Upload 23 files
Browse files- README.md +78 -3
- hit_sir_arch.py +900 -0
- hit_sng_arch.py +1132 -0
- hit_srf_arch.py +947 -0
- requirements.txt +18 -0
- utils/__init__.py +30 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/dist_util.cpython-38.pyc +0 -0
- utils/__pycache__/file_client.cpython-38.pyc +0 -0
- utils/__pycache__/img_util.cpython-38.pyc +0 -0
- utils/__pycache__/logger.cpython-38.pyc +0 -0
- utils/__pycache__/matlab_functions.cpython-38.pyc +0 -0
- utils/__pycache__/misc.cpython-38.pyc +0 -0
- utils/__pycache__/options.cpython-38.pyc +0 -0
- utils/__pycache__/registry.cpython-38.pyc +0 -0
- utils/dist_util.py +82 -0
- utils/file_client.py +167 -0
- utils/img_util.py +172 -0
- utils/logger.py +213 -0
- utils/matlab_functions.py +359 -0
- utils/misc.py +141 -0
- utils/options.py +194 -0
- utils/registry.py +82 -0
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- HiT-SR
|
4 |
+
- image super-resolution
|
5 |
+
- transformer
|
6 |
+
---
|
7 |
+
|
8 |
+
<h1>
|
9 |
+
HiT-SR: Hierarchical Transformer <br> for Efficient Image Super-Resolution
|
10 |
+
</h1>
|
11 |
+
|
12 |
+
<h3><a href="https://github.com/XiangZ-0/HiT-SR">[Github]</a> | <a href="https://1drv.ms/b/c/de821e161e64ce08/EVsrOr1-PFFMsXxiRHEmKeoBSH6DPkTuN2GRmEYsl9bvDQ?e=f9wGUO">[Paper]</a> | <a href="https://1drv.ms/b/c/de821e161e64ce08/EYmRy-QOjPdFsMRT_ElKQqABYzoIIfDtkt9hofZ5YY_GjQ?e=2Iapqf">[Supp]</a> | <a href="https://www.youtube.com/watch?v=9rO0pjmmjZg">[Video]</a> | <a href="https://1drv.ms/f/c/de821e161e64ce08/EuE6xW-sN-hFgkIa6J-Y8gkB9b4vDQZQ01r1ZP1lmzM0vQ?e=aIRfCQ">[Visual Results]</a> </h3>
|
13 |
+
<div></div>
|
14 |
+
|
15 |
+
HiT-SR is a general strategy to improve transformer-based SR methods. We apply our HiT-SR approach to improve [SwinIR-Light](https://github.com/JingyunLiang/SwinIR), [SwinIR-NG](https://github.com/rami0205/NGramSwin) and [SRFormer-Light](https://github.com/HVision-NKU/SRFormer), corresponding to our HiT-SIR, HiT-SNG, and HiT-SRF. Compared with the original structure, our improved models achieve better SR performance while reducing computational burdens.
|
16 |
+
|
17 |
+
## 🚀 Models
|
18 |
+
For each HiT-SR model, we provide 2x, 3x, 4x upscaling versions:
|
19 |
+
| Repo Name | | Model | | Upscale |
|
20 |
+
|-------------------|---|---------|---|---------|
|
21 |
+
| `XiangZ/hit-sir-2x` | | HiT-SIR | | 2x |
|
22 |
+
| `XiangZ/hit-sir-3x` | | HiT-SIR | | 3x |
|
23 |
+
| `XiangZ/hit-sir-4x` | | HiT-SIR | | 4x |
|
24 |
+
| `XiangZ/hit-sng-2x` | | HiT-SNG | | 2x |
|
25 |
+
| `XiangZ/hit-sng-3x` | | HiT-SNG | | 3x |
|
26 |
+
| `XiangZ/hit-sng-4x` | | HiT-SNG | | 4x |
|
27 |
+
| `XiangZ/hit-srf-2x` | | HiT-SNG | | 2x |
|
28 |
+
| `XiangZ/hit-srf-3x` | | HiT-SRF | | 3x |
|
29 |
+
| `XiangZ/hit-srf-4x` | | HiT-SRF | | 4x |
|
30 |
+
|
31 |
+
|
32 |
+
## 🛠️ Setup
|
33 |
+
Install the dependencies under the working directory (use hit-srf-4x as an example):
|
34 |
+
```
|
35 |
+
git clone https://huggingface.co/XiangZ/hit-srf-4x
|
36 |
+
cd hit-srf-4x
|
37 |
+
pip install -r requirements.txt
|
38 |
+
```
|
39 |
+
|
40 |
+
## 🚀 Usage
|
41 |
+
|
42 |
+
To test the model:
|
43 |
+
```
|
44 |
+
from hit_sir_arch import HiT_SIR
|
45 |
+
from hit_sng_arch import HiT_SNG
|
46 |
+
from hit_srf_arch import HiT_SRF
|
47 |
+
import cv2
|
48 |
+
|
49 |
+
# use GPU (True) or CPU (False)
|
50 |
+
cuda_flag = True
|
51 |
+
|
52 |
+
# initialize model (change model and upscale according to your setting)
|
53 |
+
model = HiT_SRF(upscale=4)
|
54 |
+
|
55 |
+
# load model (change repo_name according to your setting)
|
56 |
+
repo_name = "XiangZ/hit-srf-4x"
|
57 |
+
model = model.from_pretrained(repo_name)
|
58 |
+
if cuda_flag:
|
59 |
+
model.cuda()
|
60 |
+
|
61 |
+
## test and save results
|
62 |
+
image_path = "path-to-input-image"
|
63 |
+
sr_results = model.infer_image(image_path, cuda=cuda_flag)
|
64 |
+
cv2.imwrite("path-to-output-location", sr_results)
|
65 |
+
```
|
66 |
+
|
67 |
+
## 📎 Citation
|
68 |
+
|
69 |
+
If you find the code helpful in your research or work, please consider citing the following paper.
|
70 |
+
|
71 |
+
```
|
72 |
+
@inproceedings{zhang2024hitsr,
|
73 |
+
title={HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution},
|
74 |
+
author={Zhang, Xiang and Zhang, Yulun and Yu, Fisher},
|
75 |
+
booktitle={ECCV},
|
76 |
+
year={2024}
|
77 |
+
}
|
78 |
+
```
|
hit_sir_arch.py
ADDED
@@ -0,0 +1,900 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint as checkpoint
|
6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
10 |
+
from utils import FileClient, imfrombytes, img2tensor, tensor2img
|
11 |
+
|
12 |
+
class DFE(nn.Module):
|
13 |
+
""" Dual Feature Extraction
|
14 |
+
Args:
|
15 |
+
in_features (int): Number of input channels.
|
16 |
+
out_features (int): Number of output channels.
|
17 |
+
"""
|
18 |
+
def __init__(self, in_features, out_features):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.out_features = out_features
|
22 |
+
|
23 |
+
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
|
24 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
25 |
+
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
|
26 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
27 |
+
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
|
28 |
+
|
29 |
+
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
|
30 |
+
|
31 |
+
def forward(self, x, x_size):
|
32 |
+
|
33 |
+
B, L, C = x.shape
|
34 |
+
H, W = x_size
|
35 |
+
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
|
36 |
+
x = self.conv(x) * self.linear(x)
|
37 |
+
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
|
38 |
+
|
39 |
+
return x
|
40 |
+
|
41 |
+
class Mlp(nn.Module):
|
42 |
+
""" MLP-based Feed-Forward Network
|
43 |
+
Args:
|
44 |
+
in_features (int): Number of input channels.
|
45 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
46 |
+
out_features (int | None): Number of output channels. Default: None
|
47 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
48 |
+
drop (float): Dropout rate. Default: 0.0
|
49 |
+
"""
|
50 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
51 |
+
super().__init__()
|
52 |
+
out_features = out_features or in_features
|
53 |
+
hidden_features = hidden_features or in_features
|
54 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
55 |
+
self.act = act_layer()
|
56 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
57 |
+
self.drop = nn.Dropout(drop)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.fc1(x)
|
61 |
+
x = self.act(x)
|
62 |
+
x = self.drop(x)
|
63 |
+
x = self.fc2(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
def window_partition(x, window_size):
|
69 |
+
"""
|
70 |
+
Args:
|
71 |
+
x: (B, H, W, C)
|
72 |
+
window_size (tuple): window size
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
windows: (num_windows*B, window_size, window_size, C)
|
76 |
+
"""
|
77 |
+
B, H, W, C = x.shape
|
78 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
79 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
80 |
+
return windows
|
81 |
+
|
82 |
+
|
83 |
+
def window_reverse(windows, window_size, H, W):
|
84 |
+
"""
|
85 |
+
Args:
|
86 |
+
windows: (num_windows*B, window_size, window_size, C)
|
87 |
+
window_size (tuple): Window size
|
88 |
+
H (int): Height of image
|
89 |
+
W (int): Width of image
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
x: (B, H, W, C)
|
93 |
+
"""
|
94 |
+
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
|
95 |
+
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
96 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
97 |
+
return x
|
98 |
+
|
99 |
+
class DynamicPosBias(nn.Module):
|
100 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
101 |
+
""" Dynamic Relative Position Bias.
|
102 |
+
Args:
|
103 |
+
dim (int): Number of input channels.
|
104 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
105 |
+
residual (bool): If True, use residual strage to connect conv.
|
106 |
+
"""
|
107 |
+
def __init__(self, dim, num_heads, residual):
|
108 |
+
super().__init__()
|
109 |
+
self.residual = residual
|
110 |
+
self.num_heads = num_heads
|
111 |
+
self.pos_dim = dim // 4
|
112 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
113 |
+
self.pos1 = nn.Sequential(
|
114 |
+
nn.LayerNorm(self.pos_dim),
|
115 |
+
nn.ReLU(inplace=True),
|
116 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
117 |
+
)
|
118 |
+
self.pos2 = nn.Sequential(
|
119 |
+
nn.LayerNorm(self.pos_dim),
|
120 |
+
nn.ReLU(inplace=True),
|
121 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
122 |
+
)
|
123 |
+
self.pos3 = nn.Sequential(
|
124 |
+
nn.LayerNorm(self.pos_dim),
|
125 |
+
nn.ReLU(inplace=True),
|
126 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
127 |
+
)
|
128 |
+
def forward(self, biases):
|
129 |
+
if self.residual:
|
130 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
131 |
+
pos = pos + self.pos1(pos)
|
132 |
+
pos = pos + self.pos2(pos)
|
133 |
+
pos = self.pos3(pos)
|
134 |
+
else:
|
135 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
136 |
+
return pos
|
137 |
+
|
138 |
+
class SCC(nn.Module):
|
139 |
+
""" Spatial-Channel Correlation.
|
140 |
+
Args:
|
141 |
+
dim (int): Number of input channels.
|
142 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
143 |
+
window_size (tuple[int]): The height and width of the window.
|
144 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
145 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
146 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
147 |
+
"""
|
148 |
+
|
149 |
+
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
|
150 |
+
|
151 |
+
super().__init__()
|
152 |
+
# parameters
|
153 |
+
self.dim = dim
|
154 |
+
self.window_size = window_size
|
155 |
+
self.num_heads = num_heads
|
156 |
+
|
157 |
+
# feature projection
|
158 |
+
self.qv = DFE(dim, dim)
|
159 |
+
self.proj = nn.Linear(dim, dim)
|
160 |
+
|
161 |
+
# dropout
|
162 |
+
self.value_drop = nn.Dropout(value_drop)
|
163 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
164 |
+
|
165 |
+
# base window size
|
166 |
+
min_h = min(self.window_size[0], base_win_size[0])
|
167 |
+
min_w = min(self.window_size[1], base_win_size[1])
|
168 |
+
self.base_win_size = (min_h, min_w)
|
169 |
+
|
170 |
+
# normalization factor and spatial linear layer for S-SC
|
171 |
+
head_dim = dim // (2*num_heads)
|
172 |
+
self.scale = head_dim
|
173 |
+
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
|
174 |
+
|
175 |
+
# define a parameter table of relative position bias
|
176 |
+
self.H_sp, self.W_sp = self.window_size
|
177 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
178 |
+
|
179 |
+
def spatial_linear_projection(self, x):
|
180 |
+
B, num_h, L, C = x.shape
|
181 |
+
H, W = self.window_size
|
182 |
+
map_H, map_W = self.base_win_size
|
183 |
+
|
184 |
+
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
|
185 |
+
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
|
186 |
+
return x
|
187 |
+
|
188 |
+
def spatial_self_correlation(self, q, v):
|
189 |
+
|
190 |
+
B, num_head, L, C = q.shape
|
191 |
+
|
192 |
+
# spatial projection
|
193 |
+
v = self.spatial_linear_projection(v)
|
194 |
+
|
195 |
+
# compute correlation map
|
196 |
+
corr_map = (q @ v.transpose(-2,-1)) / self.scale
|
197 |
+
|
198 |
+
# add relative position bias
|
199 |
+
# generate mother-set
|
200 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
|
201 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
|
202 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
203 |
+
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
204 |
+
pos = self.pos(rpe_biases)
|
205 |
+
|
206 |
+
# select position bias
|
207 |
+
coords_h = torch.arange(self.H_sp, device=v.device)
|
208 |
+
coords_w = torch.arange(self.W_sp, device=v.device)
|
209 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
210 |
+
coords_flatten = torch.flatten(coords, 1)
|
211 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
212 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
213 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
214 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
215 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
216 |
+
relative_position_index = relative_coords.sum(-1)
|
217 |
+
relative_position_bias = pos[relative_position_index.view(-1)].view(
|
218 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
219 |
+
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
|
220 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
|
221 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
222 |
+
corr_map = corr_map + relative_position_bias.unsqueeze(0)
|
223 |
+
|
224 |
+
# transformation
|
225 |
+
v_drop = self.value_drop(v)
|
226 |
+
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
|
227 |
+
|
228 |
+
return x
|
229 |
+
|
230 |
+
def channel_self_correlation(self, q, v):
|
231 |
+
|
232 |
+
B, num_head, L, C = q.shape
|
233 |
+
|
234 |
+
# apply single head strategy
|
235 |
+
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
236 |
+
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
237 |
+
|
238 |
+
# compute correlation map
|
239 |
+
corr_map = (q.transpose(-2,-1) @ v) / L
|
240 |
+
|
241 |
+
# transformation
|
242 |
+
v_drop = self.value_drop(v)
|
243 |
+
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
|
244 |
+
|
245 |
+
return x
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
"""
|
249 |
+
Args:
|
250 |
+
x: input features with shape of (B, H, W, C)
|
251 |
+
"""
|
252 |
+
xB,xH,xW,xC = x.shape
|
253 |
+
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
|
254 |
+
|
255 |
+
# window partition
|
256 |
+
qv = window_partition(qv, self.window_size)
|
257 |
+
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
|
258 |
+
|
259 |
+
# qv splitting
|
260 |
+
B, L, C = qv.shape
|
261 |
+
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
|
262 |
+
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
|
263 |
+
|
264 |
+
# spatial self-correlation (S-SC)
|
265 |
+
x_spatial = self.spatial_self_correlation(q, v)
|
266 |
+
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
|
267 |
+
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
|
268 |
+
|
269 |
+
# channel self-correlation (C-SC)
|
270 |
+
x_channel = self.channel_self_correlation(q, v)
|
271 |
+
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
|
272 |
+
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
|
273 |
+
|
274 |
+
# spatial-channel information fusion
|
275 |
+
x = torch.cat([x_spatial, x_channel], -1)
|
276 |
+
x = self.proj_drop(self.proj(x))
|
277 |
+
|
278 |
+
return x
|
279 |
+
|
280 |
+
def extra_repr(self) -> str:
|
281 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
282 |
+
|
283 |
+
|
284 |
+
class HierarchicalTransformerBlock(nn.Module):
|
285 |
+
""" Hierarchical Transformer Block.
|
286 |
+
Args:
|
287 |
+
dim (int): Number of input channels.
|
288 |
+
input_resolution (tuple[int]): Input resulotion.
|
289 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
290 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
291 |
+
window_size (tuple[int]): The height and width of the window.
