, |
|
no_currency_symbols=False, |
|
no_punct=True, |
|
replace_with_url="<URL>", |
|
replace_with_email="<EMAIL>", |
|
replace_with_phone_number="<PHONE>", |
|
replace_with_number=lambda m: number_to_words(m.group()), |
|
replace_with_digit="0", |
|
replace_with_currency_symbol="<CUR>", |
|
lang="en" |
|
) |
|
|
|
|
|
|
|
class MultiHeadModel(BertPreTrainedModel): |
|
"""Pre-trained BERT model that uses our loss functions""" |
|
|
|
def __init__(self, config, head2size): |
|
super(MultiHeadModel, self).__init__(config, head2size) |
|
config.num_labels = 1 |
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
module_dict = {} |
|
for head_name, num_labels in head2size.items(): |
|
module_dict[head_name] = nn.Linear(config.hidden_size, num_labels) |
|
self.heads = nn.ModuleDict(module_dict) |
|
|
|
self.init_weights() |
|
|
|
def forward(self, input_ids, token_type_ids=None, attention_mask=None, |
|
head2labels=None, return_pooler_output=False, head2mask=None, |
|
nsp_loss_weights=None): |
|
|
|
|
|
output = self.bert( |
|
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, |
|
output_attentions=False, output_hidden_states=False, return_dict=True) |
|
pooled_output = self.dropout(output["pooler_output"]).to(device) |
|
|
|
head2logits = {} |
|
return_dict = {} |
|
for head_name, head in self.heads.items(): |
|
head2logits[head_name] = self.heads[head_name](pooled_output) |
|
head2logits[head_name] = head2logits[head_name].float() |
|
return_dict[head_name + "_logits"] = head2logits[head_name] |
|
|
|
|
|
if head2labels is not None: |
|
for head_name, labels in head2labels.items(): |
|
num_classes = head2logits[head_name].shape[1] |
|
|
|
|
|
if num_classes == 1: |
|
|
|
|
|
if head2mask is not None and head_name in head2mask: |
|
num_positives = head2labels[head2mask[head_name]].sum() |
|
if num_positives == 0: |
|
return_dict[head_name + "_loss"] = torch.tensor([0]).to(device) |
|
else: |
|
loss_fct = MSELoss(reduction='none') |
|
loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1)) |
|
return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives |
|
else: |
|
loss_fct = MSELoss() |
|
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float()) |
|
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1)) |
|
|
|
|
|
if return_pooler_output: |
|
return_dict["pooler_output"] = output["pooler_output"] |
|
|
|
return return_dict |
|
|
|
class InputBuilder(object): |
|
"""Base class for building inputs from segments.""" |
|
|
|
def __init__(self, tokenizer): |
|
self.tokenizer = tokenizer |
|
self.mask = [tokenizer.mask_token_id] |
|
|
|
def build_inputs(self, history, reply, max_length): |
|
raise NotImplementedError |
|
|
|
def mask_seq(self, sequence, seq_id): |
|
sequence[seq_id] = self.mask |
|
return sequence |
|
|
|
@classmethod |
|
def _combine_sequence(self, history, reply, max_length, flipped=False): |
|
|
|
history = [s[:max_length] for s in history] |
|
reply = reply[:max_length] |
|
if flipped: |
|
return [reply] + history |
|
return history + [reply] |
|
|
|
|
|
class BertInputBuilder(InputBuilder): |
|
"""Processor for BERT inputs""" |
|
|
|
def __init__(self, tokenizer): |
|
InputBuilder.__init__(self, tokenizer) |
|
self.cls = [tokenizer.cls_token_id] |
|
self.sep = [tokenizer.sep_token_id] |
|
self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"] |
|
self.padded_inputs = ["input_ids", "token_type_ids"] |
