{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac3ab806560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac3ab8065f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac3ab806680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac3ab806710>", "_build": "<function ActorCriticPolicy._build at 0x7ac3ab8067a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ac3ab806830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac3ab8068c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac3ab806950>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac3ab8069e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac3ab806a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac3ab806b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac3ab806b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac34dc9dfc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 354984, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733828674189551151, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANphgz5S0848sjqAtSszGrSZ0F8+gxWyNAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.645696, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDIkmtyPuKMAWyUTSoCjAF0lEdAglGfZElVtHV9lChoBkdAZgQWZZ0Sy2gHTQ0CaAhHQIJcBOnEVFh1fZQoaAZHQG2eWx6fJ3hoB01tAWgIR0CCYTYcNpdsdX2UKGgGR8A2Pt4zJp35aAdLsWgIR0CCZBp35eqrdX2UKGgGR0BoqnU+cH4XaAdNpgFoCEdAgm14QSSNfnV9lChoBkfAPfB59mYjS2gHTTkBaAhHQIJw25Dqnm91fZQoaAZHwDs86+36Q/5oB00bAWgIR0CCc8n2IwdsdX2UKGgGR0BtZxHTZxrBaAdN5QNoCEdAgoDRri2lVXV9lChoBkdAa3eRs/IKdGgHTUwBaAhHQIKGnt0FKTV1fZQoaAZHQGuOvyTY/V1oB01kAWgIR0CCionZTQ3QdX2UKGgGR0BmocxmCiAUaAdN7wJoCEdAgpUoSDh99nV9lChoBkdAcDeJJXhfjWgHTT4BaAhHQIKYobfgrH51fZQoaAZHwDF0b83uNPxoB00EAWgIR0CCm4U8FINFdX2UKGgGR0Bk/lz2exwAaAdN5wFoCEdAgqMtz8xbjnV9lChoBkdAbXH9vS+g12gHTXoBaAhHQIKnR0hePaN1fZQoaAZHQG6Eg7HQyARoB00UAWgIR0CCqkwIMSbpdX2UKGgGR8BG/1eruIAPaAdL1GgIR0CCrs5vLowFdX2UKGgGR0BsutCE6DGtaAdNMwFoCEdAgrIzB68g6nV9lChoBkdAcHYQemvW6WgHTSoBaAhHQIK1hfx+a0B1fZQoaAZHQG5iP38GcF1oB02mAWgIR0CCvIE7GNrCdX2UKGgGR0Bw+IHiWE9MaAdNHwFoCEdAgsD1DSgGr3V9lChoBkdAb5c5PM0P6WgHTdkBaAhHQILHaFqSHM51fZQoaAZHP9I46wMYuTRoB0vFaAhHQILNro6jnFJ1fZQoaAZHQGyeQmeDnNhoB00AAWgIR0CC0cToMa0hdX2UKGgGR0BuvBWilBQfaAdNAQFoCEdAgtSSvTw2EXV9lChoBkdAbx2Od5IH1WgHTZoBaAhHQILY/GKhtch1fZQoaAZHQG7MrVFx4ptoB01hAWgIR0CC3zJsfq5cdX2UKGgGR0Bs0KqMm4RVaAdNRAFoCEdAguKwZXMhYHV9lChoBkfAOTrBj4Hoo2gHS/hoCEdAguVvRJEpiXV9lChoBkfASTWcBltj1GgHTQ4BaAhHQILqyxFAmiR1fZQoaAZHwD4Xlr/KhctoB0vHaAhHQILtDnX/YJ51fZQoaAZHwEwJmcOLBKtoB0vtaAhHQILvp7Vrhzh1fZQoaAZHQGoL2Y4Qz1toB02GAmgIR0CC+TNFjNILdX2UKGgGR0BqP0bJfYz0aAdN5wFoCEdAgv6qJ2t+1HV9lChoBkdAbwh/+85CGGgHTW8BaAhHQIMFAVRDTjN1fZQoaAZHQCYNsBQvYe1oB0vCaAhHQIMHLfaYeDF1fZQoaAZHQHC8ojOcDr9oB004AWgIR0CDCneBxxT9dX2UKGgGR0BELOaF23a0aAdN6ANoCEdAgxfXTuv2XnV9lChoBkfAGuoq0+kgwGgHS/RoCEdAgxpwyRB/qnV9lChoBkdAZDvRiPQv