|
292 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
293 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
294 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
295 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
296 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
297 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
298 |
+
"""
|
299 |
+
|
300 |
+
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
|
301 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
|
302 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
303 |
+
super().__init__()
|
304 |
+
self.dim = dim
|
305 |
+
self.input_resolution = input_resolution
|
306 |
+
self.num_heads = num_heads
|
307 |
+
self.window_size = window_size
|
308 |
+
self.mlp_ratio = mlp_ratio
|
309 |
+
|
310 |
+
# check window size
|
311 |
+
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
|
312 |
+
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
313 |
+
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
314 |
+
|
315 |
+
|
316 |
+
self.norm1 = norm_layer(dim)
|
317 |
+
self.correlation = SCC(
|
318 |
+
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
|
319 |
+
value_drop=value_drop, proj_drop=drop)
|
320 |
+
|
321 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
322 |
+
self.norm2 = norm_layer(dim)
|
323 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
324 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
325 |
+
|
326 |
+
def check_image_size(self, x, win_size):
|
327 |
+
x = x.permute(0,3,1,2).contiguous()
|
328 |
+
_, _, h, w = x.size()
|
329 |
+
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
|
330 |
+
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
|
331 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
332 |
+
x = x.permute(0,2,3,1).contiguous()
|
333 |
+
return x
|
334 |
+
|
335 |
+
def forward(self, x, x_size, win_size):
|
336 |
+
H, W = x_size
|
337 |
+
B, L, C = x.shape
|
338 |
+
|
339 |
+
shortcut = x
|
340 |
+
x = x.view(B, H, W, C)
|
341 |
+
|
342 |
+
# padding
|
343 |
+
x = self.check_image_size(x, win_size)
|
344 |
+
_, H_pad, W_pad, _ = x.shape # shape after padding
|
345 |
+
|
346 |
+
x = self.correlation(x)
|
347 |
+
|
348 |
+
# unpad
|
349 |
+
x = x[:, :H, :W, :].contiguous()
|
350 |
+
|
351 |
+
# norm
|
352 |
+
x = x.view(B, H * W, C)
|
353 |
+
x = self.norm1(x)
|
354 |
+
|
355 |
+
# FFN
|
356 |
+
x = shortcut + self.drop_path(x)
|
357 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
358 |
+
|
359 |
+
return x
|
360 |
+
|
361 |
+
def extra_repr(self) -> str:
|
362 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
363 |
+
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
364 |
+
|
365 |
+
|
366 |
+
class PatchMerging(nn.Module):
|
367 |
+
""" Patch Merging Layer.
|
368 |
+
Args:
|
369 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
370 |
+
dim (int): Number of input channels.
|
371 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
372 |
+
"""
|
373 |
+
|
374 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
375 |
+
super().__init__()
|
376 |
+
self.input_resolution = input_resolution
|
377 |
+
self.dim = dim
|
378 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
379 |
+
self.norm = norm_layer(4 * dim)
|
380 |
+
|
381 |
+
def forward(self, x):
|
382 |
+
"""
|
383 |
+
x: B, H*W, C
|
384 |
+
"""
|
385 |
+
H, W = self.input_resolution
|
386 |
+
B, L, C = x.shape
|
387 |
+
assert L == H * W, "input feature has wrong size"
|
388 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
389 |
+
|
390 |
+
x = x.view(B, H, W, C)
|
391 |
+
|
392 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
393 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
394 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
395 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
396 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
397 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
398 |
+
|
399 |
+
x = self.norm(x)
|
400 |
+
x = self.reduction(x)
|
401 |
+
|
402 |
+
return x
|
403 |
+
|
404 |
+
def extra_repr(self) -> str:
|
405 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
406 |
+
|
407 |
+
|
408 |
+
class BasicLayer(nn.Module):
|
409 |
+
""" A basic Hierarchical Transformer layer for one stage.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
dim (int): Number of input channels.
|
413 |
+
input_resolution (tuple[int]): Input resolution.
|
414 |
+
depth (int): Number of blocks.
|
415 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
416 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
417 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
418 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
419 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
420 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
421 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
422 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
423 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
424 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
428 |
+
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
|
429 |
+
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
|
430 |
+
|
431 |
+
super().__init__()
|
432 |
+
self.dim = dim
|
433 |
+
self.input_resolution = input_resolution
|
434 |
+
self.depth = depth
|
435 |
+
self.use_checkpoint = use_checkpoint
|
436 |
+
|
437 |
+
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
|
438 |
+
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
|
439 |
+
|
440 |
+
# build blocks
|
441 |
+
self.blocks = nn.ModuleList([
|
442 |
+
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
|
443 |
+
num_heads=num_heads,
|
444 |
+
base_win_size=base_win_size,
|
445 |
+
window_size=(self.win_hs[i], self.win_ws[i]),
|
446 |
+
mlp_ratio=mlp_ratio,
|
447 |
+
drop=drop, value_drop=value_drop,
|
448 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
449 |
+
norm_layer=norm_layer)
|
450 |
+
for i in range(depth)])
|
451 |
+
|
452 |
+
# patch merging layer
|
453 |
+
if downsample is not None:
|
454 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
455 |
+
else:
|
456 |
+
self.downsample = None
|
457 |
+
|
458 |
+
def forward(self, x, x_size):
|
459 |
+
|
460 |
+
i = 0
|
461 |
+
for blk in self.blocks:
|
462 |
+
if self.use_checkpoint:
|
463 |
+
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
|
464 |
+
else:
|
465 |
+
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
|
466 |
+
i = i + 1
|
467 |
+
|
468 |
+
if self.downsample is not None:
|
469 |
+
x = self.downsample(x)
|
470 |
+
return x
|
471 |
+
|
472 |
+
def extra_repr(self) -> str:
|
473 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
474 |
+
|
475 |
+
|
476 |
+
class RHTB(nn.Module):
|
477 |
+
"""Residual Hierarchical Transformer Block (RHTB).
|
478 |
+
Args:
|
479 |
+
dim (int): Number of input channels.
|
480 |
+
input_resolution (tuple[int]): Input resolution.
|
481 |
+
depth (int): Number of blocks.
|
482 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
483 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
484 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
485 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
486 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
487 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
488 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
489 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
490 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
491 |
+
img_size: Input image size.
|
492 |
+
patch_size: Patch size.
|
493 |
+
resi_connection: The convolutional block before residual connection.
|
494 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
495 |
+
"""
|
496 |
+
|
497 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
498 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
499 |
+
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
|
500 |
+
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
|
501 |
+
super(RHTB, self).__init__()
|
502 |
+
|
503 |
+
self.dim = dim
|
504 |
+
self.input_resolution = input_resolution
|
505 |
+
|
506 |
+
self.residual_group = BasicLayer(dim=dim,
|
507 |
+
input_resolution=input_resolution,
|
508 |
+
depth=depth,
|
509 |
+
num_heads=num_heads,
|
510 |
+
base_win_size=base_win_size,
|
511 |
+
mlp_ratio=mlp_ratio,
|
512 |
+
drop=drop, value_drop=value_drop,
|
513 |
+
drop_path=drop_path,
|
514 |
+
norm_layer=norm_layer,
|
515 |
+
downsample=downsample,
|
516 |
+
use_checkpoint=use_checkpoint,
|
517 |
+
hier_win_ratios=hier_win_ratios)
|
518 |
+
|
519 |
+
if resi_connection == '1conv':
|
520 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
521 |
+
elif resi_connection == '3conv':
|
522 |
+
# to save parameters and memory
|
523 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
524 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
525 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
526 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
527 |
+
|
528 |
+
self.patch_embed = PatchEmbed(
|
529 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
530 |
+
norm_layer=None)
|
531 |
+
|
532 |
+
self.patch_unembed = PatchUnEmbed(
|
533 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
534 |
+
norm_layer=None)
|
535 |
+
|
536 |
+
def forward(self, x, x_size):
|
537 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
538 |
+
|
539 |
+
|
540 |
+
class PatchEmbed(nn.Module):
|
541 |
+
r""" Image to Patch Embedding
|
542 |
+
|
543 |
+
Args:
|
544 |
+
img_size (int): Image size. Default: 224.
|
545 |
+
patch_size (int): Patch token size. Default: 4.
|
546 |
+
in_chans (int): Number of input image channels. Default: 3.
|
547 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
548 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
549 |
+
"""
|
550 |
+
|
551 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
552 |
+
super().__init__()
|
553 |
+
img_size = to_2tuple(img_size)
|
554 |
+
patch_size = to_2tuple(patch_size)
|
555 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
556 |
+
self.img_size = img_size
|
557 |
+
self.patch_size = patch_size
|
558 |
+
self.patches_resolution = patches_resolution
|
559 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
560 |
+
|
561 |
+
self.in_chans = in_chans
|
562 |
+
self.embed_dim = embed_dim
|
563 |
+
|
564 |
+
if norm_layer is not None:
|
565 |
+
self.norm = norm_layer(embed_dim)
|
566 |
+
else:
|
567 |
+
self.norm = None
|
568 |
+
|
569 |
+
def forward(self, x):
|
570 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
571 |
+
if self.norm is not None:
|
572 |
+
x = self.norm(x)
|
573 |
+
return x
|
574 |
+
|
575 |
+
|
576 |
+
class PatchUnEmbed(nn.Module):
|
577 |
+
r""" Image to Patch Unembedding
|
578 |
+
|
579 |
+
Args:
|
580 |
+
img_size (int): Image size. Default: 224.
|
581 |
+
patch_size (int): Patch token size. Default: 4.
|
582 |
+
in_chans (int): Number of input image channels. Default: 3.
|
583 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
584 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
585 |
+
"""
|
586 |
+
|
587 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
588 |
+
super().__init__()
|
589 |
+
img_size = to_2tuple(img_size)
|
590 |
+
patch_size = to_2tuple(patch_size)
|
591 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
592 |
+
self.img_size = img_size
|
593 |
+
self.patch_size = patch_size
|
594 |
+
self.patches_resolution = patches_resolution
|
595 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
596 |
+
|
597 |
+
self.in_chans = in_chans
|
598 |
+
self.embed_dim = embed_dim
|
599 |
+
|
600 |
+
def forward(self, x, x_size):
|
601 |
+
B, HW, C = x.shape
|
602 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
603 |
+
return x
|
604 |
+
|
605 |
+
|
606 |
+
class Upsample(nn.Sequential):
|
607 |
+
"""Upsample module.
|
608 |
+
|
609 |
+
Args:
|
610 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
611 |
+
num_feat (int): Channel number of intermediate features.
|
612 |
+
"""
|
613 |
+
|
614 |
+
def __init__(self, scale, num_feat):
|
615 |
+
m = []
|
616 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
617 |
+
for _ in range(int(math.log(scale, 2))):
|
618 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
619 |
+
m.append(nn.PixelShuffle(2))
|
620 |
+
elif scale == 3:
|
621 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
622 |
+
m.append(nn.PixelShuffle(3))
|
623 |
+
else:
|
624 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
625 |
+
super(Upsample, self).__init__(*m)
|
626 |
+
|
627 |
+
|
628 |
+
class UpsampleOneStep(nn.Sequential):
|
629 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
630 |
+
Used in lightweight SR to save parameters.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
634 |
+
num_feat (int): Channel number of intermediate features.
|
635 |
+
|
636 |
+
"""
|
637 |
+
|
638 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
639 |
+
self.num_feat = num_feat
|
640 |
+
self.input_resolution = input_resolution
|
641 |
+
m = []
|
642 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
643 |
+
m.append(nn.PixelShuffle(scale))
|
644 |
+
super(UpsampleOneStep, self).__init__(*m)
|
645 |
+
|
646 |
+
|
647 |
+
class HiT_SIR(nn.Module, PyTorchModelHubMixin):
|
648 |
+
""" HiT-SIR network.
|
649 |
+
|
650 |
+
Args:
|
651 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
652 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
653 |
+
in_chans (int): Number of input image channels. Default: 3
|
654 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
655 |
+
depths (tuple(int)): Depth of each Transformer block.
|
656 |
+
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
|
657 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
658 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
659 |
+
drop_rate (float): Dropout rate. Default: 0
|
660 |
+
value_drop_rate (float): Dropout ratio of value. Default: 0.0
|
661 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
662 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
663 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
664 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
665 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
666 |
+
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
667 |
+
img_range (float): Image range. 1. or 255.
|
668 |
+
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
669 |
+
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
|
670 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
671 |
+
"""
|
672 |
+
|
673 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
674 |
+
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
675 |
+
base_win_size=[8,8], mlp_ratio=2.,
|
676 |
+
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
|
677 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
678 |
+
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
|
679 |
+
hier_win_ratios=[0.5,1,2,4,6,8],
|
680 |
+
**kwargs):
|
681 |
+
super(HiT_SIR, self).__init__()
|
682 |
+
num_in_ch = in_chans
|
683 |
+
num_out_ch = in_chans
|
684 |
+
num_feat = 64
|
685 |
+
self.img_range = img_range
|
686 |
+
if in_chans == 3:
|
687 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
688 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
689 |
+
else:
|
690 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
691 |
+
self.upscale = upscale
|
692 |
+
self.upsampler = upsampler
|
693 |
+
self.base_win_size = base_win_size
|
694 |
+
|
695 |
+
#####################################################################################################
|
696 |
+
################################### 1, shallow feature extraction ###################################
|
697 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
698 |
+
|
699 |
+
#####################################################################################################
|
700 |
+
################################### 2, deep feature extraction ######################################
|
701 |
+
self.num_layers = len(depths)
|
702 |
+
self.embed_dim = embed_dim
|
703 |
+
self.ape = ape
|
704 |
+
self.patch_norm = patch_norm
|
705 |
+
self.num_features = embed_dim
|
706 |
+
self.mlp_ratio = mlp_ratio
|
707 |
+
|
708 |
+
# split image into non-overlapping patches
|
709 |
+
self.patch_embed = PatchEmbed(
|
710 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
711 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
712 |
+
num_patches = self.patch_embed.num_patches
|
713 |
+
patches_resolution = self.patch_embed.patches_resolution
|
714 |
+
self.patches_resolution = patches_resolution
|
715 |
+
|
716 |
+
# merge non-overlapping patches into image
|
717 |
+
self.patch_unembed = PatchUnEmbed(
|
718 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
719 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
720 |
+
|
721 |
+
# absolute position embedding
|
722 |
+
if self.ape:
|
723 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
724 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
725 |
+
|
726 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
727 |
+
|
728 |
+
# stochastic depth
|
729 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
730 |
+
|
731 |
+
# build Residual Hierarchical Transformer blocks (RHTB)
|
732 |
+
self.layers = nn.ModuleList()
|
733 |
+
for i_layer in range(self.num_layers):
|
734 |
+
layer = RHTB(dim=embed_dim,
|
735 |
+
input_resolution=(patches_resolution[0],
|
736 |
+
patches_resolution[1]),
|
737 |
+
depth=depths[i_layer],
|
738 |
+
num_heads=num_heads[i_layer],
|
739 |
+
base_win_size=base_win_size,
|
740 |
+
mlp_ratio=self.mlp_ratio,
|
741 |
+
drop=drop_rate, value_drop=value_drop_rate,
|
742 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
743 |
+
norm_layer=norm_layer,
|
744 |
+
downsample=None,
|
745 |
+
use_checkpoint=use_checkpoint,
|
746 |
+
img_size=img_size,
|
747 |
+
patch_size=patch_size,
|
748 |
+
resi_connection=resi_connection,
|
749 |
+
hier_win_ratios=hier_win_ratios
|
750 |
+
)
|
751 |
+
self.layers.append(layer)
|
752 |
+
self.norm = norm_layer(self.num_features)
|
753 |
+
|
754 |
+
# build the last conv layer in deep feature extraction
|
755 |
+
if resi_connection == '1conv':
|
756 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
757 |
+
elif resi_connection == '3conv':
|
758 |
+
# to save parameters and memory
|
759 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
760 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
761 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
762 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
763 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
764 |
+
|
765 |
+
#####################################################################################################
|
766 |
+
################################ 3, high quality image reconstruction ################################
|
767 |
+
if self.upsampler == 'pixelshuffle':
|
768 |
+
# for classical SR
|
769 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
770 |
+
nn.LeakyReLU(inplace=True))
|
771 |
+
self.upsample = Upsample(upscale, num_feat)
|
772 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
773 |
+
elif self.upsampler == 'pixelshuffledirect':
|
774 |
+
# for lightweight SR (to save parameters)
|
775 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
776 |
+
(patches_resolution[0], patches_resolution[1]))
|
777 |
+
elif self.upsampler == 'nearest+conv':
|
778 |
+
# for real-world SR (less artifacts)
|
779 |
+
assert self.upscale == 4, 'only support x4 now.'