|
self.flipped = False |
|
|
|
|
|
def build_inputs(self, history, reply, max_length, input_str=True): |
|
"""See base class.""" |
|
if input_str: |
|
history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history] |
|
reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply)) |
|
sequence = self._combine_sequence(history, reply, max_length, self.flipped) |
|
sequence = [s + self.sep for s in sequence] |
|
sequence[0] = self.cls + sequence[0] |
|
|
|
instance = {} |
|
instance["input_ids"] = list(chain(*sequence)) |
|
last_speaker = 0 |
|
other_speaker = 1 |
|
seq_length = len(sequence) |
|
instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker |
|
for i, s in enumerate(sequence) for _ in s] |
|
return instance |
|
|
|
def preprocess_transcript_for_eliciting(transcript_json): |
|
transcript_df = pd.DataFrame(transcript_json) |
|
transcript_df.reset_index(drop=True, inplace=True) |
|
def break_into_sentences(text): |
|
return sent_tokenize(text) |
|
transcript_df['text'] = transcript_df['text'].apply(str) |
|
transcript_df['sentences'] = transcript_df['text'].apply(break_into_sentences) |
|
transcript_df.rename(columns={"startTimestamp": "starttime", "endTimestamp": "endtime"}, inplace=True) |
|
transcript_df.rename(columns={'is_chat?':'is_chat'}, inplace=True) |
|
|
|
def create_sentence_df(row): |
|
sentences = row['sentences'] |
|
speaker = row['speaker'] |
|
df = pd.DataFrame({'sentence':sentences}) |
|
df['speaker'] = speaker |
|
df['userId'] = row['userId'] |
|
df['session_uuid'] = row['session_uuid'] |
|
df['starttime'] = row['starttime'] |
|
df['endtime'] = row['endtime'] |
|
df['is_chat'] = row['is_chat'] |
|
df['speaker_#'] = row['speaker_#'] |
|
return df |
|
|
|
sentence_df = pd.concat(transcript_df.apply(create_sentence_df, axis=1).values) |
|
sentence_df.reset_index(drop=True, inplace=True) |
|
|
|
sentence_df.dropna(inplace=True) |
|
sentence_df.rename(columns={'sentence':'text', 'userId':'uid'}, inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sentence_df.drop(columns=['speaker_#', 'is_chat', 'session_uuid'], inplace=True) |
|
|
|
session_json = sentence_df.to_json(orient='records') |
|
session_json = json.loads(session_json) |
|
|
|
return session_json |
|
|
|
|
|
|
|
def preprocess_raw_files(input_json, params): |
|
""" |
|
Preprocesses raw json file and returns another json file |
|
|
|
Args: |
|
input_json (str): input json file |
|
|
|
Returns: |
|
_type_: output json file |
|
|
|
""" |
|
|
|
tutor_uuid = params['tutor_uuid'] |
|
session_uuid = params['session_uuid'] |
|
|
|
chat_transcript_df = convert_json_to_df(input_json, tutor_uuid, session_uuid) |
|
|
|
|
|
aggregate_df = aggregate_by_speaker_id(chat_transcript_df) |
|
|
|
|
|
aggregate_json = aggregate_df.to_json(orient='records') |
|
aggregate_json = json.loads(aggregate_json) |
|
|
|
return aggregate_json |
|
|
|
|
|
def convert_json_to_df(input_json, tutor_uuid, session_uuid): |
|
""" |
|
Extracts transcript and chat data from raw json file, assigns speaker and speaker_# columns, and returns a dataframe. |
|
The dataframe contains the following columns: |
|
- startTimestamp |
|
- endTimestamp |
|
- text |
|
- userId |
|
- is_chat? |
|
- speaker |
|
- speaker_# |
|
|
|
Args: |
|
input_json (str): input json file |
|
tutor_uuid (str): tutor uuid |
|
|
|
Returns: |
|
_type_: dataframe |
|
""" |
|
data = input_json |
|
|
|
if data['transcript'] != []: |
|
transcript_df = pd.DataFrame(data['transcript']) |
|
transcript_df['is_chat?'] = 0 |
|
else: |
|
raise ValueError("Transcript is empty") |
|
|
|
|
|
if data['chat'] != []: |
|
chat_df = pd.DataFrame(data['chat']) |
|
chat_df.rename( |
|
columns={'timestamp': 'startTimestamp'}, inplace=True) |
|
chat_df['endTimestamp'] = chat_df['startTimestamp'] |
|
chat_df['is_chat?'] = 1 |
|
else: |
|
chat_df = pd.DataFrame(columns=list(transcript_df)) |
|
|
|
chat_transcript_df = pd.concat([chat_df, transcript_df], ignore_index=True).sort_values( |
|
by='startTimestamp', ascending=True) |
|
|
|
chat_transcript_df['session_uuid'] = session_uuid |
|
|
|
|
|
count_non_chat = 0 |
|
for i, row in chat_transcript_df.iterrows(): |
|
if row['userId'] == tutor_uuid: |
|
chat_transcript_df.loc[i, 'speaker'] = 'tutor' |
|
elif row['userId'] is None: |
|
if i == 0: |
|
chat_transcript_df.loc[i, 'speaker'] = 'student' |
|
elif count_non_chat == 0: |
|
chat_transcript_df.loc[i, 'speaker'] = 'tutor' |
|
else: |
|
chat_transcript_df.loc[i, 'speaker'] = chat_transcript_df.loc[i-1, 'speaker'] |
|
else: |
|
chat_transcript_df.loc[i, 'speaker'] = 'student' |
|
if row['is_chat?'] == 0: |
|
count_non_chat += 1 |
|
|
|
|
|
studentId2studentNum = {} |
|
count_non_chat = 0 |
|
for i, row in chat_transcript_df.iterrows(): |
|
if row ['speaker'] == 'tutor': |
|
chat_transcript_df.loc[i, 'speaker_#'] = 'tutor' |
|
elif row['userId'] is None: |
|
if i == 0: |
|
chat_transcript_df.loc[i, 'speaker_#'] = 'student1' |
|
elif count_non_chat == 0: |
|
chat_transcript_df.loc[i, 'speaker_#'] = 'tutor' |
|
else: |
|
chat_transcript_df.loc[i, 'speaker_#'] = chat_transcript_df.loc[i-1, 'speaker_#'] |
|
else: |
|
if row['userId'] in studentId2studentNum: |
|
chat_transcript_df.loc[i, 'speaker_#'] = 'student' + str(studentId2studentNum[row['userId']]) |
|
else: |
|
studentId2studentNum[row['userId']] = len(studentId2studentNum) + 1 |
|
chat_transcript_df.loc[i, 'speaker_#'] = 'student' + str(studentId2studentNum[row['userId']]) |
|
if row['is_chat?'] == 0: |
|
count_non_chat += 1 |
|
|
|
return chat_transcript_df |
|
|
|
def aggregate_by_speaker_id(data): |
|
aggregate_df = [] |
|
speaker_id = None |
|
speaker = None |
|
aggregate_key_value = None |
|
enumerated_speaker = None |
|
is_chat = None |
|
session = None |
|
curr_text = "" |
|
curr_starttime = None |
|
curr_endtime = None |
|
|
|
for _, row in tqdm.tqdm(data.iterrows()): |
|
is_same_speaker_id = (row['speaker_#'] == aggregate_key_value) |
|
is_same_type = (row['is_chat?'] == is_chat) |
|
|
|
if (is_same_type) and (is_same_speaker_id): |
|
|
|
if type(row['text']) == str: |
|
curr_text += " " + row['text'] |
|
curr_endtime = row['endTimestamp'] |
|
else: |
|
|
|
aggregate_df.append({ |
|
"userId": speaker_id, |
|
"is_chat": is_chat, |
|
"session_uuid": session, |
|
"starttime": curr_starttime, |
|
"endtime": curr_endtime, |
|
"text": curr_text, |
|
"speaker": speaker, |
|
"speaker_#": enumerated_speaker |
|
}) |
|
|
|
|
|
speaker_id = row['userId'] |
|
is_chat = row['is_chat?'] |
|
session = row['session_uuid'] |
|
curr_text = row['text'] if type(row['text']) == str else "" |
|
curr_starttime = row['startTimestamp'] |
|
curr_endtime = row['endTimestamp'] |
|
speaker = row['speaker'] |
|
enumerated_speaker = row['speaker_#'] |
|
aggregate_key_value = row['speaker_#'] |
|
|
|
|
|
if aggregate_df[-1]['userId'] != speaker_id: |
|
aggregate_df.append({ |
|
"userId": speaker_id, |
|
"is_chat": is_chat, |
|
"session_uuid": session, |
|
"starttime": curr_starttime, |
|
"endtime": curr_endtime, |
|
"text": curr_text, |
|
"speaker": speaker, |
|
"speaker_#": enumerated_speaker |
|
}) |
|
|
|
aggregate_df = pd.DataFrame(aggregate_df[1:]) |
|
return aggregate_df |
|
|
|
|
|
def post_processing_output_json(transcript_json, session_id, session_type): |
|
""" |
|
Post-processes the uptake and eliciting dataframes to ony include rows that satisfy certain conditions. |
|
|
|
Args: |
|
uptake_json (str): uptake json file |
|
eliciting_json (str): eliciting json file |
|
|
|
Returns: |
|
_type_: output json file |
|
""" |
|
if session_type == "eliciting": |
|
eliciting_df = pd.DataFrame(transcript_json['utterances']) |
|
eliciting_df.rename(columns={"text": "utt"}, inplace=True) |
|
eliciting_df["session_uuid"] = session_id |
|
eliciting_df.drop(columns=["uid"], inplace=True) |
|
|
|
eliciting_df = eliciting_df[eliciting_df['speaker'] == 'tutor'] |
|
|
|
|
|
eliciting_df = eliciting_df[eliciting_df['utt'].str.split().str.len() > 5] |
|
|
|
|
|
eliciting_df = eliciting_df[eliciting_df['question'] > 0.5] |
|
|
|
|
|
eliciting_df = eliciting_df[eliciting_df['eliciting'] == 1.0] |
|
eliciting_df['eliciting'] = eliciting_df['eliciting'].apply(lambda x: 1 if x == 1.0 else x) |
|
eliciting_df['eliciting'] = eliciting_df['eliciting'].astype('Int64') |
|
final_df = eliciting_df[["utt", "eliciting", "starttime", "endtime", "session_uuid"]] |
|
|
|
else: |
|
|
|
uptake_df = pd.DataFrame(transcript_json['utterances']) |
|
uptake_df.rename(columns={"text": "utt"}, inplace=True) |
|
uptake_df.drop(columns=["uid", "userId", "is_chat", "speaker_#"], inplace=True) |
|
|
|
|
|
uptake_df = uptake_df[uptake_df['utt'].str.split().str.len() > 5] |
|
|
|
|
|
uptake_df = uptake_df[uptake_df['question'] > 0.5] |
|
|
|
|
|
uptake_df = uptake_df[uptake_df['uptake'] > 0.8] |
|
uptake_df['uptake'] = uptake_df['uptake'].apply(lambda x: 1 if x > 0.8 else x) |
|
uptake_df['uptake'] = uptake_df['uptake'].astype('Int64') |
|
final_df = uptake_df[["utt", "prev_utt", "uptake", "starttime", "endtime", "session_uuid"]] |
|
|
|
final_df = final_df.drop(columns=["session_uuid"]).copy() |
|
|
|
final_output = final_df.to_json(orient='records') |
|
|
|
final_output = json.loads(final_output) |
|
|
|
return final_output |
|
|
|
def compute_student_engagement(utterances): |
|
""" |
|
Computes the number of students engaged in a session. |
|
|
|
Args: |
|
utterances json file |
|
|
|
Returns: |
|
_type_: int |
|
|
|
""" |
|
|
|
utterances_df = pd.DataFrame(utterances) |
|
|
|
|
|
utterances_df = utterances_df[utterances_df['speaker'] == 'student'] |
|
utterances_talk_df = utterances_df[utterances_df['is_chat'] == False] |
|
|
|
|
|
num_students_engaged = utterances_df['userId'].nunique() |
|
|
|
|
|
num_students_engaged_talk = utterances_talk_df['userId'].nunique() |
|
|
|
return num_students_engaged, num_students_engaged_talk |
|
|
|
def compute_talk_time(utterances): |
|
""" |
|
Computes the talk time of a tutor in a session. |
|
|
|
Args: |
|
utterances json file |
|
|
|
Returns: |
|
_type_: float |
|
""" |
|
|
|
utterances_df = pd.DataFrame(utterances) |
|
|
|
|
|
utterances_df = utterances_df[~utterances_df['text'].isna()] |
|
|
|
|
|
|
|
