File size: 4,408 Bytes
44be028
 
 
 
 
 
 
 
47f7cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
language:
- en
metrics:
- accuracy
pipeline_tag: image-classification
---

# **GenView Pretrained Models**

## Model Name
**GenView: Enhancing View Quality with Pretrained Generative Models**

### Summary
This repository hosts pretrained models developed as part of the GenView framework, introduced in the ECCV 2024 paper *GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning*. These models are designed for visual representation tasks, including image classification, multimodal learning, and feature extraction. GenView leverages generative models to enhance self-supervised learning by improving view quality and diversity.

---

## Table of Contents
1. [Model Details](#model-details)
2. [Evaluation](#evaluation)
3. [Citation](#citation)
4. [How to Download the Model](#how-to-download-the-model)

---

## Model Details

### **Model Description**
The GenView pretrained models include both convolutional architectures (e.g., ResNet50) and transformer-based architectures (e.g., ViT-B). These models utilize advanced self-supervised learning methods such as SimSiam, MoCo, and BYOL. By incorporating generative models for adaptive view generation, the framework delivers superior feature representations.

- **Developed by:** Xiaojie Li, Yibo Yang, Xiangtai Li, Jianlong Wu, Yue Yu, Bernard Ghanem, Min Zhang  
- **Funded by:** Harbin Institute of Technology, Shenzhen; Peng Cheng Laboratory; KAUST; NTU  
- **Shared by:** Xiaojie Li  
- **Model type:** Self-supervised learning for vision tasks  
- **Language:** Vision-focused (not language-specific)  
- **License:** Apache 2.0  

### **Model Sources**
- **Hugging Face Repository:** [GenView Pretrained Models](https://huggingface.co/Xiaojie0903/genview_pretrained_models)  
- **GitHub Repository:** [GenView Official Code](https://github.com/xiaojieli0903/genview/)  
- **Paper:** [GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning (ECCV 2024)](https://arxiv.org/abs/2403.12003)  

---

## Evaluation

### **Testing Data**
Linear Probe evaluation was conducted using the ImageNet-1K dataset.

### **Metrics**
The models were evaluated based on Top-1 accuracy.

### **Results**

| Method           | Backbone     | Pretraining Epochs | Linear Probe Accuracy (%) |
|-------------------|--------------|---------------------|----------------------------|
| MoCo v2 + GenView| ResNet-50    | 200                 | 70.0                       |
| SwAV + GenView   | ResNet-50    | 200                 | 71.7                       |
| SimSiam + GenView| ResNet-50    | 200                 | 72.2                       |
| BYOL + GenView   | ResNet-50    | 200                 | 73.2                       |
| MoCo v3 + GenView| ResNet-50    | 100                 | 72.7                       |
| MoCo v3 + GenView| ResNet-50    | 300                 | 74.8                       |
| MoCo v3 + GenView| ViT-S        | 300                 | 74.5                       |
| MoCo v3 + GenView| ViT-B        | 300                 | 77.8                       |

---

## Citation

If you use these models, please cite the GenView paper:

```bibtex
@inproceedings{li2023genview,
  author={Li, Xiaojie and Yang, Yibo and Li, Xiangtai and Wu, Jianlong and Yu, Yue and Ghanem, Bernard and Zhang, Min},
  title={GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning}, 
  year={2024},
  booktitle={Proceedings of the European Conference on Computer Vision},
  pages={306--325},
  publisher="Springer"
}
```
---
## How to Download the Model

### **Downloading Models**
To download models, use the following commands:

#### Option 1: `wget`
```bash
# Replace {MODEL_FILE} with the specific model file name
wget https://huggingface.co/Xiaojie0903/genview_pretrained_models/resolve/main/{MODEL_FILE}
```

Example:
```bash
wget https://huggingface.co/Xiaojie0903/genview_pretrained_models/resolve/main/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_genview.pth
```

#### Option 2: Hugging Face Python API
```python
from huggingface_hub import hf_hub_download

# Replace with your desired model file
file_path = hf_hub_download(
    repo_id="Xiaojie0903/genview_pretrained_models",
    filename="mocov3_resnet50_8xb512-amp-coslr-100e_in1k_genview.pth"
)
print(f"Model downloaded to {file_path}")
```