|
780 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
781 |
+
nn.LeakyReLU(inplace=True))
|
782 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
783 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
784 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
785 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
786 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
787 |
+
else:
|
788 |
+
# for image denoising and JPEG compression artifact reduction
|
789 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
790 |
+
|
791 |
+
self.apply(self._init_weights)
|
792 |
+
|
793 |
+
def _init_weights(self, m):
|
794 |
+
if isinstance(m, nn.Linear):
|
795 |
+
trunc_normal_(m.weight, std=.02)
|
796 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
797 |
+
nn.init.constant_(m.bias, 0)
|
798 |
+
elif isinstance(m, nn.LayerNorm):
|
799 |
+
nn.init.constant_(m.bias, 0)
|
800 |
+
nn.init.constant_(m.weight, 1.0)
|
801 |
+
|
802 |
+
@torch.jit.ignore
|
803 |
+
def no_weight_decay(self):
|
804 |
+
return {'absolute_pos_embed'}
|
805 |
+
|
806 |
+
@torch.jit.ignore
|
807 |
+
def no_weight_decay_keywords(self):
|
808 |
+
return {'relative_position_bias_table'}
|
809 |
+
|
810 |
+
|
811 |
+
def forward_features(self, x):
|
812 |
+
x_size = (x.shape[2], x.shape[3])
|
813 |
+
x = self.patch_embed(x)
|
814 |
+
if self.ape:
|
815 |
+
x = x + self.absolute_pos_embed
|
816 |
+
x = self.pos_drop(x)
|
817 |
+
|
818 |
+
for layer in self.layers:
|
819 |
+
x = layer(x, x_size)
|
820 |
+
|
821 |
+
x = self.norm(x) # B L C
|
822 |
+
x = self.patch_unembed(x, x_size)
|
823 |
+
|
824 |
+
return x
|
825 |
+
|
826 |
+
def infer_image(self, image_path, cuda=True):
|
827 |
+
|
828 |
+
io_backend_opt = {'type':'disk'}
|
829 |
+
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
|
830 |
+
|
831 |
+
# load lq image
|
832 |
+
lq_path = image_path
|
833 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
834 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
835 |
+
|
836 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
837 |
+
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
|
838 |
+
|
839 |
+
if cuda:
|
840 |
+
x= x.cuda()
|
841 |
+
|
842 |
+
out = self(x)
|
843 |
+
|
844 |
+
if cuda:
|
845 |
+
out = out.cpu()
|
846 |
+
|
847 |
+
out = tensor2img(out)
|
848 |
+
|
849 |
+
return out
|
850 |
+
|
851 |
+
def forward(self, x):
|
852 |
+
H, W = x.shape[2:]
|
853 |
+
|
854 |
+
self.mean = self.mean.type_as(x)
|
855 |
+
x = (x - self.mean) * self.img_range
|
856 |
+
|
857 |
+
if self.upsampler == 'pixelshuffle':
|
858 |
+
# for classical SR
|
859 |
+
x = self.conv_first(x)
|
860 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
861 |
+
x = self.conv_before_upsample(x)
|
862 |
+
x = self.conv_last(self.upsample(x))
|
863 |
+
elif self.upsampler == 'pixelshuffledirect':
|
864 |
+
# for lightweight SR
|
865 |
+
x = self.conv_first(x)
|
866 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
867 |
+
x = self.upsample(x)
|
868 |
+
elif self.upsampler == 'nearest+conv':
|
869 |
+
# for real-world SR
|
870 |
+
x = self.conv_first(x)
|
871 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
872 |
+
x = self.conv_before_upsample(x)
|
873 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
874 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
875 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
876 |
+
else:
|
877 |
+
# for image denoising and JPEG compression artifact reduction
|
878 |
+
x_first = self.conv_first(x)
|
879 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
880 |
+
x = x + self.conv_last(res)
|
881 |
+
|
882 |
+
x = x / self.img_range + self.mean
|
883 |
+
|
884 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
885 |
+
|
886 |
+
|
887 |
+
if __name__ == '__main__':
|
888 |
+
upscale = 4
|
889 |
+
base_win_size = [8, 8]
|
890 |
+
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
|
891 |
+
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
|
892 |
+
|
893 |
+
## HiT-SIR
|
894 |
+
model = HiT_SIR(upscale=4, img_size=(height, width),
|
895 |
+
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
|
896 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
897 |
+
|
898 |
+
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
899 |
+
print("params: ", params_num)
|
900 |
+
|
hit_sng_arch.py
ADDED
@@ -0,0 +1,1132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint as checkpoint
|
6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_, _assert
|
7 |
+
from torchvision.transforms import functional as TF
|
8 |
+
from timm.models.fx_features import register_notrace_function
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from einops import rearrange
|
12 |
+
from huggingface_hub import PyTorchModelHubMixin
|
13 |
+
from utils import FileClient, imfrombytes, img2tensor, tensor2img
|
14 |
+
|
15 |
+
class DFE(nn.Module):
|
16 |
+
""" Dual Feature Extraction
|
17 |
+
Args:
|
18 |
+
in_features (int): Number of input channels.
|
19 |
+
out_features (int): Number of output channels.
|
20 |
+
"""
|
21 |
+
def __init__(self, in_features, out_features):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.out_features = out_features
|
25 |
+
|
26 |
+
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
|
27 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
28 |
+
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
|
29 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
30 |
+
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
|
31 |
+
|
32 |
+
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
|
33 |
+
|
34 |
+
def forward(self, x, x_size):
|
35 |
+
|
36 |
+
B, L, C = x.shape
|
37 |
+
H, W = x_size
|
38 |
+
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
|
39 |
+
x = self.conv(x) * self.linear(x)
|
40 |
+
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
|
41 |
+
|
42 |
+
return x
|
43 |
+
|
44 |
+
class Mlp(nn.Module):
|
45 |
+
""" MLP-based Feed-Forward Network
|
46 |
+
Args:
|
47 |
+
in_features (int): Number of input channels.
|
48 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
49 |
+
out_features (int | None): Number of output channels. Default: None
|
50 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
51 |
+
drop (float): Dropout rate. Default: 0.0
|
52 |
+
"""
|
53 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
54 |
+
super().__init__()
|
55 |
+
out_features = out_features or in_features
|
56 |
+
hidden_features = hidden_features or in_features
|
57 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
58 |
+
self.act = act_layer()
|
59 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
60 |
+
self.drop = nn.Dropout(drop)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x = self.fc1(x)
|
64 |
+
x = self.act(x)
|
65 |
+
x = self.drop(x)
|
66 |
+
x = self.fc2(x)
|
67 |
+
x = self.drop(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
|
71 |
+
def window_partition(x, window_size):
|
72 |
+
"""
|
73 |
+
Args:
|
74 |
+
x: (B, H, W, C)
|
75 |
+
window_size (int): window size
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
windows: (num_windows*B, window_size, window_size, C)
|
79 |
+
"""
|
80 |
+
B, H, W, C = x.shape
|
81 |
+
wh, ww = H//window_size, W//window_size
|
82 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
83 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
84 |
+
return windows, (wh, ww)
|
85 |
+
|
86 |
+
@register_notrace_function # reason: int argument is a Proxy
|
87 |
+
def window_unpartition(windows, num_windows):
|
88 |
+
"""
|
89 |
+
Args:
|
90 |
+
windows: [B*wh*ww, WH, WW, D]
|
91 |
+
num_windows (tuple[int]): The height and width of the window.
|
92 |
+
Returns:
|
93 |
+
x: [B, ph, pw, D]
|
94 |
+
"""
|
95 |
+
x = rearrange(windows, '(p h w) wh ww c -> p (h wh) (w ww) c', h=num_windows[0], w=num_windows[1])
|
96 |
+
return x.contiguous()
|
97 |
+
|
98 |
+
def window_reverse(windows, window_size, H, W):
|
99 |
+
"""
|
100 |
+
Args:
|
101 |
+
windows: (num_windows*B, window_size, window_size, C)
|
102 |
+
window_size (tuple): Window size
|
103 |
+
H (int): Height of image
|
104 |
+
W (int): Width of image
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
x: (B, H, W, C)
|
108 |
+
"""
|
109 |
+
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
|
110 |
+
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
111 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
112 |
+
return x
|
113 |
+
|
114 |
+
class DynamicPosBias(nn.Module):
|
115 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
116 |
+
""" Dynamic Relative Position Bias.
|
117 |
+
Args:
|
118 |
+
dim (int): Number of input channels.
|
119 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
120 |
+
residual (bool): If True, use residual strage to connect conv.
|
121 |
+
"""
|
122 |
+
def __init__(self, dim, num_heads, residual):
|
123 |
+
super().__init__()
|
124 |
+
self.residual = residual
|
125 |
+
self.num_heads = num_heads
|
126 |
+
self.pos_dim = dim // 4
|
127 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
128 |
+
self.pos1 = nn.Sequential(
|
129 |
+
nn.LayerNorm(self.pos_dim),
|
130 |
+
nn.ReLU(inplace=True),
|
131 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
132 |
+
)
|
133 |
+
self.pos2 = nn.Sequential(
|
134 |
+
nn.LayerNorm(self.pos_dim),
|
135 |
+
nn.ReLU(inplace=True),
|
136 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
137 |
+
)
|
138 |
+
self.pos3 = nn.Sequential(
|
139 |
+
nn.LayerNorm(self.pos_dim),
|
140 |
+
nn.ReLU(inplace=True),
|
141 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
142 |
+
)
|
143 |
+
def forward(self, biases):
|
144 |
+
if self.residual:
|
145 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
146 |
+
pos = pos + self.pos1(pos)
|
147 |
+
pos = pos + self.pos2(pos)
|
148 |
+
pos = self.pos3(pos)
|
149 |
+
else:
|
150 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
151 |
+
return pos
|
152 |
+
|
153 |
+
class SCC(nn.Module):
|
154 |
+
""" Spatial-Channel Correlation.
|
155 |
+
Args:
|
156 |
+
dim (int): Number of input channels.
|
157 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
158 |
+
window_size (tuple[int]): The height and width of the window.
|
159 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
160 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
161 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
|
165 |
+
|
166 |
+
super().__init__()
|
167 |
+
# parameters
|
168 |
+
self.dim = dim
|
169 |
+
self.window_size = window_size
|
170 |
+
self.num_heads = num_heads
|
171 |
+
|
172 |
+
# feature projection
|
173 |
+
head_dim = dim // (2*num_heads)
|
174 |
+
if dim % (2*num_heads) > 0:
|
175 |
+
head_dim = head_dim + 1
|
176 |
+
self.attn_dim = head_dim * 2 * num_heads
|
177 |
+
self.qv = DFE(dim, self.attn_dim)
|
178 |
+
self.proj = nn.Linear(self.attn_dim, dim)
|
179 |
+
|
180 |
+
# dropout
|
181 |
+
self.value_drop = nn.Dropout(value_drop)
|
182 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
183 |
+
|
184 |
+
# base window size
|
185 |
+
min_h = min(self.window_size[0], base_win_size[0])
|
186 |
+
min_w = min(self.window_size[1], base_win_size[1])
|
187 |
+
self.base_win_size = (min_h, min_w)
|
188 |
+
|
189 |
+
# normalization factor and spatial linear layer for S-SC
|
190 |
+
self.scale = head_dim
|
191 |
+
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
|
192 |
+
|
193 |
+
# NGram window partition without shifting
|
194 |
+
self.ngram_window_partition = NGramWindowPartition(dim, window_size, 2, num_heads, shift_size=0)
|
195 |
+
|
196 |
+
# define a parameter table of relative position bias
|
197 |
+
self.H_sp, self.W_sp = self.window_size
|
198 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
199 |
+
|
200 |
+
def spatial_linear_projection(self, x):
|
201 |
+
B, num_h, L, C = x.shape
|
202 |
+
H, W = self.window_size
|
203 |
+
map_H, map_W = self.base_win_size
|
204 |
+
|
205 |
+
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
|
206 |
+
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
|
207 |
+
return x
|
208 |
+
|
209 |
+
def spatial_self_correlation(self, q, v):
|
210 |
+
|
211 |
+
B, num_head, L, C = q.shape
|
212 |
+
|
213 |
+
# spatial projection
|
214 |
+
v = self.spatial_linear_projection(v)
|
215 |
+
|
216 |
+
# compute correlation map
|
217 |
+
corr_map = (q @ v.transpose(-2,-1)) / self.scale
|
218 |
+
|
219 |
+
# add relative position bias
|
220 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
|
221 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
|
222 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
223 |
+
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
224 |
+
pos = self.pos(rpe_biases)
|
225 |
+
|
226 |
+
# select position bias
|
227 |
+
coords_h = torch.arange(self.H_sp, device=v.device)
|
228 |
+
coords_w = torch.arange(self.W_sp, device=v.device)
|
229 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
230 |
+
coords_flatten = torch.flatten(coords, 1)
|
231 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
232 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
233 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
234 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
235 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
236 |
+
relative_position_index = relative_coords.sum(-1)
|
237 |
+
relative_position_bias = pos[relative_position_index.view(-1)].view(
|
238 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
239 |
+
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
|
240 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
|
241 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
242 |
+
corr_map = corr_map + relative_position_bias.unsqueeze(0)
|
243 |
+
|
244 |
+
# transformation
|
245 |
+
v_drop = self.value_drop(v)
|
246 |
+
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
|
247 |
+
|
248 |
+
return x
|
249 |
+
|
250 |
+
def channel_self_correlation(self, q, v):
|
251 |
+
|
252 |
+
B, num_head, L, C = q.shape
|
253 |
+
|
254 |
+
# apply single head strategy
|
255 |
+
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
256 |
+
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
257 |
+
|
258 |
+
# compute correlation map
|
259 |
+
corr_map = (q.transpose(-2,-1) @ v) / L
|
260 |
+
|
261 |
+
# transformation
|
262 |
+
v_drop = self.value_drop(v)
|
263 |
+
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
|
264 |
+
|
265 |
+
return x
|
266 |
+
|
267 |
+
def forward(self, x):
|
268 |
+
"""
|
269 |
+
Args:
|
270 |
+
x: input features with shape of (B, H, W, C)
|
271 |
+
"""
|
272 |
+
xB,xH,xW,xC = x.shape
|
273 |
+
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
|
274 |
+
|
275 |
+
# window partition
|
276 |
+
qv = self.ngram_window_partition(qv)
|
277 |
+
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
|
278 |
+
|
279 |
+
# qv splitting
|
280 |
+
B, L, C = qv.shape
|
281 |
+
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
|
282 |
+
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
|
283 |
+
|
284 |
+
# spatial self-correlation (S-SC)
|
285 |
+
x_spatial = self.spatial_self_correlation(q, v)
|
286 |
+
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
|
287 |
+
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
|
288 |
+
|
289 |
+
# channel self-correlation (C-SC)
|
290 |
+
x_channel = self.channel_self_correlation(q, v)
|
291 |
+
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
|
292 |
+
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
|
293 |
+
|
294 |
+
# spatial-channel information fusion
|
295 |
+
x = torch.cat([x_spatial, x_channel], -1)
|
296 |
+
x = self.proj_drop(self.proj(x))
|
297 |
+
|
298 |
+
return x
|
299 |
+
|
300 |
+
def extra_repr(self) -> str:
|
301 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
302 |
+
|
303 |
+
class NGramWindowAttention(nn.Module):
|
304 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias for NGram attention.
|
305 |
+
It supports both of shifted and non-shifted window.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
dim (int): Number of input channels.
|
309 |
+
window_size (tuple[int]): The height and width of the window.
|
310 |
+
num_heads (int): Number of attention heads.
|
311 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
312 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
313 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
314 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
315 |
+
"""
|
316 |
+
|
317 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
318 |
+
|
319 |
+
super().__init__()
|
320 |
+
self.dim = dim
|
321 |
+
self.window_size = window_size # Wh, Ww
|
322 |
+
self.num_heads = num_heads
|
323 |
+
head_dim = dim // num_heads
|
324 |
+
self.scale = qk_scale or head_dim ** -0.5
|
325 |
+
|
326 |
+
# define a parameter table of relative position bias
|
327 |
+
self.relative_position_bias_table = nn.Parameter(
|
328 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
329 |
+
|
330 |
+
# get pair-wise relative position index for each token inside the window
|
331 |
+
coords_h = torch.arange(self.window_size[0])
|
332 |
+
coords_w = torch.arange(self.window_size[1])
|
333 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
334 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
335 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
336 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
337 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
338 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
339 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
340 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
341 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
342 |
+
|
343 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
344 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
345 |
+
self.proj = nn.Linear(dim, dim)
|
346 |
+
|
347 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
348 |
+
|
349 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
350 |
+
self.softmax = nn.Softmax(dim=-1)
|
351 |
+
|
352 |
+
def forward(self, x, mask=None):
|
353 |
+
"""
|
354 |
+
Args:
|
355 |
+
x: input features with shape of (num_windows*B, N, C)
|
356 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
357 |
+
"""
|
358 |
+
B_, N, C = x.shape
|
359 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
360 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
361 |
+
|
362 |
+
q = q * self.scale
|
363 |
+
attn = (q @ k.transpose(-2, -1))
|
364 |
+
|
365 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
366 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
367 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
368 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
369 |
+
|
370 |
+
if mask is not None:
|
371 |
+
nW = mask.shape[0]
|
372 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
373 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
374 |
+
attn = self.softmax(attn)
|
375 |
+
else:
|
376 |
+
attn = self.softmax(attn)
|
377 |
+
|
378 |
+
attn = self.attn_drop(attn)
|
379 |
+
|
380 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
381 |
+
x = self.proj(x)
|
382 |
+
x = self.proj_drop(x)
|
383 |
+
return x
|
384 |
+
|
385 |
+
def extra_repr(self) -> str:
|
386 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
387 |
+
|
388 |
+
class NGramContext(nn.Module):
|
389 |
+
'''
|
390 |
+
Args:
|
391 |
+
dim (int): Number of input channels.
|
392 |
+
window_size (int or tuple[int]): The height and width of the window.
|
393 |
+
ngram (int): How much windows(or patches) to see.
|
394 |
+
ngram_num_heads (int):
|
395 |
+
padding_mode (str, optional): How to pad. Default: seq_refl_win_pad
|
396 |
+
Options: ['seq_refl_win_pad', 'zero_pad']
|
397 |
+
'''
|
398 |
+
def __init__(self, dim, window_size, ngram, ngram_num_heads, padding_mode='seq_refl_win_pad'):
|
399 |
+
super(NGramContext, self).__init__()
|
400 |
+
_assert(padding_mode in ['seq_refl_win_pad', 'zero_pad'], "padding mode should be 'seq_refl_win_pad' or 'zero_pad'!!")
|
401 |
+
|
402 |
+
self.dim = dim
|
403 |
+
self.window_size = to_2tuple(window_size)
|
404 |
+
self.ngram = ngram
|
405 |
+
self.padding_mode = padding_mode
|
406 |
+
|
407 |
+
# to alleviate parameter expansion with window sizes
|
408 |
+
self.unigram_embed = nn.Conv2d(2, 1,
|
409 |
+
kernel_size=(self.window_size[0], self.window_size[1]),
|
410 |
+
stride=self.window_size, padding=0, groups=1)
|
411 |
+
|
412 |
+
self.ngram_attn = NGramWindowAttention(dim=dim//2, num_heads=ngram_num_heads, window_size=(ngram, ngram))
|
413 |
+
self.avg_pool = nn.AvgPool2d(ngram)
|
414 |
+
self.merge = nn.Conv2d(dim, dim, 1, 1, 0)
|
415 |
+
|
416 |
+
def seq_refl_win_pad(self, x, back=False):
|
417 |
+
if self.ngram == 1: return x
|
418 |
+
x = TF.pad(x, (0,0,self.ngram-1,self.ngram-1)) if not back else TF.pad(x, (self.ngram-1,self.ngram-1,0,0))
|
419 |
+
if self.padding_mode == 'zero_pad':
|
420 |
+
return x
|
421 |
+
if not back:
|
422 |
+
(start_h, start_w), (end_h, end_w) = to_2tuple(-2*self.ngram+1), to_2tuple(-self.ngram)
|
423 |
+
# pad lower
|
424 |
+
x[:,:,-(self.ngram-1):,:] = x[:,:,start_h:end_h,:]
|
425 |
+
# pad right
|
426 |
+
x[:,:,:,-(self.ngram-1):] = x[:,:,:,start_w:end_w]
|
427 |
+
else:
|
428 |
+
(start_h, start_w), (end_h, end_w) = to_2tuple(self.ngram), to_2tuple(2*self.ngram-1)
|
429 |
+
# pad upper
|
430 |
+
x[:,:,:self.ngram-1,:] = x[:,:,start_h:end_h,:]
|
431 |
+
# pad left
|
432 |
+
x[:,:,:,:self.ngram-1] = x[:,:,:,start_w:end_w]
|
433 |
+
|
434 |
+
return x
|
435 |
+
|
436 |
+
def sliding_window_attention(self, unigram):
|
437 |
+
slide = unigram.unfold(3, self.ngram, 1).unfold(2, self.ngram, 1)
|
438 |
+
slide = rearrange(slide, 'b c h w ww hh -> b (h hh) (w ww) c') # [B, 2(wh+ngram-2), 2(ww+ngram-2), D/2]
|
439 |
+
slide, num_windows = window_partition(slide, self.ngram) # [B*wh*ww, ngram, ngram, D/2], (wh, ww)
|
440 |
+
slide = slide.view(-1, self.ngram*self.ngram, self.dim//2) # [B*wh*ww, ngram*ngram, D/2]
|
441 |
+
|
442 |
+
context = self.ngram_attn(slide).view(-1, self.ngram, self.ngram, self.dim//2) # [B*wh*ww, ngram, ngram, D/2]
|
443 |
+
|
444 |
+
context = window_unpartition(context, num_windows) # [B, wh*ngram, ww*ngram, D/2]
|
445 |
+
context = rearrange(context, 'b h w d -> b d h w') # [B, D/2, wh*ngram, ww*ngram]
|
446 |
+
context = self.avg_pool(context) # [B, D/2, wh, ww]
|
447 |
+
return context
|
448 |
+
|
449 |
+
def forward(self, x):
|
450 |
+
B, ph, pw, D = x.size()
|
451 |
+
x = rearrange(x, 'b ph pw d -> b d ph pw') # [B, D, ph, pw]
|
452 |
+
x = x.contiguous().view(B*(D//2),2,ph,pw)
|
453 |
+
unigram = self.unigram_embed(x).view(B, D//2, ph//self.window_size[0], pw//self.window_size[1])
|
454 |
+
|
455 |
+
unigram_forward_pad = self.seq_refl_win_pad(unigram, False) # [B, D/2, wh+ngram-1, ww+ngram-1]
|
456 |
+
unigram_backward_pad = self.seq_refl_win_pad(unigram, True) # [B, D/2, wh+ngram-1, ww+ngram-1]
|
457 |
+
|
458 |
+
context_forward = self.sliding_window_attention(unigram_forward_pad) # [B, D/2, wh, ww]
|
459 |
+
context_backward = self.sliding_window_attention(unigram_backward_pad) # [B, D/2, wh, ww]
|
460 |
+
|
461 |
+
context_bidirect = torch.cat([context_forward, context_backward], dim=1) # [B, D, wh, ww]
|
462 |
+
context_bidirect = self.merge(context_bidirect) # [B, D, wh, ww]
|
463 |
+
context_bidirect = rearrange(context_bidirect, 'b d h w -> b h w d') # [B, wh, ww, D]
|
464 |
+
|
465 |
+
return context_bidirect.unsqueeze(-2).unsqueeze(-2).contiguous() # [B, wh, ww, 1, 1, D]
|
466 |
+
|
467 |
+
class NGramWindowPartition(nn.Module):
|
468 |
+
"""
|
469 |
+
Args:
|
470 |
+
dim (int): Number of input channels.
|
471 |
+
window_size (int): The height and width of the window.
|
472 |
+
ngram (int): How much windows to see as context.
|
473 |
+
ngram_num_heads (int):
|
474 |
+
shift_size (int, optional): Shift size for SW-MSA. Default: 0
|
475 |
+
"""
|
476 |
+
def __init__(self, dim, window_size, ngram, ngram_num_heads, shift_size=0):
|
477 |
+
super(NGramWindowPartition, self).__init__()
|
478 |
+
self.window_size = window_size[0]
|
479 |
+
self.ngram = ngram
|
480 |
+
self.shift_size = shift_size
|
481 |
+
|
482 |
+
self.ngram_context = NGramContext(dim, window_size, ngram, ngram_num_heads, padding_mode='seq_refl_win_pad')
|
483 |
+
|
484 |
+
def forward(self, x):
|
485 |
+
B, ph, pw, D = x.size()
|
486 |
+
wh, ww = ph//self.window_size, pw//self.window_size # number of windows (height, width)
|
487 |
+
_assert(0 not in [wh, ww], "feature map size should be larger than window size!")
|
488 |
+
|
489 |
+
context = self.ngram_context(x) # [B, wh, ww, 1, 1, D]
|
490 |
+
|
491 |
+
windows = rearrange(x, 'b (h wh) (w ww) c -> b h w wh ww c',
|
492 |
+
wh=self.window_size, ww=self.window_size).contiguous() # [B, wh, ww, WH, WW, D]. semi window partitioning
|
493 |
+
windows+=context # [B, wh, ww, WH, WW, D]. inject context
|
494 |
+
|
495 |
+
# Cyclic Shift
|
496 |
+
if self.shift_size>0:
|
497 |
+
x = rearrange(windows, 'b h w wh ww c -> b (h wh) (w ww) c').contiguous() # [B, ph, pw, D]. re-patchfying
|
498 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) # [B, ph, pw, D]. cyclic shift
|
499 |
+
windows = rearrange(shifted_x, 'b (h wh) (w ww) c -> b h w wh ww c',
|
500 |
+
wh=self.window_size, ww=self.window_size).contiguous() # [B, wh, ww, WH, WW, D]. re-semi window partitioning
|
501 |
+
windows = rearrange(windows, 'b h w wh ww c -> (b h w) wh ww c').contiguous() # [B*wh*ww, WH, WW, D]. window partitioning
|
502 |
+
|
503 |
+
return windows
|
504 |
+
|
505 |
+
|
506 |
+
class HierarchicalTransformerBlock(nn.Module):
|
507 |
+
""" Hierarchical Transformer Block.
|
508 |
+
Args:
|
509 |
+
dim (int): Number of input channels.
|
510 |
+
input_resolution (tuple[int]): Input resulotion.
|
511 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
512 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
513 |
+
window_size (tuple[int]): The height and width of the window.
|
514 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
515 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
516 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
517 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
518 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
519 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
520 |
+
"""
|
521 |
+
|
522 |
+
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
|
523 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
|
524 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
525 |
+
super().__init__()
|
526 |
+
self.dim = dim
|
527 |
+
self.input_resolution = input_resolution
|
528 |
+
self.num_heads = num_heads
|
529 |
+
self.window_size = window_size
|
530 |
+
self.mlp_ratio = mlp_ratio
|
531 |
+
|
532 |
+
# check window size
|
533 |
+
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
|
534 |
+
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
535 |
+
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
536 |
+
|
537 |
+
|
538 |
+
self.norm1 = norm_layer(dim)
|
539 |
+
self.correlation = SCC(
|
540 |
+
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
|
541 |
+
value_drop=value_drop, proj_drop=drop)
|
542 |
+
|
543 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
544 |
+
self.norm2 = norm_layer(dim)
|
545 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
546 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
547 |
+
|
548 |
+
def check_image_size(self, x, win_size):
|
549 |
+
x = x.permute(0,3,1,2).contiguous()
|
550 |
+
_, _, h, w = x.size()
|
551 |
+
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
|
552 |
+
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
|
553 |
+
|
554 |
+
if mod_pad_h >= h or mod_pad_w >= w:
|
555 |
+
pad_h, pad_w = h-1, w-1
|
556 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
|
557 |
+
else:
|
558 |
+
pad_h, pad_w = 0, 0
|
559 |
+
|
560 |
+
mod_pad_h = mod_pad_h - pad_h
|
561 |
+
mod_pad_w = mod_pad_w - pad_w
|
562 |
+
|
563 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
564 |
+
x = x.permute(0,2,3,1).contiguous()
|
565 |
+
return x
|
566 |
+
|
567 |
+
def forward(self, x, x_size, win_size):
|
568 |
+
H, W = x_size
|
569 |
+
B, L, C = x.shape
|
570 |
+
|
571 |
+
shortcut = x
|
572 |
+
x = x.view(B, H, W, C)
|
573 |
+
|
574 |
+
# padding
|
575 |
+
x = self.check_image_size(x, (win_size[0]*2, win_size[1]*2))
|
576 |
+
_, H_pad, W_pad, _ = x.shape # shape after padding
|
577 |
+
|
578 |
+
x = self.correlation(x)
|
579 |
+
|
580 |
+
# unpad
|
581 |
+
x = x[:, :H, :W, :].contiguous()
|
582 |
+
|
583 |
+
# norm
|
584 |
+
x = x.view(B, H * W, C)
|
585 |
+
x = self.norm1(x)
|
586 |
+
|
587 |
+
# FFN
|
588 |
+
x = shortcut + self.drop_path(x)
|
589 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
590 |
+
|
591 |
+
return x
|
592 |
+
|
593 |
+
def extra_repr(self) -> str:
|
594 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
595 |
+
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
596 |
+
|
597 |
+
|
598 |
+
class PatchMerging(nn.Module):
|
599 |
+
""" Patch Merging Layer.
|
600 |
+
Args:
|
601 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
602 |
+
dim (int): Number of input channels.
|
603 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
604 |
+
"""
|
605 |
+
|
606 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
607 |
+
super().__init__()
|
608 |
+
self.input_resolution = input_resolution
|
609 |
+
self.dim = dim
|
610 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
611 |
+
self.norm = norm_layer(4 * dim)
|
612 |
+
|
613 |
+
def forward(self, x):
|
614 |
+
"""
|
615 |
+
x: B, H*W, C
|
616 |
+
"""
|
617 |
+
H, W = self.input_resolution
|
618 |
+
B, L, C = x.shape
|
619 |
+
assert L == H * W, "input feature has wrong size"
|
620 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
621 |
+
|
622 |
+
x = x.view(B, H, W, C)
|
623 |
+
|
624 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
625 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
626 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
627 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
628 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
629 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
630 |
+
|
631 |
+
x = self.norm(x)
|
632 |
+
x = self.reduction(x)
|
633 |
+
|
634 |
+
return x
|
635 |
+
|
636 |
+
def extra_repr(self) -> str:
|
637 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
638 |
+
|
639 |
+
|
640 |
+
class BasicLayer(nn.Module):
|
641 |
+
""" A basic Hierarchical Transformer layer for one stage.
|
642 |
+
|
643 |
+
Args:
|
644 |
+
dim (int): Number of input channels.
|
645 |
+
input_resolution (tuple[int]): Input resolution.
|
646 |
+
depth (int): Number of blocks.
|
647 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
648 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
649 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
650 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
651 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
652 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
653 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
654 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
655 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
656 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
657 |
+
"""
|
658 |
+
|
659 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
660 |
+
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
|
661 |
+
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
|
662 |
+
|
663 |
+
super().__init__()
|
664 |
+
self.dim = dim
|
665 |
+
self.input_resolution = input_resolution
|
666 |
+
self.depth = depth
|
667 |
+
self.use_checkpoint = use_checkpoint
|
668 |
+
|
669 |
+
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
|
670 |
+
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
|
671 |
+
|
672 |
+
# build blocks
|
673 |
+
self.blocks = nn.ModuleList([
|
674 |
+
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
|
675 |
+
num_heads=num_heads,
|
676 |
+
base_win_size=base_win_size,
|
677 |
+
window_size=(self.win_hs[i], self.win_ws[i]),
|
678 |
+
mlp_ratio=mlp_ratio,
|
679 |
+
drop=drop, value_drop=value_drop,
|
680 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
681 |
+
norm_layer=norm_layer)
|
682 |
+
for i in range(depth)])
|
683 |
+
|
684 |
+
# patch merging layer
|
685 |
+
if downsample is not None:
|
686 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
687 |
+
else:
|
688 |
+
self.downsample = None
|
689 |
+
|
690 |
+
def forward(self, x, x_size):
|
691 |
+
|
692 |
+
i = 0
|
693 |
+
for blk in self.blocks:
|
694 |
+
if self.use_checkpoint:
|
695 |
+
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
|
696 |
+
else:
|
697 |
+
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
|
698 |
+
i = i + 1
|
699 |
+
|
700 |
+
if self.downsample is not None:
|
701 |
+
x = self.downsample(x)
|
702 |
+
return x
|
703 |
+
|
704 |
+
def extra_repr(self) -> str:
|
705 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
706 |
+
|
707 |
+
|
708 |
+
class RHTB(nn.Module):
|
709 |
+
"""Residual Hierarchical Transformer Block (RHTB).
|
710 |
+
Args:
|
711 |
+
dim (int): Number of input channels.
|
712 |
+
input_resolution (tuple[int]): Input resolution.
|
713 |
+
depth (int): Number of blocks.
|
714 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
715 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
716 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
717 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
718 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
719 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
720 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
721 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
722 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
723 |
+
img_size: Input image size.
|
724 |
+
patch_size: Patch size.
|
725 |
+
resi_connection: The convolutional block before residual connection.
|
726 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
727 |
+
"""
|
728 |
+
|
729 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
730 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
731 |
+
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
|
732 |
+
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
|
733 |
+
super(RHTB, self).__init__()
|
734 |
+
|
735 |
+
self.dim = dim
|
736 |
+
self.input_resolution = input_resolution
|
737 |
+
|
738 |
+
self.residual_group = BasicLayer(dim=dim,
|
739 |
+
input_resolution=input_resolution,
|
740 |
+
depth=depth,
|
741 |
+
num_heads=num_heads,
|
742 |
+
base_win_size=base_win_size,
|
743 |
+
mlp_ratio=mlp_ratio,
|
744 |
+
drop=drop, value_drop=value_drop,
|
745 |
+
drop_path=drop_path,
|
746 |
+
norm_layer=norm_layer,
|
747 |
+
downsample=downsample,
|
748 |
+
use_checkpoint=use_checkpoint,
|
749 |
+
hier_win_ratios=hier_win_ratios)
|
750 |
+
|
751 |
+
if resi_connection == '1conv':
|
752 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
753 |
+
elif resi_connection == '3conv':
|
754 |
+
# to save parameters and memory
|
755 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
756 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
757 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
758 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
759 |
+
|
760 |
+
self.patch_embed = PatchEmbed(
|
761 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
762 |
+
norm_layer=None)
|
763 |
+
|
764 |
+
self.patch_unembed = PatchUnEmbed(
|
765 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
766 |
+
norm_layer=None)
|
767 |
+
|
768 |
+
def forward(self, x, x_size):
|
769 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
770 |
+
|
771 |
+
|
772 |
+
class PatchEmbed(nn.Module):
|
773 |
+
r""" Image to Patch Embedding
|
774 |
+
|
775 |
+
Args:
|
776 |
+
img_size (int): Image size. Default: 224.
|
777 |
+
patch_size (int): Patch token size. Default: 4.
|
778 |
+
in_chans (int): Number of input image channels. Default: 3.
|
779 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
780 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
781 |
+
"""
|
782 |
+
|
783 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
784 |
+
super().__init__()
|
785 |
+
img_size = to_2tuple(img_size)
|
786 |
+
patch_size = to_2tuple(patch_size)
|
787 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
788 |
+
self.img_size = img_size
|
789 |
+
self.patch_size = patch_size
|
790 |
+
self.patches_resolution = patches_resolution
|
791 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
792 |
+
|
793 |
+
self.in_chans = in_chans
|
794 |
+
self.embed_dim = embed_dim
|
795 |
+
|
796 |
+
if norm_layer is not None:
|
797 |
+
self.norm = norm_layer(embed_dim)
|
798 |
+
else:
|
799 |
+
self.norm = None
|
800 |
+
|
801 |
+
def forward(self, x):
|
802 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
803 |
+
if self.norm is not None:
|
804 |
+
x = self.norm(x)
|
805 |
+
return x
|
806 |
+
|
807 |
+
|
808 |
+
class PatchUnEmbed(nn.Module):
|
809 |
+
r""" Image to Patch Unembedding
|
810 |
+
|
811 |
+
Args:
|
812 |
+
img_size (int): Image size. Default: 224.
|
813 |
+
patch_size (int): Patch token size. Default: 4.
|
814 |
+
in_chans (int): Number of input image channels. Default: 3.
|
815 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
816 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
817 |
+
"""
|
818 |
+
|
819 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
820 |
+
super().__init__()
|
821 |
+
img_size = to_2tuple(img_size)
|
822 |
+
patch_size = to_2tuple(patch_size)
|
823 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
824 |
+
self.img_size = img_size
|
825 |
+
self.patch_size = patch_size
|
826 |
+
self.patches_resolution = patches_resolution
|
827 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
828 |
+
|
829 |
+
self.in_chans = in_chans
|
830 |
+
self.embed_dim = embed_dim
|
831 |
+
|
832 |
+
def forward(self, x, x_size):
|
833 |
+
B, HW, C = x.shape
|
834 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
835 |
+
return x
|
836 |
+
|
837 |
+
|
838 |
+
class Upsample(nn.Sequential):
|
839 |
+
"""Upsample module.
|
840 |
+
|
841 |
+
Args:
|
842 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
843 |
+
num_feat (int): Channel number of intermediate features.
|
844 |
+
"""
|
845 |
+
|
846 |
+
def __init__(self, scale, num_feat):
|
847 |
+
m = []
|
848 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
849 |
+
for _ in range(int(math.log(scale, 2))):
|
850 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
851 |
+
m.append(nn.PixelShuffle(2))
|
852 |
+
elif scale == 3:
|
853 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
854 |
+
m.append(nn.PixelShuffle(3))
|
855 |
+
else:
|
856 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
857 |
+
super(Upsample, self).__init__(*m)
|
858 |
+
|
859 |
+
|
860 |
+
class UpsampleOneStep(nn.Sequential):
|
861 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
862 |
+
Used in lightweight SR to save parameters.
|
863 |
+
|
864 |
+
Args:
|
865 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
866 |
+
num_feat (int): Channel number of intermediate features.
|
867 |
+
|
868 |
+
"""
|
869 |
+
|
870 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
871 |
+
self.num_feat = num_feat
|
872 |
+
self.input_resolution = input_resolution
|
873 |
+
m = []
|
874 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
875 |
+
m.append(nn.PixelShuffle(scale))
|
876 |
+
super(UpsampleOneStep, self).__init__(*m)
|
877 |
+
|
878 |
+
|
879 |
+
class HiT_SNG(nn.Module, PyTorchModelHubMixin):
|
880 |
+
""" HiT-SNG network.
|
881 |
+
|
882 |
+
Args:
|
883 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
884 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
885 |
+
in_chans (int): Number of input image channels. Default: 3
|
886 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
887 |
+
depths (tuple(int)): Depth of each Transformer block.
|
888 |
+
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
|
889 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
890 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
891 |
+
drop_rate (float): Dropout rate. Default: 0
|
892 |
+
value_drop_rate (float): Dropout ratio of value. Default: 0.0
|
893 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
894 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
895 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
896 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
897 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
898 |
+
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
899 |
+
img_range (float): Image range. 1. or 255.
|
900 |
+
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
901 |
+
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
|
902 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
903 |
+
"""
|
904 |
+
|
905 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
906 |
+
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
907 |
+
base_win_size=[8,8], mlp_ratio=2.,
|
908 |
+
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
|
909 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
910 |
+
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
|
911 |
+
hier_win_ratios=[0.5,1,2,4,6,8],
|
912 |
+
**kwargs):
|
913 |
+
super(HiT_SNG, self).__init__()
|
914 |
+
num_in_ch = in_chans
|
915 |
+
num_out_ch = in_chans
|
916 |
+
num_feat = 64
|
917 |
+
self.img_range = img_range
|
918 |
+
if in_chans == 3:
|
919 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
920 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
921 |
+
else:
|
922 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
923 |
+
self.upscale = upscale
|
924 |
+
self.upsampler = upsampler
|
925 |
+
self.base_win_size = base_win_size
|
926 |
+
|
927 |
+
#####################################################################################################
|
928 |
+
################################### 1, shallow feature extraction ###################################
|
929 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
930 |
+
|
931 |
+
#####################################################################################################
|
932 |
+
################################### 2, deep feature extraction ######################################
|
933 |
+
self.num_layers = len(depths)
|
934 |
+
self.embed_dim = embed_dim
|
935 |
+
self.ape = ape
|
936 |
+
self.patch_norm = patch_norm
|
937 |
+
self.num_features = embed_dim
|
938 |
+
self.mlp_ratio = mlp_ratio
|
939 |
+
|
940 |
+
# split image into non-overlapping patches
|
941 |
+
self.patch_embed = PatchEmbed(
|
942 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
943 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
944 |
+
num_patches = self.patch_embed.num_patches
|
945 |
+
patches_resolution = self.patch_embed.patches_resolution
|
946 |
+
self.patches_resolution = patches_resolution
|
947 |
+
|
948 |
+
# merge non-overlapping patches into image
|
949 |
+
self.patch_unembed = PatchUnEmbed(
|
950 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
951 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
952 |
+
|
953 |
+
# absolute position embedding
|
954 |
+
if self.ape:
|
955 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
956 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
957 |
+
|
958 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
959 |
+
|
960 |
+
# stochastic depth
|
961 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
962 |
+
|
963 |
+
# build Residual Hierarchical Transformer blocks (RHTB)
|
964 |
+
self.layers = nn.ModuleList()
|
965 |
+
for i_layer in range(self.num_layers):
|
966 |
+
layer = RHTB(dim=embed_dim,
|
967 |
+
input_resolution=(patches_resolution[0],
|
968 |
+
patches_resolution[1]),
|
969 |
+
depth=depths[i_layer],
|
970 |
+
num_heads=num_heads[i_layer],
|
971 |
+
base_win_size=base_win_size,
|
972 |
+
mlp_ratio=self.mlp_ratio,
|
973 |
+
drop=drop_rate, value_drop=value_drop_rate,
|
974 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
975 |
+
norm_layer=norm_layer,
|
976 |
+
downsample=None,
|
977 |
+
use_checkpoint=use_checkpoint,
|
978 |
+
img_size=img_size,
|
979 |
+
patch_size=patch_size,
|
980 |
+
resi_connection=resi_connection,
|
981 |
+
hier_win_ratios=hier_win_ratios
|
982 |
+
)
|
983 |
+
self.layers.append(layer)
|
984 |
+
self.norm = norm_layer(self.num_features)
|
985 |
+
|
986 |
+
# build the last conv layer in deep feature extraction
|
987 |
+
if resi_connection == '1conv':
|
988 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
989 |
+
elif resi_connection == '3conv':
|
990 |
+
# to save parameters and memory
|
991 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
992 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
993 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
994 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
995 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
996 |
+
|
997 |
+
#####################################################################################################
|
998 |
+
################################ 3, high quality image reconstruction ################################
|
999 |
+
if self.upsampler == 'pixelshuffle':
|
1000 |
+
# for classical SR
|
1001 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
1002 |
+
nn.LeakyReLU(inplace=True))
|
1003 |
+
self.upsample = Upsample(upscale, num_feat)
|
1004 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
1005 |
+
elif self.upsampler == 'pixelshuffledirect':
|
1006 |
+
# for lightweight SR (to save parameters)
|
1007 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
1008 |
+
(patches_resolution[0], patches_resolution[1]))
|
1009 |
+
elif self.upsampler == 'nearest+conv':
|
1010 |
+
# for real-world SR (less artifacts)
|
1011 |
+
assert self.upscale == 4, 'only support x4 now.'
|
1012 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
1013 |
+
nn.LeakyReLU(inplace=True))
|
1014 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
1015 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
1016 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
1017 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
1018 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
1019 |
+
else:
|
1020 |
+
# for image denoising and JPEG compression artifact reduction
|
1021 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
1022 |
+
|
1023 |
+
self.apply(self._init_weights)
|
1024 |
+
|
1025 |
+
def _init_weights(self, m):
|
1026 |
+
if isinstance(m, nn.Linear):
|
1027 |
+
trunc_normal_(m.weight, std=.02)
|
1028 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1029 |
+
nn.init.constant_(m.bias, 0)
|
1030 |
+
elif isinstance(m, nn.LayerNorm):
|
1031 |
+
nn.init.constant_(m.bias, 0)
|
1032 |
+
nn.init.constant_(m.weight, 1.0)
|
1033 |
+
|
1034 |
+
@torch.jit.ignore
|
1035 |
+
def no_weight_decay(self):
|
1036 |
+
return {'absolute_pos_embed'}
|
1037 |
+
|
1038 |
+
@torch.jit.ignore
|
1039 |
+
def no_weight_decay_keywords(self):
|
1040 |
+
return {'relative_position_bias_table'}
|
1041 |
+
|
1042 |
+
|
1043 |
+
def forward_features(self, x):
|
1044 |
+
x_size = (x.shape[2], x.shape[3])
|
1045 |
+
x = self.patch_embed(x)
|
1046 |
+
if self.ape:
|
1047 |
+
x = x + self.absolute_pos_embed
|
1048 |
+
x = self.pos_drop(x)
|
1049 |
+
|
1050 |
+
for layer in self.layers:
|
1051 |
+
x = layer(x, x_size)
|
1052 |
+
|
1053 |
+
x = self.norm(x) # B L C
|
1054 |
+
x = self.patch_unembed(x, x_size)
|
1055 |
+
|
1056 |
+
return x
|
1057 |
+
|
1058 |
+
def infer_image(self, image_path, cuda=True):
|
1059 |
+
|
1060 |
+
io_backend_opt = {'type':'disk'}
|
1061 |
+
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
|
1062 |
+
|
1063 |
+
# load lq image
|
1064 |
+
lq_path = image_path
|
1065 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
1066 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
1067 |
+
|
1068 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
1069 |
+
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
|
1070 |
+
|
1071 |
+
if cuda:
|
1072 |
+
x= x.cuda()
|
1073 |
+
|
1074 |
+
out = self(x)
|
1075 |
+
|
1076 |
+
if cuda:
|
1077 |
+
out = out.cpu()
|
1078 |
+
|
1079 |
+
out = tensor2img(out)
|
1080 |
+
|
1081 |
+
return out
|
1082 |
+
|
1083 |
+
def forward(self, x):
|
1084 |
+
H, W = x.shape[2:]
|
1085 |
+
|
1086 |
+
self.mean = self.mean.type_as(x)
|
1087 |
+
x = (x - self.mean) * self.img_range
|
1088 |
+
|
1089 |
+
if self.upsampler == 'pixelshuffle':
|
1090 |
+
# for classical SR
|
1091 |
+
x = self.conv_first(x)
|
1092 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
1093 |
+
x = self.conv_before_upsample(x)
|
1094 |
+
x = self.conv_last(self.upsample(x))
|
1095 |
+
elif self.upsampler == 'pixelshuffledirect':
|
1096 |
+
# for lightweight SR
|
1097 |
+
x = self.conv_first(x)
|
1098 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
1099 |
+
x = self.upsample(x)
|
1100 |
+
elif self.upsampler == 'nearest+conv':
|
1101 |
+
# for real-world SR
|
1102 |
+
x = self.conv_first(x)
|
1103 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
1104 |
+
x = self.conv_before_upsample(x)
|
1105 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
1106 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
1107 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
1108 |
+
else:
|
1109 |
+
# for image denoising and JPEG compression artifact reduction
|
1110 |
+
x_first = self.conv_first(x)
|
1111 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
1112 |
+
x = x + self.conv_last(res)
|
1113 |
+
|
1114 |
+
x = x / self.img_range + self.mean
|
1115 |
+
|
1116 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
1117 |
+
|
1118 |
+
|
1119 |
+
if __name__ == '__main__':
|
1120 |
+
upscale = 4
|
1121 |
+
base_win_size = [8, 8]
|
1122 |
+
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
|
1123 |
+
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
|
1124 |
+
|
1125 |
+
## HiT-SIR
|
1126 |
+
model = HiT_SNG(upscale=4, img_size=(height, width),
|
1127 |
+
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
|
1128 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
1129 |
+
|
1130 |
+
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
1131 |
+
print("params: ", params_num)
|
1132 |
+
|
hit_srf_arch.py
ADDED
@@ -0,0 +1,947 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint as checkpoint
|
6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
10 |
+
from utils import FileClient, imfrombytes, img2tensor, tensor2img
|
11 |
+
|
12 |
+
class DFE(nn.Module):
|
13 |
+
""" Dual Feature Extraction
|
14 |
+
Args:
|
15 |
+
in_features (int): Number of input channels.
|
16 |
+
out_features (int): Number of output channels.
|
17 |
+
"""
|
18 |
+
def __init__(self, in_features, out_features):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.out_features = out_features
|
22 |
+
|
23 |
+
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
|
24 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
25 |
+
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
|
26 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
27 |
+
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
|
28 |
+
|
29 |
+
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
|
30 |
+
|
31 |
+
def forward(self, x, x_size):
|
32 |
+
|
33 |
+
B, L, C = x.shape
|
34 |
+
H, W = x_size
|
35 |
+
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
|
36 |
+
x = self.conv(x) * self.linear(x)
|
37 |
+
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
|
38 |
+
|
39 |
+
return x
|
40 |
+
|
41 |
+
class Mlp(nn.Module):
|
42 |
+
""" MLP-based Feed-Forward Network
|
43 |
+
Args:
|
44 |
+
in_features (int): Number of input channels.
|
45 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
46 |
+
out_features (int | None): Number of output channels. Default: None
|
47 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
48 |
+
drop (float): Dropout rate. Default: 0.0
|
49 |
+
"""
|
50 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
51 |
+
super().__init__()
|
52 |
+
out_features = out_features or in_features
|
53 |
+
hidden_features = hidden_features or in_features
|
54 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
55 |
+
self.act = act_layer()
|
56 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
57 |
+
self.drop = nn.Dropout(drop)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.fc1(x)
|
61 |
+
x = self.act(x)
|
62 |
+
x = self.drop(x)
|
63 |
+
x = self.fc2(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class dwconv(nn.Module):
|
69 |
+
def __init__(self,hidden_features):
|
70 |
+
super(dwconv, self).__init__()
|
71 |
+
self.depthwise_conv = nn.Sequential(
|
72 |
+
nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1,
|
73 |
+
groups=hidden_features), nn.GELU())
|
74 |
+
self.hidden_features = hidden_features
|
75 |
+
def forward(self,x,x_size):
|
76 |
+
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() # b Ph*Pw c
|
77 |
+
x = self.depthwise_conv(x)
|
78 |
+
x = x.flatten(2).transpose(1, 2).contiguous()
|
79 |
+
return x
|
80 |
+
|
81 |
+
class ConvFFN(nn.Module):
|
82 |
+
|
83 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
84 |
+
super().__init__()
|
85 |
+
out_features = out_features or in_features
|
86 |
+
hidden_features = hidden_features or in_features
|
87 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
88 |
+
self.act = act_layer()
|
89 |
+
self.dwconv = dwconv(hidden_features=hidden_features)
|
90 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
91 |
+
self.drop = nn.Dropout(drop)
|
92 |
+
|
93 |
+
|
94 |
+
def forward(self, x,x_size):
|
95 |
+
x = self.fc1(x)
|
96 |
+
x = self.act(x)
|
97 |
+
x = x + self.dwconv(x,x_size)
|
98 |
+
x = self.drop(x)
|
99 |
+
x = self.fc2(x)
|
100 |
+
x = self.drop(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
def window_partition(x, window_size):
|
104 |
+
"""
|
105 |
+
Args:
|
106 |
+
x: (B, H, W, C)
|
107 |
+
window_size (tuple): window size
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
windows: (num_windows*B, window_size, window_size, C)
|
111 |
+
"""
|
112 |
+
B, H, W, C = x.shape
|
113 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
114 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
115 |
+
return windows
|
116 |
+
|
117 |
+
|
118 |
+
def window_reverse(windows, window_size, H, W):
|
119 |
+
"""
|
120 |
+
Args:
|
121 |
+
windows: (num_windows*B, window_size, window_size, C)
|
122 |
+
window_size (tuple): Window size
|
123 |
+
H (int): Height of image
|
124 |
+
W (int): Width of image
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: (B, H, W, C)
|
128 |
+
"""
|
129 |
+
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
|
130 |
+
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
131 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
132 |
+
return x
|
133 |
+
|
134 |
+
class DynamicPosBias(nn.Module):
|
135 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
136 |
+
""" Dynamic Relative Position Bias.
|
137 |
+
Args:
|
138 |
+
dim (int): Number of input channels.
|
139 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
140 |
+
residual (bool): If True, use residual strage to connect conv.
|
141 |
+
"""
|
142 |
+
def __init__(self, dim, num_heads, residual):
|
143 |
+
super().__init__()
|
144 |
+
self.residual = residual
|
145 |
+
self.num_heads = num_heads
|
146 |
+
self.pos_dim = dim // 4
|
147 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
148 |
+
self.pos1 = nn.Sequential(
|
149 |
+
nn.LayerNorm(self.pos_dim),
|
150 |
+
nn.ReLU(inplace=True),
|
151 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
152 |
+
)
|
153 |
+
self.pos2 = nn.Sequential(
|
154 |
+
nn.LayerNorm(self.pos_dim),
|
155 |
+
nn.ReLU(inplace=True),
|
156 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
157 |
+
)
|
158 |
+
self.pos3 = nn.Sequential(
|
159 |
+
nn.LayerNorm(self.pos_dim),
|
160 |
+
nn.ReLU(inplace=True),
|
161 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
162 |
+
)
|
163 |
+
def forward(self, biases):
|
164 |
+
if self.residual:
|
165 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
166 |
+
pos = pos + self.pos1(pos)
|
167 |
+
pos = pos + self.pos2(pos)
|
168 |
+
pos = self.pos3(pos)
|
169 |
+
else:
|
170 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
171 |
+
return pos
|
172 |
+
|
173 |
+
class SCC(nn.Module):
|
174 |
+
""" Spatial-Channel Correlation.
|
175 |
+
Args:
|
176 |
+
dim (int): Number of input channels.
|
177 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
178 |
+
window_size (tuple[int]): The height and width of the window.
|
179 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
180 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
181 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
|
185 |
+
|
186 |
+
super().__init__()
|
187 |
+
# parameters
|
188 |
+
self.dim = dim
|
189 |
+
self.window_size = window_size
|
190 |
+
self.num_heads = num_heads
|
191 |
+
|
192 |
+
# feature projection
|
193 |
+
self.qv = DFE(dim, dim)
|
194 |
+
self.proj = nn.Linear(dim, dim)
|
195 |
+
|
196 |
+
# dropout
|
197 |
+
self.value_drop = nn.Dropout(value_drop)
|
198 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
199 |
+
|
200 |
+
# base window size
|
201 |
+
min_h = min(self.window_size[0], base_win_size[0])
|
202 |
+
min_w = min(self.window_size[1], base_win_size[1])
|
203 |
+
self.base_win_size = (min_h, min_w)
|
204 |
+
|
205 |
+
# normalization factor and spatial linear layer for S-SC
|
206 |
+
head_dim = dim // (2*num_heads)
|
207 |
+
self.scale = head_dim
|
208 |
+
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
|
209 |
+
|
210 |
+
# define a parameter table of relative position bias
|
211 |
+
self.H_sp, self.W_sp = self.window_size
|
212 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
213 |
+
|
214 |
+
def spatial_linear_projection(self, x):
|
215 |
+
B, num_h, L, C = x.shape
|
216 |
+
H, W = self.window_size
|
217 |
+
map_H, map_W = self.base_win_size
|
218 |
+
|
219 |
+
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
|
220 |
+
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
|
221 |
+
return x
|
222 |
+
|
223 |
+
def spatial_self_correlation(self, q, v):
|
224 |
+
|
225 |
+
B, num_head, L, C = q.shape
|
226 |
+
|
227 |
+
# spatial projection
|
228 |
+
v = self.spatial_linear_projection(v)
|
229 |
+
|
230 |
+
# compute correlation map
|
231 |
+
corr_map = (q @ v.transpose(-2,-1)) / self.scale
|
232 |
+
|
233 |
+
# add relative position bias
|
234 |
+
# generate mother-set
|
235 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
|
236 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
|
237 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
238 |
+
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
239 |
+
pos = self.pos(rpe_biases)
|
240 |
+
|
241 |
+
# select position bias
|
242 |
+
coords_h = torch.arange(self.H_sp, device=v.device)
|
243 |
+
coords_w = torch.arange(self.W_sp, device=v.device)
|
244 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
245 |
+
coords_flatten = torch.flatten(coords, 1)
|
246 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
247 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
248 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
249 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
250 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
251 |
+
relative_position_index = relative_coords.sum(-1)
|
252 |
+
relative_position_bias = pos[relative_position_index.view(-1)].view(
|
253 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
254 |
+
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
|
255 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
|
256 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
257 |
+
corr_map = corr_map + relative_position_bias.unsqueeze(0)
|
258 |
+
|
259 |
+
# transformation
|
260 |
+
v_drop = self.value_drop(v)
|
261 |
+
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
|
262 |
+
|
263 |
+
return x
|
264 |
+
|
265 |
+
def channel_self_correlation(self, q, v):
|
266 |
+
|
267 |
+
B, num_head, L, C = q.shape
|
268 |
+
|
269 |
+
# apply single head strategy
|
270 |
+
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
271 |
+
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
272 |
+
|
273 |
+
# compute correlation map
|
274 |
+
corr_map = (q.transpose(-2,-1) @ v) / L
|
275 |
+
|
276 |
+
# transformation
|
277 |
+
v_drop = self.value_drop(v)
|
278 |
+
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
|
279 |
+
|
280 |
+
return x
|
281 |
+
|
282 |
+
def forward(self, x):
|
283 |
+
"""
|
284 |
+
Args:
|
285 |
+
x: input features with shape of (B, H, W, C)
|
286 |
+
"""
|
287 |
+
xB,xH,xW,xC = x.shape
|
288 |
+
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
|
289 |
+
|
290 |
+
# window partition
|
291 |
+
qv = window_partition(qv, self.window_size)
|
292 |
+
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
|
293 |
+
|
294 |
+
# qv splitting
|
295 |
+
B, L, C = qv.shape
|
296 |
+
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
|
297 |
+
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
|
298 |
+
|
299 |
+
# spatial self-correlation (S-SC)
|
300 |
+
x_spatial = self.spatial_self_correlation(q, v)
|
301 |
+
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
|
302 |
+
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
|
303 |
+
|
304 |
+
# channel self-correlation (C-SC)
|
305 |
+
x_channel = self.channel_self_correlation(q, v)
|
306 |
+
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
|
307 |
+
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
|
308 |
+
|
309 |
+
# spatial-channel information fusion
|
310 |
+
x = torch.cat([x_spatial, x_channel], -1)
|
311 |
+
x = self.proj_drop(self.proj(x))
|
312 |
+
|
313 |
+
return x
|
314 |
+
|
315 |
+
def extra_repr(self) -> str:
|
316 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
317 |
+
|
318 |
+
|
319 |
+
class HierarchicalTransformerBlock(nn.Module):
|
320 |
+
""" Hierarchical Transformer Block.
|
321 |
+
Args:
|
322 |
+
dim (int): Number of input channels.
|
323 |
+
input_resolution (tuple[int]): Input resulotion.
|
324 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
325 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
326 |
+
window_size (tuple[int]): The height and width of the window.
|
327 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
328 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
329 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
330 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
331 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
332 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
|
336 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
|
337 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
338 |
+
super().__init__()
|
339 |
+
self.dim = dim
|
340 |
+
self.input_resolution = input_resolution
|
341 |
+
self.num_heads = num_heads
|
342 |
+
self.window_size = window_size
|
343 |
+
self.mlp_ratio = mlp_ratio
|
344 |
+
|
345 |
+
# check window size
|
346 |
+
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
|
347 |
+
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
348 |
+
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
349 |
+
|
350 |
+
|
351 |
+
self.norm1 = norm_layer(dim)
|
352 |
+
self.correlation = SCC(
|
353 |
+
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
|
354 |
+
value_drop=value_drop, proj_drop=drop)
|
355 |
+
|
356 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
357 |
+
self.norm2 = norm_layer(dim)
|
358 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
359 |
+
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
360 |
+
# self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
361 |
+
|
362 |
+
def check_image_size(self, x, win_size):
|
363 |
+
x = x.permute(0,3,1,2).contiguous()
|
364 |
+
_, _, h, w = x.size()
|
365 |
+
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
|
366 |
+
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
|
367 |
+
|
368 |
+
if mod_pad_h >= h or mod_pad_w >= w:
|
369 |
+
pad_h, pad_w = h-1, w-1
|
370 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
|
371 |
+
else:
|
372 |
+
pad_h, pad_w = 0, 0
|
373 |
+
|
374 |
+
mod_pad_h = mod_pad_h - pad_h
|
375 |
+
mod_pad_w = mod_pad_w - pad_w
|
376 |
+
|
377 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
378 |
+
x = x.permute(0,2,3,1).contiguous()
|
379 |
+
return x
|
380 |
+
|
381 |
+
def forward(self, x, x_size, win_size):
|
382 |
+
H, W = x_size
|
383 |
+
B, L, C = x.shape
|
384 |
+
|
385 |
+
shortcut = x
|
386 |
+
x = x.view(B, H, W, C)
|
387 |
+
|
388 |
+
# padding
|
389 |
+
x = self.check_image_size(x, win_size)
|
390 |
+
_, H_pad, W_pad, _ = x.shape # shape after padding
|
391 |
+
|
392 |
+
x = self.correlation(x)
|
393 |
+
|
394 |
+
# unpad
|
395 |
+
x = x[:, :H, :W, :].contiguous()
|
396 |
+
|
397 |
+
# norm
|
398 |
+
x = x.view(B, H * W, C)
|
399 |
+
x = self.norm1(x)
|
400 |
+
|
401 |
+
# FFN
|
402 |
+
x = shortcut + self.drop_path(x)
|
403 |
+
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
|
404 |
+
|
405 |
+
return x
|
406 |
+
|
407 |
+
def extra_repr(self) -> str:
|
408 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
409 |
+
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
410 |
+
|
411 |
+
|
412 |
+
class PatchMerging(nn.Module):
|
413 |
+
""" Patch Merging Layer.
|
414 |
+
Args:
|
415 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
416 |
+
dim (int): Number of input channels.
|
417 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
418 |
+
"""
|
419 |
+
|
420 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
421 |
+
super().__init__()
|
422 |
+
self.input_resolution = input_resolution
|
423 |
+
self.dim = dim
|
424 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
425 |
+
self.norm = norm_layer(4 * dim)
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
"""
|
429 |
+
x: B, H*W, C
|
430 |
+
"""
|
431 |
+
H, W = self.input_resolution
|
432 |
+
B, L, C = x.shape
|
433 |
+
assert L == H * W, "input feature has wrong size"
|
434 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
435 |
+
|
436 |
+
x = x.view(B, H, W, C)
|
437 |
+
|
438 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
439 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
440 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
441 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
442 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
443 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
444 |
+
|
445 |
+
x = self.norm(x)
|
446 |
+
x = self.reduction(x)
|
447 |
+
|
448 |
+
return x
|
449 |
+
|
450 |
+
def extra_repr(self) -> str:
|
451 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
452 |
+
|
453 |
+
|
454 |
+
class BasicLayer(nn.Module):
|
455 |
+
""" A basic Hierarchical Transformer layer for one stage.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
dim (int): Number of input channels.
|
459 |
+
input_resolution (tuple[int]): Input resolution.
|
460 |
+
depth (int): Number of blocks.
|
461 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
462 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
463 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
464 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
465 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
466 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
467 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
468 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
469 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
470 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
471 |
+
"""
|
472 |
+
|
473 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
474 |
+
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
|
475 |
+
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
|
476 |
+
|
477 |
+
super().__init__()
|
478 |
+
self.dim = dim
|
479 |
+
self.input_resolution = input_resolution
|
480 |
+
self.depth = depth
|
481 |
+
self.use_checkpoint = use_checkpoint
|
482 |
+
|
483 |
+
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
|
484 |
+
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
|
485 |
+
|
486 |
+
# build blocks
|
487 |
+
self.blocks = nn.ModuleList([
|
488 |
+
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
|
489 |
+
num_heads=num_heads,
|
490 |
+
base_win_size=base_win_size,
|
491 |
+
window_size=(self.win_hs[i], self.win_ws[i]),
|
492 |
+
mlp_ratio=mlp_ratio,
|
493 |
+
drop=drop, value_drop=value_drop,
|
494 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
495 |
+
norm_layer=norm_layer)
|
496 |
+
for i in range(depth)])
|
497 |
+
|
498 |
+
# patch merging layer
|
499 |
+
if downsample is not None:
|
500 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
501 |
+
else:
|
502 |
+
self.downsample = None
|
503 |
+
|
504 |
+
def forward(self, x, x_size):
|
505 |
+
|
506 |
+
i = 0
|
507 |
+
for blk in self.blocks:
|
508 |
+
if self.use_checkpoint:
|
509 |
+
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
|
510 |
+
else:
|
511 |
+
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
|
512 |
+
i = i + 1
|
513 |
+
|
514 |
+
if self.downsample is not None:
|
515 |
+
x = self.downsample(x)
|
516 |
+
return x
|
517 |
+
|
518 |
+
def extra_repr(self) -> str:
|
519 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
520 |
+
|
521 |
+
|
522 |
+
class RHTB(nn.Module):
|
523 |
+
"""Residual Hierarchical Transformer Block (RHTB).
|
524 |
+
Args:
|
525 |
+
dim (int): Number of input channels.
|
526 |
+
input_resolution (tuple[int]): Input resolution.
|
527 |
+
depth (int): Number of blocks.
|
528 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
529 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
530 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
531 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
532 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
533 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
534 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
535 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
536 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
537 |
+
img_size: Input image size.
|
538 |
+
patch_size: Patch size.
|
539 |
+
resi_connection: The convolutional block before residual connection.
|
540 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
544 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
545 |
+
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
|
546 |
+
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
|
547 |
+
super(RHTB, self).__init__()
|
548 |
+
|
549 |
+
self.dim = dim
|
550 |
+
self.input_resolution = input_resolution
|
551 |
+
|
552 |
+
self.residual_group = BasicLayer(dim=dim,
|
553 |
+
input_resolution=input_resolution,
|
554 |
+
depth=depth,
|
555 |
+
num_heads=num_heads,
|
556 |
+
base_win_size=base_win_size,
|
557 |
+
mlp_ratio=mlp_ratio,
|
558 |
+
drop=drop, value_drop=value_drop,
|
559 |
+
drop_path=drop_path,
|
560 |
+
norm_layer=norm_layer,
|
561 |
+
downsample=downsample,
|
562 |
+
use_checkpoint=use_checkpoint,
|
563 |
+
hier_win_ratios=hier_win_ratios)
|
564 |
+
|
565 |
+
if resi_connection == '1conv':
|
566 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
567 |
+
elif resi_connection == '3conv':
|
568 |
+
# to save parameters and memory
|
569 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
570 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
571 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
572 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
573 |
+
|
574 |
+
self.patch_embed = PatchEmbed(
|
575 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
576 |
+
norm_layer=None)
|
577 |
+
|
578 |
+
self.patch_unembed = PatchUnEmbed(
|
579 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
580 |
+
norm_layer=None)
|
581 |
+
|
582 |
+
def forward(self, x, x_size):
|
583 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
584 |
+
|
585 |
+
|
586 |
+
class PatchEmbed(nn.Module):
|
587 |
+
r""" Image to Patch Embedding
|
588 |
+
|
589 |
+
Args:
|
590 |
+
img_size (int): Image size. Default: 224.
|
591 |
+
patch_size (int): Patch token size. Default: 4.
|
592 |
+
in_chans (int): Number of input image channels. Default: 3.
|
593 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
594 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
598 |
+
super().__init__()
|
599 |
+
img_size = to_2tuple(img_size)
|
600 |
+
patch_size = to_2tuple(patch_size)
|
601 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
602 |
+
self.img_size = img_size
|
603 |
+
self.patch_size = patch_size
|
604 |
+
self.patches_resolution = patches_resolution
|
605 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
606 |
+
|
607 |
+
self.in_chans = in_chans
|
608 |
+
self.embed_dim = embed_dim
|
609 |
+
|
610 |
+
if norm_layer is not None:
|
611 |
+
self.norm = norm_layer(embed_dim)
|
612 |
+
else:
|
613 |
+
self.norm = None
|
614 |
+
|
615 |
+
def forward(self, x):
|
616 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
617 |
+
if self.norm is not None:
|
618 |
+
x = self.norm(x)
|
619 |
+
return x
|
620 |
+
|
621 |
+
|
622 |
+
class PatchUnEmbed(nn.Module):
|
623 |
+
r""" Image to Patch Unembedding
|
624 |
+
|
625 |
+
Args:
|
626 |
+
img_size (int): Image size. Default: 224.
|
627 |
+
patch_size (int): Patch token size. Default: 4.
|
628 |
+
in_chans (int): Number of input image channels. Default: 3.
|
629 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
630 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
631 |
+
"""
|
632 |
+
|
633 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
634 |
+
super().__init__()
|
635 |
+
img_size = to_2tuple(img_size)
|
636 |
+
patch_size = to_2tuple(patch_size)
|
637 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
638 |
+
self.img_size = img_size
|
639 |
+
self.patch_size = patch_size
|
640 |
+
self.patches_resolution = patches_resolution
|
641 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
642 |
+
|
643 |
+
self.in_chans = in_chans
|
644 |
+
self.embed_dim = embed_dim
|
645 |
+
|
646 |
+
def forward(self, x, x_size):
|
647 |
+
B, HW, C = x.shape
|
648 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
649 |
+
return x
|
650 |
+
|
651 |
+
|
652 |
+
class Upsample(nn.Sequential):
|
653 |
+
"""Upsample module.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
657 |
+
num_feat (int): Channel number of intermediate features.
|
658 |
+
"""
|
659 |
+
|
660 |
+
def __init__(self, scale, num_feat):
|
661 |
+
m = []
|
662 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
663 |
+
for _ in range(int(math.log(scale, 2))):
|
664 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
665 |
+
m.append(nn.PixelShuffle(2))
|
666 |
+
elif scale == 3:
|
667 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
668 |
+
m.append(nn.PixelShuffle(3))
|
669 |
+
else:
|
670 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
671 |
+
super(Upsample, self).__init__(*m)
|
672 |
+
|
673 |
+
|
674 |
+
class UpsampleOneStep(nn.Sequential):
|
675 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
676 |
+
Used in lightweight SR to save parameters.
|
677 |
+
|
678 |
+
Args:
|
679 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
680 |
+
num_feat (int): Channel number of intermediate features.
|
681 |
+
|
682 |
+
"""
|
683 |
+
|
684 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
685 |
+
self.num_feat = num_feat
|
686 |
+
self.input_resolution = input_resolution
|
687 |
+
m = []
|
688 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
689 |
+
m.append(nn.PixelShuffle(scale))
|
690 |
+
super(UpsampleOneStep, self).__init__(*m)
|
691 |
+
|
692 |
+
|
693 |
+
class HiT_SRF(nn.Module, PyTorchModelHubMixin):
|
694 |
+
""" HiT-SRF network.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
698 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
699 |
+
in_chans (int): Number of input image channels. Default: 3
|
700 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
701 |
+
depths (tuple(int)): Depth of each Transformer block.
|
702 |
+
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
|
703 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
704 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
705 |
+
drop_rate (float): Dropout rate. Default: 0
|
706 |
+
value_drop_rate (float): Dropout ratio of value. Default: 0.0
|
707 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
708 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
709 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
710 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
711 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
712 |
+
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
713 |
+
img_range (float): Image range. 1. or 255.
|
714 |
+
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
715 |
+
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
|
716 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
717 |
+
"""
|
718 |
+
|
719 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
720 |
+
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
721 |
+
base_win_size=[8,8], mlp_ratio=2.,
|
722 |
+
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
|
723 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
724 |
+
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
|
725 |
+
hier_win_ratios=[0.5,1,2,4,6,8],
|
726 |
+
**kwargs):
|
727 |
+
super(HiT_SRF, self).__init__()
|
728 |
+
num_in_ch = in_chans
|
729 |
+
num_out_ch = in_chans
|
730 |
+
num_feat = 64
|
731 |
+
self.img_range = img_range
|
732 |
+
if in_chans == 3:
|
733 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
734 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
735 |
+
else:
|
736 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
737 |
+
self.upscale = upscale
|
738 |
+
self.upsampler = upsampler
|
739 |
+
self.base_win_size = base_win_size
|
740 |
+
|
741 |
+
#####################################################################################################
|
742 |
+
################################### 1, shallow feature extraction ###################################
|
743 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
744 |
+
|
745 |
+
#####################################################################################################
|
746 |
+
################################### 2, deep feature extraction ######################################
|
747 |
+
self.num_layers = len(depths)
|
748 |
+
self.embed_dim = embed_dim
|
749 |
+
self.ape = ape
|
750 |
+
self.patch_norm = patch_norm
|
751 |
+
self.num_features = embed_dim
|
752 |
+
self.mlp_ratio = mlp_ratio
|
753 |
+
|
754 |
+
# split image into non-overlapping patches
|
755 |
+
self.patch_embed = PatchEmbed(
|
756 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
757 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
758 |
+
num_patches = self.patch_embed.num_patches
|
759 |
+
patches_resolution = self.patch_embed.patches_resolution
|
760 |
+
self.patches_resolution = patches_resolution
|
761 |
+
|
762 |
+
# merge non-overlapping patches into image
|
763 |
+
self.patch_unembed = PatchUnEmbed(
|
764 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
765 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
766 |
+
|
767 |
+
# absolute position embedding
|
768 |
+
if self.ape:
|
769 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
770 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
771 |
+
|
772 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
773 |
+
|
774 |
+
# stochastic depth
|
775 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
776 |
+
|
777 |
+
# build Residual Hierarchical Transformer blocks (RHTB)
|
778 |
+
self.layers = nn.ModuleList()
|
779 |
+
for i_layer in range(self.num_layers):
|
780 |
+
layer = RHTB(dim=embed_dim,
|
781 |
+
input_resolution=(patches_resolution[0],
|
782 |
+
patches_resolution[1]),
|
783 |
+
depth=depths[i_layer],
|
784 |
+
num_heads=num_heads[i_layer],
|
785 |
+
base_win_size=base_win_size,
|
786 |
+
mlp_ratio=self.mlp_ratio,
|
787 |
+
drop=drop_rate, value_drop=value_drop_rate,
|
788 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
789 |
+
norm_layer=norm_layer,
|
790 |
+
downsample=None,
|
791 |
+
use_checkpoint=use_checkpoint,
|
792 |
+
img_size=img_size,
|
793 |
+
patch_size=patch_size,
|
794 |
+
resi_connection=resi_connection,
|
795 |
+
hier_win_ratios=hier_win_ratios
|
796 |
+
)
|
797 |
+
self.layers.append(layer)
|
798 |
+
self.norm = norm_layer(self.num_features)
|
799 |
+
|
800 |
+
# build the last conv layer in deep feature extraction
|
801 |
+
if resi_connection == '1conv':
|
802 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
803 |
+
elif resi_connection == '3conv':
|
804 |
+
# to save parameters and memory
|
805 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
806 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
807 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
808 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
809 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
810 |
+
|
811 |
+
#####################################################################################################
|
812 |
+
################################ 3, high quality image reconstruction ################################
|
813 |
+
if self.upsampler == 'pixelshuffle':
|
814 |
+
# for classical SR
|
815 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
816 |
+
nn.LeakyReLU(inplace=True))
|
817 |
+
self.upsample = Upsample(upscale, num_feat)
|
818 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
819 |
+
elif self.upsampler == 'pixelshuffledirect':
|
820 |
+
# for lightweight SR (to save parameters)
|
821 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
822 |
+
(patches_resolution[0], patches_resolution[1]))
|
823 |
+
elif self.upsampler == 'nearest+conv':
|
824 |
+
# for real-world SR (less artifacts)
|
825 |
+
assert self.upscale == 4, 'only support x4 now.'
|
826 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
827 |
+
nn.LeakyReLU(inplace=True))
|
828 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
829 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
830 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
831 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
832 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
833 |
+
else:
|
834 |
+
# for image denoising and JPEG compression artifact reduction
|
835 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
836 |
+
|
837 |
+
self.apply(self._init_weights)
|
838 |
+
|
839 |
+
def _init_weights(self, m):
|
840 |
+
if isinstance(m, nn.Linear):
|
841 |
+
trunc_normal_(m.weight, std=.02)
|
842 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
843 |
+
nn.init.constant_(m.bias, 0)
|
844 |
+
elif isinstance(m, nn.LayerNorm):
|
845 |
+
nn.init.constant_(m.bias, 0)
|
846 |
+
nn.init.constant_(m.weight, 1.0)
|
847 |
+
|
848 |
+
@torch.jit.ignore
|
849 |
+
def no_weight_decay(self):
|
850 |
+
return {'absolute_pos_embed'}
|
851 |
+
|
852 |
+
@torch.jit.ignore
|
853 |
+
def no_weight_decay_keywords(self):
|
854 |
+
return {'relative_position_bias_table'}
|
855 |
+
|
856 |
+
|
857 |
+
def forward_features(self, x):
|
858 |
+
x_size = (x.shape[2], x.shape[3])
|
859 |
+
x = self.patch_embed(x)
|
860 |
+
if self.ape:
|
861 |
+
x = x + self.absolute_pos_embed
|
862 |
+
x = self.pos_drop(x)
|
863 |
+
|
864 |
+
for layer in self.layers:
|
865 |
+
x = layer(x, x_size)
|
866 |
+
|
867 |
+
x = self.norm(x) # B L C
|
868 |
+
x = self.patch_unembed(x, x_size)
|
869 |
+
|
870 |
+
return x
|
871 |
+
|
872 |
+
def infer_image(self, image_path, cuda=True):
|
873 |
+
|
874 |
+
io_backend_opt = {'type':'disk'}
|
875 |
+
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
|
876 |
+
|
877 |
+
# load lq image
|
878 |
+
lq_path = image_path
|
879 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
880 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
881 |
+
|
882 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
883 |
+
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
|
884 |
+
|
885 |
+
if cuda:
|
886 |
+
x= x.cuda()
|
887 |
+
|
888 |
+
out = self(x)
|
889 |
+
|
890 |
+
if cuda:
|
891 |
+
out = out.cpu()
|
892 |
+
|
893 |
+
out = tensor2img(out)
|
894 |
+
|
895 |
+
return out
|
896 |
+
|
897 |
+
def forward(self, x):
|
898 |
+
H, W = x.shape[2:]
|
899 |
+
|
900 |
+
self.mean = self.mean.type_as(x)
|
901 |
+
x = (x - self.mean) * self.img_range
|
902 |
+
|
903 |
+
if self.upsampler == 'pixelshuffle':
|
904 |
+
# for classical SR
|
905 |
+
x = self.conv_first(x)
|
906 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
907 |
+
x = self.conv_before_upsample(x)
|
908 |
+
x = self.conv_last(self.upsample(x))
|
909 |
+
elif self.upsampler == 'pixelshuffledirect':
|
910 |
+
# for lightweight SR
|
911 |
+
x = self.conv_first(x)
|
912 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
913 |
+
x = self.upsample(x)
|
914 |
+
elif self.upsampler == 'nearest+conv':
|
915 |
+
# for real-world SR
|
916 |
+
x = self.conv_first(x)
|
917 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
918 |
+
x = self.conv_before_upsample(x)
|
919 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
920 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
921 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
922 |
+
else:
|
923 |
+
# for image denoising and JPEG compression artifact reduction
|
924 |
+
x_first = self.conv_first(x)
|
925 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
926 |
+
x = x + self.conv_last(res)
|
927 |
+
|
928 |
+
x = x / self.img_range + self.mean
|
929 |
+
|
930 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
931 |
+
|
932 |
+
|
933 |
+
if __name__ == '__main__':
|
934 |
+
upscale = 4
|
935 |
+
base_win_size = [8, 8]
|
936 |
+
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
|
937 |
+
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
|
938 |
+
|
939 |
+
## HiT-SIR
|
940 |
+
model = HiT_SRF(upscale=4, img_size=(height, width),
|
941 |
+
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
|
942 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
943 |
+
|
944 |
+
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
945 |
+
print("params: ", params_num)
|
946 |
+
|
947 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
addict
|
2 |
+
future
|
3 |
+
lmdb
|
4 |
+
numpy>=1.17
|
5 |
+
opencv-python
|
6 |
+
Pillow
|
7 |
+
pyyaml
|
8 |
+
requests
|
9 |
+
scikit-image
|
10 |
+
scipy
|
11 |
+
tb-nightly
|
12 |
+
tqdm
|
13 |
+
yapf
|
14 |
+
timm
|
15 |
+
einops
|
16 |
+
h5py
|
17 |
+
six
|
18 |
+
huggingface_hub
|
utils/__init__.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .file_client import FileClient
|
2 |
+
from .img_util import crop_border, imfrombytes, img2tensor, imwrite, tensor2img
|
3 |
+
from .logger import AvgTimer, MessageLogger, get_env_info, get_root_logger, init_tb_logger, init_wandb_logger
|
4 |
+
from .misc import check_resume, get_time_str, make_exp_dirs, mkdir_and_rename, scandir, set_random_seed, sizeof_fmt
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
# file_client.py
|
8 |
+
'FileClient',
|
9 |
+
# img_util.py
|
10 |
+
'img2tensor',
|
11 |
+
'tensor2img',
|
12 |
+
'imfrombytes',
|
13 |
+
'imwrite',
|
14 |
+
'crop_border',
|
15 |
+
# logger.py
|
16 |
+
'MessageLogger',
|
17 |
+
'AvgTimer',
|
18 |
+
'init_tb_logger',
|
19 |
+
'init_wandb_logger',
|
20 |
+
'get_root_logger',
|
21 |
+
'get_env_info',
|
22 |
+
# misc.py
|
23 |
+
'set_random_seed',
|
24 |
+
'get_time_str',
|
25 |
+
'mkdir_and_rename',
|
26 |
+
'make_exp_dirs',
|
27 |
+
'scandir',
|
28 |
+
'check_resume',
|
29 |
+
'sizeof_fmt',
|
30 |
+
]
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (854 Bytes). View file
|
|
utils/__pycache__/dist_util.cpython-38.pyc
ADDED
Binary file (2.6 kB). View file
|
|
utils/__pycache__/file_client.cpython-38.pyc
ADDED
Binary file (6.5 kB). View file
|
|
utils/__pycache__/img_util.cpython-38.pyc
ADDED
Binary file (6.12 kB). View file
|
|
utils/__pycache__/logger.cpython-38.pyc
ADDED
Binary file (6.94 kB). View file
|
|
utils/__pycache__/matlab_functions.cpython-38.pyc
ADDED
Binary file (10.6 kB). View file
|
|
utils/__pycache__/misc.cpython-38.pyc
ADDED
Binary file (4.37 kB). View file
|
|
utils/__pycache__/options.cpython-38.pyc
ADDED
Binary file (5.11 kB). View file
|
|
utils/__pycache__/registry.cpython-38.pyc
ADDED
Binary file (2.61 kB). View file
|
|
utils/dist_util.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torch.multiprocessing as mp
|
8 |
+
|
9 |
+
|
10 |
+
def init_dist(launcher, backend='nccl', **kwargs):
|
11 |
+
if mp.get_start_method(allow_none=True) is None:
|
12 |
+
mp.set_start_method('spawn')
|
13 |
+
if launcher == 'pytorch':
|
14 |
+
_init_dist_pytorch(backend, **kwargs)
|
15 |
+
elif launcher == 'slurm':
|
16 |
+
_init_dist_slurm(backend, **kwargs)
|
17 |
+
else:
|
18 |
+
raise ValueError(f'Invalid launcher type: {launcher}')
|
19 |
+
|
20 |
+
|
21 |
+
def _init_dist_pytorch(backend, **kwargs):
|
22 |
+
rank = int(os.environ['RANK'])
|
23 |
+
num_gpus = torch.cuda.device_count()
|
24 |
+
torch.cuda.set_device(rank % num_gpus)
|
25 |
+
dist.init_process_group(backend=backend, **kwargs)
|
26 |
+
|
27 |
+
|
28 |
+
def _init_dist_slurm(backend, port=None):
|
29 |
+
"""Initialize slurm distributed training environment.
|
30 |
+
|
31 |
+
If argument ``port`` is not specified, then the master port will be system
|
32 |
+
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
33 |
+
environment variable, then a default port ``29500`` will be used.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
backend (str): Backend of torch.distributed.
|
37 |
+
port (int, optional): Master port. Defaults to None.
|
38 |
+
"""
|
39 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
40 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
41 |
+
node_list = os.environ['SLURM_NODELIST']
|
42 |
+
num_gpus = torch.cuda.device_count()
|
43 |
+
torch.cuda.set_device(proc_id % num_gpus)
|
44 |
+
addr = subprocess.getoutput(f'scontrol show hostname {node_list} | head -n1')
|
45 |
+
# specify master port
|
46 |
+
if port is not None:
|
47 |
+
os.environ['MASTER_PORT'] = str(port)
|
48 |
+
elif 'MASTER_PORT' in os.environ:
|
49 |
+
pass # use MASTER_PORT in the environment variable
|
50 |
+
else:
|
51 |
+
# 29500 is torch.distributed default port
|
52 |
+
os.environ['MASTER_PORT'] = '29500'
|
53 |
+
os.environ['MASTER_ADDR'] = addr
|
54 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
55 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
56 |
+
os.environ['RANK'] = str(proc_id)
|
57 |
+
dist.init_process_group(backend=backend)
|
58 |
+
|
59 |
+
|
60 |
+
def get_dist_info():
|
61 |
+
if dist.is_available():
|
62 |
+
initialized = dist.is_initialized()
|
63 |
+
else:
|
64 |
+
initialized = False
|
65 |
+
if initialized:
|
66 |
+
rank = dist.get_rank()
|
67 |
+
world_size = dist.get_world_size()
|
68 |
+
else:
|
69 |
+
rank = 0
|
70 |
+
world_size = 1
|
71 |
+
return rank, world_size
|
72 |
+
|
73 |
+
|
74 |
+
def master_only(func):
|
75 |
+
|
76 |
+
@functools.wraps(func)
|
77 |
+
def wrapper(*args, **kwargs):
|
78 |
+
rank, _ = get_dist_info()
|
79 |
+
if rank == 0:
|
80 |
+
return func(*args, **kwargs)
|
81 |
+
|
82 |
+
return wrapper
|
utils/file_client.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501
|
2 |
+
from abc import ABCMeta, abstractmethod
|
3 |
+
|
4 |
+
|
5 |
+
class BaseStorageBackend(metaclass=ABCMeta):
|
6 |
+
"""Abstract class of storage backends.