6GgHTW4CaAhHQIMkwV2zOX51fZQoaAZHQHAYjaCcwxpoB00kAWgIR0CDKOBDG96DdX2UKGgGR8BgZtGiHqNZaAdNKwFoCEdAgy0AtOEdvXV9lChoBkdAMCs6vJRwZWgHS5BoCEdAgzKIl2NedHV9lChoBkdAZbyQvHtF8WgHTYABaAhHQIM39J6IFeR1fZQoaAZHQG6TsFMZgohoB01mAWgIR0CDO8gIQe3hdX2UKGgGR8Aqd73PAwfyaAdLvGgIR0CDPcpjtoi+dX2UKGgGR0Bs56vNeMQ3aAdNOwFoCEdAg0Oum78Nx3V9lChoBkfAQOnbCaZx72gHS/RoCEdAg0aPxYq5LHV9lChoBkdAbuukona37WgHTS8BaAhHQINJ7E1l5GB1fZQoaAZHwD+Thky1uzhoB0ujaAhHQINLs8xKxs51fZQoaAZHQGkY/xMFlkJoB00nAWgIR0CDUTQZ4wAVdX2UKGgGR0BrPZoXbdrPaAdNXwFoCEdAg1T3ZPEbYXV9lChoBkdAbVw/FirksGgHTaQBaAhHQINby9kBjnV1fZQoaAZHQGqGJO32EkBoB001AWgIR0CDX1O4XoC/dX2UKGgGR0BoR41xbSqmaAdNFwJoCEdAg2UqzAvcrXV9lChoBkdAab3K1XvH92gHTasBaAhHQINsNY2bXpZ1fZQoaAZHP/g1pj+aScNoB0voaAhHQINuzpJPIn11fZQoaAZHQG1hYvN/vv1oB01JAWgIR0CDcnW6K+BZdX2UKGgGR8AYnEvTPSlWaAdL32gIR0CDdyP5HmRvdX2UKGgGR0BtsURnOB1+aAdNSgFoCEdAg3q/EOy3TnV9lChoBkdAbsg+K0lZ5mgHTVcBaAhHQIN+iPKdQO51fZQoaAZHwEJRrkbPyCpoB0vfaAhHQIOBBtUGVzJ1fZQoaAZHQG18b70nPVxoB007AWgIR0CDhw0Sh8IBdX2UKGgGR0Ai/s1KoQ4CaAdL7WgIR0CDiqEV32VWdX2UKGgGR0Bt9qROk+HKaAdNMQFoCEdAg47K9GqgiHV9lChoBkdAb5ZPa+N96WgHTQcBaAhHQIOSpnanJkp1fZQoaAZHQGf4WRzRx95oB03qAWgIR0CDnWyYXwb3dX2UKGgGR8BXTw1NxlxwaAdNeQFoCEdAg6IM5OrQxHV9lChoBkdAbZvcBU70WmgHTUoBaAhHQIOoA31jAi51fZQoaAZHQGj5IomXw9doB03sAWgIR0CDrW5CF9KFdX2UKGgGR0BqJOfywwCbaAdNTAFoCEdAg7EB8YyftnV9lChoBkdAWuiMCLdepmgHTegDaAhHQIO+a7mMfih1fZQoaAZHQGnG50bLlmxoB01EAWgIR0CDxEw8GLUDdX2UKGgGR0BicFkYoAn2aAdNVQNoCEdAg9ACYkVvdnV9lChoBkfAQe6AjIJZ4mgHS+BoCEdAg9KBSDRMOHV9lChoBkdAaKrKBd2Pk2gHTSIBaAhHQIPVr+5vtMR1fZQoaAZHQG6f3HzYmLNoB01rAWgIR0CD2ZT6zmfXdX2UKGgGR0Bv0es7uDzzaAdNKwFoCEdAg986Kk2xZHV9lChoBkdAb+x6hQFcIWgHTW4BaAhHQIPjOOCGvfV1fZQoaAZHwCtZp1zQu29oB00vAWgIR0CD5nNTtLL7dX2UKGgGR0Bq2SGtZFG5aAdNLwFoCEdAg+wMFEAo5XV9lChoBkdAalj/nW8RMGgHTT0BaAhHQIPvqwMYuTR1fZQoaAZHwEKVlK9PDYRoB0vzaAhHQIPzWPaL4vh1fZQoaAZHQGglK1PWQOpoB02kAmgIR0CEAILwWnCPdX2UKGgGR0BozzHwPRReaAdNvQJoCEdAhAyKsuFpPHV9lChoBkdAcQUc6NlyzWgHTSIBaAhHQIQPrJ0W/Jx1fZQoaAZHQGjz9sSCe3BoB008AWgIR0CEEvsO5J9RdX2UKGgGR0BvpzYXfqHHaAdNSQFoCEdAhBaCemNzbXV9lChoBkdAbU3zYmLLp2gHTT8BaAhHQIQcVp48lol1fZQoaAZHQGoI5GKAJ9loB01gAWgIR0CEIDtj0+TvdX2UKGgGR0AsEufVZs9CaAdL6GgIR0CEIrnSOR1YdX2UKGgGR8Bi7y48U21laAdNOAFoCEdAhChpSzgMt3V9lChoBkdAa7HfTCtRvWgHTU0BaAhHQIQsBLEk0Jp1fZQoaAZHQG75urIYFaBoB01fAWgIR0CEL9O1v2oOdX2UKGgGR0BwRN76YVqOaAdNRgFoCEdAhDW0EgW8AnV9lChoBkdAbH6/tY0VJ2gHTT0BaAhHQIQ5Tyz5XU91fZQoaAZHwGJdhd2PkrBoB03yAWgIR0CEPqdlNDc/dX2UKGgGR0Bt1+912aDxaAdNXQFoCEdAhES36qKgqXV9lChoBkdAcHwkX1rZamgHTUkBaAhHQIRIbEit7rt1fZQoaAZHQG1SUDU3GXJoB01nAWgIR0CETFq/ub7TdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1384, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRmQyDn0WB9Q6mNl2AtJiI0wCMA2luY5SKEZ+Dus45m+ZDi9FIEuRgsbgAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigX9EZ/RAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |