Commit
·
b4f00ea
1
Parent(s):
c04d8ce
Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,90 @@ datasets:
|
|
4 |
- Xilabs/instructmix
|
5 |
pipeline_tag: text-generation
|
6 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
## Training procedure
|
8 |
|
9 |
|
|
|
4 |
- Xilabs/instructmix
|
5 |
pipeline_tag: text-generation
|
6 |
---
|
7 |
+
## Model Card for "InstructMix Llama 3B"
|
8 |
+
|
9 |
+
**Model Name:** InstructMix Llama 3B
|
10 |
+
|
11 |
+
**Description:**
|
12 |
+
|
13 |
+
InstructMix Llama 3B is a language model fine-tuned on the InstructMix dataset using parameter-efficient fine-tuning (PEFT), using the base model "openlm-research/open_llama_3b_v2," which can be found at [https://huggingface.co/openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2).
|
14 |
+
|
15 |
+
|
16 |
+
**Usage:**
|
17 |
+
```py
|
18 |
+
import torch
|
19 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
21 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
22 |
+
from peft import PeftModel, PeftConfig
|
23 |
+
|
24 |
+
# Hugging Face model_path
|
25 |
+
model_path = 'openlm-research/open_llama_3b_v2'
|
26 |
+
peft_model_id = 'Xilabs/instructmix-llama-3b'
|
27 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
28 |
+
model = LlamaForCausalLM.from_pretrained(
|
29 |
+
model_path, device_map="auto"
|
30 |
+
)
|
31 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
32 |
+
def generate_prompt(instruction, input=None):
|
33 |
+
if input:
|
34 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
35 |
+
|
36 |
+
### Instruction:
|
37 |
+
{instruction}
|
38 |
+
|
39 |
+
### Input:
|
40 |
+
{input}
|
41 |
+
|
42 |
+
### Response:"""
|
43 |
+
else:
|
44 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
45 |
+
|
46 |
+
### Instruction:
|
47 |
+
{instruction}
|
48 |
+
|
49 |
+
### Response:"""
|
50 |
+
def evaluate(
|
51 |
+
instruction,
|
52 |
+
input=None,
|
53 |
+
temperature=0.5,
|
54 |
+
top_p=0.75,
|
55 |
+
top_k=40,
|
56 |
+
num_beams=5,
|
57 |
+
max_new_tokens=128,
|
58 |
+
**kwargs,
|
59 |
+
):
|
60 |
+
prompt = generate_prompt(instruction, input)
|
61 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
62 |
+
input_ids = inputs["input_ids"].to("cuda")
|
63 |
+
generation_config = GenerationConfig(
|
64 |
+
temperature=temperature,
|
65 |
+
top_p=top_p,
|
66 |
+
top_k=top_k,
|
67 |
+
num_beams=num_beams,
|
68 |
+
early_stopping=True,
|
69 |
+
repetition_penalty=1.1,
|
70 |
+
**kwargs,
|
71 |
+
)
|
72 |
+
with torch.no_grad():
|
73 |
+
generation_output = model.generate(
|
74 |
+
input_ids=input_ids,
|
75 |
+
generation_config=generation_config,
|
76 |
+
return_dict_in_generate=True,
|
77 |
+
output_scores=True,
|
78 |
+
max_new_tokens=max_new_tokens,
|
79 |
+
)
|
80 |
+
s = generation_output.sequences[0]
|
81 |
+
output = tokenizer.decode(s, skip_special_tokens = True)
|
82 |
+
#print(output)
|
83 |
+
return output.split("### Response:")[1]
|
84 |
+
|
85 |
+
# Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai
|
86 |
+
instruction = "What is the meaning of life?"
|
87 |
+
print(evaluate(instruction, num_beams=3, temperature=0.1, max_new_tokens=256))
|
88 |
+
```
|
89 |
+
|
90 |
+
|
91 |
## Training procedure
|
92 |
|
93 |
|