num_tokens = utterances_df['text'].apply(lambda x: len(tokenizer.encode(x))) |
|
total_tokens = num_tokens.sum() |
|
|
|
|
|
tutor_tokens = num_tokens[utterances_df['speaker'] == 'tutor'].sum() |
|
|
|
|
|
if total_tokens == 0: |
|
return 0 |
|
else: |
|
return tutor_tokens / total_tokens |
|
|
|
def gpt4_filtering_selection(json_final_output, session_type, focus_concept): |
|
|
|
ELICITING_SYSTEM_PROMPT = """We want to extract the best moments of when a novice tutor asked questions that solicited learner ideas from looking at a copy of their session's transcript. |
|
Please review the following list of utterances from the transcript, each separated by a double-slash. |
|
Identify up to 3 utterances from the list that are the best examples of soliciting learner ideas, and if there are no examples then return “None”. |
|
Ensure that the selected examples are a clear and complete question that would elicit learner engagement. |
|
Prioritize questions that encourage students to reason out loud and elaborate on their problem-solving process, and avoid questions that may have single-word answer. |
|
Return the selected examples in a json dictionary with the following format: |
|
{"model_outputs": [{"utt": "A1"}, {"utt": "A2"}, {"utt": "A3"}]}""" |
|
|
|
|
|
UPTAKE_SYSTEM_PROMPT = """We want to extract the best moments of when a novice tutor revoices and builds on learner ideas from looking at a copy of their session's transcript. |
|
Effective building on students’ ideas looks like positive and encouraging uptake of their ideas, repeating back a previous statement, or affirming a student’s contribution. |
|
Please review the following list of tuples in the form (A1 // B1) \n (A2 // B2) \n (A3 // B3)... where each tuple represents a pair of utterances from the transcript. |
|
The first element A in each tuple is the previous utterance from the student, and the second element B is the current utterance in response from the tutor. |
|
The A and B items in each tuple are separated by a double-slash. |
|
Please return up to three of the provided tuples that are the best instances of a tutor revoicing a student’s ideas. |
|
If there are no examples then return “None”. Please fix capitalization, punctuation, and blatant typos. |
|
Return the selected examples in a json dictionary with the following format: |
|
{"model_outputs": [{"prev_utt": "A1", "utt": "B1"}, {"prev_utt": "A2", "utt": "B2"}, {"prev_utt": "A3", "utt": "B3"}]}""" |
|
|
|
ELICITING_REASONING = """We want to extract the best moments of when a novice tutor prompts their students for reasoning from looking at a copy of their session's transcript. |
|
Effective prompting for reasoning looks like questions containing “why” and “how”, prompting students for their thoughts and explanations beyond a simple answer, and asking problem-specific questions. |
|
Please review the following list of utterances from the transcript, each separated by a double-slash. |
|
Identify up to 3 utterances from the list that are the best examples of soliciting learner ideas, and if there are no examples then return “None”. |
|
Ensure that the selected examples are a clear and complete question that would elicit learner engagement. |
|
Prioritize questions that encourage students to reason out loud and elaborate on their problem-solving process, and avoid questions that may have single-word answer. |
|
Return the selected examples in a json dictionary with the following format: |
|
{"model_outputs": [{"utt": "A1"}, {"utt": "A2"}, {"utt": "A3"}]}""" |
|
|
|
|
|
if session_type == "eliciting": |
|
if focus_concept == "reasoning": |
|
system_prompt = ELICITING_REASONING |
|
else: |
|
system_prompt = ELICITING_SYSTEM_PROMPT |
|
else: |
|
system_prompt = UPTAKE_SYSTEM_PROMPT |
|
df = pd.DataFrame(json_final_output) |
|
client = OpenAI( |
|
|
|
api_key="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", |
|
) |
|
|
|
if session_type == "eliciting": |
|
|
|
for i in range(len(df)): |
|
response = client.chat.completions.create( |
|
model="gpt-4-0125-preview", |
|
|
|
messages=[ |
|
{"role": "system", "content": "Clean the following text: \n"}, |
|
{"role": "user", "content": f"{df['utt'].iloc[i]}"} |
|
] |
|
) |
|
df.iloc[i, df.columns.get_loc('utt')] = response.choices[0].message.content |
|
|
|
|
|
list_of_utterances = df['utt'].tolist() |
|
|
|
expanded_utterances = ' ; '.join(list_of_utterances) |
|
if session_type == "uptake": |
|
expanded_utterances = "" |
|
for i in range(len(df)): |
|
df.iloc[i, df.columns.get_loc('utt')] = ' '.join(df['utt'].iloc[i].split()[:100])+ "[...]" |
|
if len(df['prev_utt'].iloc[i].split()) > 100: |
|
df.iloc[i, df.columns.get_loc('prev_utt')] = "[...]" + ' '.join(df['prev_utt'].iloc[i].split()[-100:]) |
|
expanded_utterances += f"({df['prev_utt'].iloc[i]} // {df['utt'].iloc[i]}) \n" |
|
|
|
|
|
if len(list_of_utterances) > 0: |
|
response = client.chat.completions.create( |
|
model="gpt-4-0125-preview", |
|
response_format={ "type": "json_object" }, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": f"{expanded_utterances}"} |
|
] |
|
) |
|
|
|
try: |
|
json_output = json.loads(response.choices[0].message.content)['model_outputs'] |
|
chosen_utterances = [json_output[i]['utt'] for i in range(len(json_output))] |
|
if session_type == "uptake": |
|
chosen_prev_utterances = [json_output[i]['prev_utt'] for i in range(len(json_output))] |
|
except: |
|
print("Error on line 637 of utils.py") |
|
|
|
def similar(a, b): |
|
|
|
embeddings_a = sentence_model.encode(a, convert_to_tensor=True) |
|
embeddings_b = sentence_model.encode(b, convert_to_tensor=True) |
|
|
|
|
|
cosine_similarity = util.pytorch_cos_sim(embeddings_a, embeddings_b) |
|
|
|
return cosine_similarity.item() |
|
|
|
|
|
indices = [] |
|
for j, chosen_sentence in enumerate(chosen_utterances): |
|
best_match_index = -1 |
|
highest_similarity = 0.0 |
|
|
|
for i, initial_sentence in enumerate(list_of_utterances): |
|
similarity = similar(chosen_sentence, initial_sentence) |
|
if similarity > highest_similarity: |
|
highest_similarity = similarity |
|
best_match_index = i |
|
|
|
|
|
df.iloc[best_match_index, df.columns.get_loc('utt')] = chosen_sentence |
|
if session_type == "uptake": |
|
df.iloc[best_match_index, df.columns.get_loc('prev_utt')] = chosen_prev_utterances[j] |
|
indices.append(best_match_index) |
|
|
|
|
|
try: |
|
assert len(indices) == len(set(indices)) |
|
except: |
|
|
|
indices = list(set(indices)) |
|
print("error on line 673 of utils.py") |
|
|
|
|
|
|
|
|
|
df = df.iloc[indices] |
|
df.reset_index(drop=True, inplace=True) |
|
|
|
else: |
|
df = df |
|
|
|
|
|
final_output = df.to_json(orient='records') |
|
final_output = json.loads(final_output) |
|
|
|
return final_output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|