Xiaojian9992024 commited on
Commit
8e3a154
·
verified ·
1 Parent(s): c166b07

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +193 -0
  3. t5-small.bf16.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ t5-small.bf16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - ro
6
+ - de
7
+ - multilingual
8
+ license: apache-2.0
9
+ tags:
10
+ - summarization
11
+ - translation
12
+ - autoquant
13
+ - gguf
14
+ datasets:
15
+ - c4
16
+ ---
17
+
18
+ # Model Card for T5 Small
19
+
20
+ ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
21
+
22
+ # Table of Contents
23
+
24
+ 1. [Model Details](#model-details)
25
+ 2. [Uses](#uses)
26
+ 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
27
+ 4. [Training Details](#training-details)
28
+ 5. [Evaluation](#evaluation)
29
+ 6. [Environmental Impact](#environmental-impact)
30
+ 7. [Citation](#citation)
31
+ 8. [Model Card Authors](#model-card-authors)
32
+ 9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
33
+
34
+ # Model Details
35
+
36
+ ## Model Description
37
+
38
+ The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html):
39
+
40
+ > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
41
+
42
+ T5-Small is the checkpoint with 60 million parameters.
43
+
44
+ - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints)
45
+ - **Model type:** Language model
46
+ - **Language(s) (NLP):** English, French, Romanian, German
47
+ - **License:** Apache 2.0
48
+ - **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5)
49
+ - **Resources for more information:**
50
+ - [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
51
+ - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
52
+ - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer)
53
+ - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5)
54
+
55
+ # Uses
56
+
57
+ ## Direct Use and Downstream Use
58
+
59
+ The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model:
60
+
61
+ > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.
62
+
63
+ See the [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
64
+
65
+ ## Out-of-Scope Use
66
+
67
+ More information needed.
68
+
69
+ # Bias, Risks, and Limitations
70
+
71
+ More information needed.
72
+
73
+ ## Recommendations
74
+
75
+ More information needed.
76
+
77
+ # Training Details
78
+
79
+ ## Training Data
80
+
81
+ The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5.
82
+
83
+ The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**.
84
+ Thereby, the following datasets were being used for (1.) and (2.):
85
+
86
+ 1. **Datasets used for Unsupervised denoising objective**:
87
+
88
+ - [C4](https://huggingface.co/datasets/c4)
89
+ - [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr)
90
+
91
+
92
+ 2. **Datasets used for Supervised text-to-text language modeling objective**
93
+
94
+ - Sentence acceptability judgment
95
+ - CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471)
96
+ - Sentiment analysis
97
+ - SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf)
98
+ - Paraphrasing/sentence similarity
99
+ - MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002)
100
+ - STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055)
101
+ - QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
102
+ - Natural language inference
103
+ - MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426)
104
+ - QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250)
105
+ - RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9)
106
+ - CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf)
107
+ - Sentence completion
108
+ - COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning)
109
+ - Word sense disambiguation
110
+ - WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121)
111
+ - Question answering
112
+ - MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023)
113
+ - ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885)
114
+ - BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044)
115
+
116
+ ## Training Procedure
117
+
118
+ In their [abstract](https://jmlr.org/papers/volume21/20-074/20-074.pdf), the model developers write:
119
+
120
+ > In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks.
121
+
122
+ The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
123
+
124
+ # Evaluation
125
+
126
+ ## Testing Data, Factors & Metrics
127
+
128
+ The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details.
129
+
130
+ ## Results
131
+
132
+ For full results for T5-small, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14.
133
+
134
+ # Environmental Impact
135
+
136
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
137
+
138
+ - **Hardware Type:** Google Cloud TPU Pods
139
+ - **Hours used:** More information needed
140
+ - **Cloud Provider:** GCP
141
+ - **Compute Region:** More information needed
142
+ - **Carbon Emitted:** More information needed
143
+
144
+ # Citation
145
+
146
+ **BibTeX:**
147
+
148
+ ```bibtex
149
+ @article{2020t5,
150
+ author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
151
+ title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
152
+ journal = {Journal of Machine Learning Research},
153
+ year = {2020},
154
+ volume = {21},
155
+ number = {140},
156
+ pages = {1-67},
157
+ url = {http://jmlr.org/papers/v21/20-074.html}
158
+ }
159
+ ```
160
+
161
+ **APA:**
162
+ - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
163
+
164
+ # Model Card Authors
165
+
166
+ This model card was written by the team at Hugging Face.
167
+
168
+ # How to Get Started with the Model
169
+
170
+ Use the code below to get started with the model.
171
+
172
+ <details>
173
+ <summary> Click to expand </summary>
174
+
175
+ ```python
176
+ from transformers import T5Tokenizer, T5Model
177
+
178
+ tokenizer = T5Tokenizer.from_pretrained("t5-small")
179
+ model = T5Model.from_pretrained("t5-small")
180
+
181
+ input_ids = tokenizer(
182
+ "Studies have been shown that owning a dog is good for you", return_tensors="pt"
183
+ ).input_ids # Batch size 1
184
+ decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
185
+
186
+ # forward pass
187
+ outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
188
+ last_hidden_states = outputs.last_hidden_state
189
+ ```
190
+
191
+ See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples.
192
+ </details>
193
+
t5-small.bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dacc2b3bcd28cdb02f64d64777c9f271951935f427b580cc435bce235dfb7739
3
+ size 122074720