|
7 |
+
|
8 |
+
All backends need to implement two apis: ``get()`` and ``get_text()``.
|
9 |
+
``get()`` reads the file as a byte stream and ``get_text()`` reads the file
|
10 |
+
as texts.
|
11 |
+
"""
|
12 |
+
|
13 |
+
@abstractmethod
|
14 |
+
def get(self, filepath):
|
15 |
+
pass
|
16 |
+
|
17 |
+
@abstractmethod
|
18 |
+
def get_text(self, filepath):
|
19 |
+
pass
|
20 |
+
|
21 |
+
|
22 |
+
class MemcachedBackend(BaseStorageBackend):
|
23 |
+
"""Memcached storage backend.
|
24 |
+
|
25 |
+
Attributes:
|
26 |
+
server_list_cfg (str): Config file for memcached server list.
|
27 |
+
client_cfg (str): Config file for memcached client.
|
28 |
+
sys_path (str | None): Additional path to be appended to `sys.path`.
|
29 |
+
Default: None.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, server_list_cfg, client_cfg, sys_path=None):
|
33 |
+
if sys_path is not None:
|
34 |
+
import sys
|
35 |
+
sys.path.append(sys_path)
|
36 |
+
try:
|
37 |
+
import mc
|
38 |
+
except ImportError:
|
39 |
+
raise ImportError('Please install memcached to enable MemcachedBackend.')
|
40 |
+
|
41 |
+
self.server_list_cfg = server_list_cfg
|
42 |
+
self.client_cfg = client_cfg
|
43 |
+
self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg)
|
44 |
+
# mc.pyvector servers as a point which points to a memory cache
|
45 |
+
self._mc_buffer = mc.pyvector()
|
46 |
+
|
47 |
+
def get(self, filepath):
|
48 |
+
filepath = str(filepath)
|
49 |
+
import mc
|
50 |
+
self._client.Get(filepath, self._mc_buffer)
|
51 |
+
value_buf = mc.ConvertBuffer(self._mc_buffer)
|
52 |
+
return value_buf
|
53 |
+
|
54 |
+
def get_text(self, filepath):
|
55 |
+
raise NotImplementedError
|
56 |
+
|
57 |
+
|
58 |
+
class HardDiskBackend(BaseStorageBackend):
|
59 |
+
"""Raw hard disks storage backend."""
|
60 |
+
|
61 |
+
def get(self, filepath):
|
62 |
+
filepath = str(filepath)
|
63 |
+
with open(filepath, 'rb') as f:
|
64 |
+
value_buf = f.read()
|
65 |
+
return value_buf
|
66 |
+
|
67 |
+
def get_text(self, filepath):
|
68 |
+
filepath = str(filepath)
|
69 |
+
with open(filepath, 'r') as f:
|
70 |
+
value_buf = f.read()
|
71 |
+
return value_buf
|
72 |
+
|
73 |
+
|
74 |
+
class LmdbBackend(BaseStorageBackend):
|
75 |
+
"""Lmdb storage backend.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
db_paths (str | list[str]): Lmdb database paths.
|
79 |
+
client_keys (str | list[str]): Lmdb client keys. Default: 'default'.
|
80 |
+
readonly (bool, optional): Lmdb environment parameter. If True,
|
81 |
+
disallow any write operations. Default: True.
|
82 |
+
lock (bool, optional): Lmdb environment parameter. If False, when
|
83 |
+
concurrent access occurs, do not lock the database. Default: False.
|
84 |
+
readahead (bool, optional): Lmdb environment parameter. If False,
|
85 |
+
disable the OS filesystem readahead mechanism, which may improve
|
86 |
+
random read performance when a database is larger than RAM.
|
87 |
+
Default: False.
|
88 |
+
|
89 |
+
Attributes:
|
90 |
+
db_paths (list): Lmdb database path.
|
91 |
+
_client (list): A list of several lmdb envs.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs):
|
95 |
+
try:
|
96 |
+
import lmdb
|
97 |
+
except ImportError:
|
98 |
+
raise ImportError('Please install lmdb to enable LmdbBackend.')
|
99 |
+
|
100 |
+
if isinstance(client_keys, str):
|
101 |
+
client_keys = [client_keys]
|
102 |
+
|
103 |
+
if isinstance(db_paths, list):
|
104 |
+
self.db_paths = [str(v) for v in db_paths]
|
105 |
+
elif isinstance(db_paths, str):
|
106 |
+
self.db_paths = [str(db_paths)]
|
107 |
+
assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, '
|
108 |
+
f'but received {len(client_keys)} and {len(self.db_paths)}.')
|
109 |
+
|
110 |
+
self._client = {}
|
111 |
+
for client, path in zip(client_keys, self.db_paths):
|
112 |
+
self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs)
|
113 |
+
|
114 |
+
def get(self, filepath, client_key):
|
115 |
+
"""Get values according to the filepath from one lmdb named client_key.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
filepath (str | obj:`Path`): Here, filepath is the lmdb key.
|
119 |
+
client_key (str): Used for distinguishing different lmdb envs.
|
120 |
+
"""
|
121 |
+
filepath = str(filepath)
|
122 |
+
assert client_key in self._client, (f'client_key {client_key} is not in lmdb clients.')
|
123 |
+
client = self._client[client_key]
|
124 |
+
with client.begin(write=False) as txn:
|
125 |
+
value_buf = txn.get(filepath.encode('ascii'))
|
126 |
+
return value_buf
|
127 |
+
|
128 |
+
def get_text(self, filepath):
|
129 |
+
raise NotImplementedError
|
130 |
+
|
131 |
+
|
132 |
+
class FileClient(object):
|
133 |
+
"""A general file client to access files in different backend.
|
134 |
+
|
135 |
+
The client loads a file or text in a specified backend from its path
|
136 |
+
and return it as a binary file. it can also register other backend
|
137 |
+
accessor with a given name and backend class.
|
138 |
+
|
139 |
+
Attributes:
|
140 |
+
backend (str): The storage backend type. Options are "disk",
|
141 |
+
"memcached" and "lmdb".
|
142 |
+
client (:obj:`BaseStorageBackend`): The backend object.
|
143 |
+
"""
|
144 |
+
|
145 |
+
_backends = {
|
146 |
+
'disk': HardDiskBackend,
|
147 |
+
'memcached': MemcachedBackend,
|
148 |
+
'lmdb': LmdbBackend,
|
149 |
+
}
|
150 |
+
|
151 |
+
def __init__(self, backend='disk', **kwargs):
|
152 |
+
if backend not in self._backends:
|
153 |
+
raise ValueError(f'Backend {backend} is not supported. Currently supported ones'
|
154 |
+
f' are {list(self._backends.keys())}')
|
155 |
+
self.backend = backend
|
156 |
+
self.client = self._backends[backend](**kwargs)
|
157 |
+
|
158 |
+
def get(self, filepath, client_key='default'):
|
159 |
+
# client_key is used only for lmdb, where different fileclients have
|
160 |
+
# different lmdb environments.
|
161 |
+
if self.backend == 'lmdb':
|
162 |
+
return self.client.get(filepath, client_key)
|
163 |
+
else:
|
164 |
+
return self.client.get(filepath)
|
165 |
+
|
166 |
+
def get_text(self, filepath):
|
167 |
+
return self.client.get_text(filepath)
|
utils/img_util.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from torchvision.utils import make_grid
|
7 |
+
|
8 |
+
|
9 |
+
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
10 |
+
"""Numpy array to tensor.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
imgs (list[ndarray] | ndarray): Input images.
|
14 |
+
bgr2rgb (bool): Whether to change bgr to rgb.
|
15 |
+
float32 (bool): Whether to change to float32.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
list[tensor] | tensor: Tensor images. If returned results only have
|
19 |
+
one element, just return tensor.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def _totensor(img, bgr2rgb, float32):
|
23 |
+
if img.shape[2] == 3 and bgr2rgb:
|
24 |
+
if img.dtype == 'float64':
|
25 |
+
img = img.astype('float32')
|
26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
27 |
+
img = torch.from_numpy(img.transpose(2, 0, 1))
|
28 |
+
if float32:
|
29 |
+
img = img.float()
|
30 |
+
return img
|
31 |
+
|
32 |
+
if isinstance(imgs, list):
|
33 |
+
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
34 |
+
else:
|
35 |
+
return _totensor(imgs, bgr2rgb, float32)
|
36 |
+
|
37 |
+
|
38 |
+
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
39 |
+
"""Convert torch Tensors into image numpy arrays.
|
40 |
+
|
41 |
+
After clamping to [min, max], values will be normalized to [0, 1].
|
42 |
+
|
43 |
+
Args:
|
44 |
+
tensor (Tensor or list[Tensor]): Accept shapes:
|
45 |
+
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
46 |
+
2) 3D Tensor of shape (3/1 x H x W);
|
47 |
+
3) 2D Tensor of shape (H x W).
|
48 |
+
Tensor channel should be in RGB order.
|
49 |
+
rgb2bgr (bool): Whether to change rgb to bgr.
|
50 |
+
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
51 |
+
to uint8 type with range [0, 255]; otherwise, float type with
|
52 |
+
range [0, 1]. Default: ``np.uint8``.
|
53 |
+
min_max (tuple[int]): min and max values for clamp.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
57 |
+
shape (H x W). The channel order is BGR.
|
58 |
+
"""
|
59 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
60 |
+
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
61 |
+
|
62 |
+
if torch.is_tensor(tensor):
|
63 |
+
tensor = [tensor]
|
64 |
+
result = []
|
65 |
+
for _tensor in tensor:
|
66 |
+
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
67 |
+
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
68 |
+
|
69 |
+
n_dim = _tensor.dim()
|
70 |
+
if n_dim == 4:
|
71 |
+
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
72 |
+
img_np = img_np.transpose(1, 2, 0)
|
73 |
+
if rgb2bgr:
|
74 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
75 |
+
elif n_dim == 3:
|
76 |
+
img_np = _tensor.numpy()
|
77 |
+
img_np = img_np.transpose(1, 2, 0)
|
78 |
+
if img_np.shape[2] == 1: # gray image
|
79 |
+
img_np = np.squeeze(img_np, axis=2)
|
80 |
+
else:
|
81 |
+
if rgb2bgr:
|
82 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
83 |
+
elif n_dim == 2:
|
84 |
+
img_np = _tensor.numpy()
|
85 |
+
else:
|
86 |
+
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
87 |
+
if out_type == np.uint8:
|
88 |
+
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
89 |
+
img_np = (img_np * 255.0).round()
|
90 |
+
img_np = img_np.astype(out_type)
|
91 |
+
result.append(img_np)
|
92 |
+
if len(result) == 1:
|
93 |
+
result = result[0]
|
94 |
+
return result
|
95 |
+
|
96 |
+
|
97 |
+
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
|
98 |
+
"""This implementation is slightly faster than tensor2img.
|
99 |
+
It now only supports torch tensor with shape (1, c, h, w).
|
100 |
+
|
101 |
+
Args:
|
102 |
+
tensor (Tensor): Now only support torch tensor with (1, c, h, w).
|
103 |
+
rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
|
104 |
+
min_max (tuple[int]): min and max values for clamp.
|
105 |
+
"""
|
106 |
+
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
|
107 |
+
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
|
108 |
+
output = output.type(torch.uint8).cpu().numpy()
|
109 |
+
if rgb2bgr:
|
110 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
111 |
+
return output
|
112 |
+
|
113 |
+
|
114 |
+
def imfrombytes(content, flag='color', float32=False):
|
115 |
+
"""Read an image from bytes.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
content (bytes): Image bytes got from files or other streams.
|
119 |
+
flag (str): Flags specifying the color type of a loaded image,
|
120 |
+
candidates are `color`, `grayscale` and `unchanged`.
|
121 |
+
float32 (bool): Whether to change to float32., If True, will also norm
|
122 |
+
to [0, 1]. Default: False.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
ndarray: Loaded image array.
|
126 |
+
"""
|
127 |
+
img_np = np.frombuffer(content, np.uint8)
|
128 |
+
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
|
129 |
+
img = cv2.imdecode(img_np, imread_flags[flag])
|
130 |
+
if float32:
|
131 |
+
img = img.astype(np.float32) / 255.
|
132 |
+
return img
|
133 |
+
|
134 |
+
|
135 |
+
def imwrite(img, file_path, params=None, auto_mkdir=True):
|
136 |
+
"""Write image to file.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
img (ndarray): Image array to be written.
|
140 |
+
file_path (str): Image file path.
|
141 |
+
params (None or list): Same as opencv's :func:`imwrite` interface.
|
142 |
+
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
|
143 |
+
whether to create it automatically.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
bool: Successful or not.
|
147 |
+
"""
|
148 |
+
if auto_mkdir:
|
149 |
+
dir_name = os.path.abspath(os.path.dirname(file_path))
|
150 |
+
os.makedirs(dir_name, exist_ok=True)
|
151 |
+
ok = cv2.imwrite(file_path, img, params)
|
152 |
+
if not ok:
|
153 |
+
raise IOError('Failed in writing images.')
|
154 |
+
|
155 |
+
|
156 |
+
def crop_border(imgs, crop_border):
|
157 |
+
"""Crop borders of images.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
|
161 |
+
crop_border (int): Crop border for each end of height and weight.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
list[ndarray]: Cropped images.
|
165 |
+
"""
|
166 |
+
if crop_border == 0:
|
167 |
+
return imgs
|
168 |
+
else:
|
169 |
+
if isinstance(imgs, list):
|
170 |
+
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
|
171 |
+
else:
|
172 |
+
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
|
utils/logger.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import logging
|
3 |
+
import time
|
4 |
+
|
5 |
+
from .dist_util import get_dist_info, master_only
|
6 |
+
|
7 |
+
initialized_logger = {}
|
8 |
+
|
9 |
+
|
10 |
+
class AvgTimer():
|
11 |
+
|
12 |
+
def __init__(self, window=200):
|
13 |
+
self.window = window # average window
|
14 |
+
self.current_time = 0
|
15 |
+
self.total_time = 0
|
16 |
+
self.count = 0
|
17 |
+
self.avg_time = 0
|
18 |
+
self.start()
|
19 |
+
|
20 |
+
def start(self):
|
21 |
+
self.start_time = self.tic = time.time()
|
22 |
+
|
23 |
+
def record(self):
|
24 |
+
self.count += 1
|
25 |
+
self.toc = time.time()
|
26 |
+
self.current_time = self.toc - self.tic
|
27 |
+
self.total_time += self.current_time
|
28 |
+
# calculate average time
|
29 |
+
self.avg_time = self.total_time / self.count
|
30 |
+
|
31 |
+
# reset
|
32 |
+
if self.count > self.window:
|
33 |
+
self.count = 0
|
34 |
+
self.total_time = 0
|
35 |
+
|
36 |
+
self.tic = time.time()
|
37 |
+
|
38 |
+
def get_current_time(self):
|
39 |
+
return self.current_time
|
40 |
+
|
41 |
+
def get_avg_time(self):
|
42 |
+
return self.avg_time
|
43 |
+
|
44 |
+
|
45 |
+
class MessageLogger():
|
46 |
+
"""Message logger for printing.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
opt (dict): Config. It contains the following keys:
|
50 |
+
name (str): Exp name.
|
51 |
+
logger (dict): Contains 'print_freq' (str) for logger interval.
|
52 |
+
train (dict): Contains 'total_iter' (int) for total iters.
|
53 |
+
use_tb_logger (bool): Use tensorboard logger.
|
54 |
+
start_iter (int): Start iter. Default: 1.
|
55 |
+
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, opt, start_iter=1, tb_logger=None):
|
59 |
+
self.exp_name = opt['name']
|
60 |
+
self.interval = opt['logger']['print_freq']
|
61 |
+
self.start_iter = start_iter
|
62 |
+
self.max_iters = opt['train']['total_iter']
|
63 |
+
self.use_tb_logger = opt['logger']['use_tb_logger']
|
64 |
+
self.tb_logger = tb_logger
|
65 |
+
self.start_time = time.time()
|
66 |
+
self.logger = get_root_logger()
|
67 |
+
|
68 |
+
def reset_start_time(self):
|
69 |
+
self.start_time = time.time()
|
70 |
+
|
71 |
+
@master_only
|
72 |
+
def __call__(self, log_vars):
|
73 |
+
"""Format logging message.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
log_vars (dict): It contains the following keys:
|
77 |
+
epoch (int): Epoch number.
|
78 |
+
iter (int): Current iter.
|
79 |
+
lrs (list): List for learning rates.
|
80 |
+
|
81 |
+
time (float): Iter time.
|
82 |
+
data_time (float): Data time for each iter.
|
83 |
+
"""
|
84 |
+
# epoch, iter, learning rates
|
85 |
+
epoch = log_vars.pop('epoch')
|
86 |
+
current_iter = log_vars.pop('iter')
|
87 |
+
lrs = log_vars.pop('lrs')
|
88 |
+
|
89 |
+
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, iter:{current_iter:8,d}, lr:(')
|
90 |
+
for v in lrs:
|
91 |
+
message += f'{v:.3e},'
|
92 |
+
message += ')] '
|
93 |
+
|
94 |
+
# time and estimated time
|
95 |
+
if 'time' in log_vars.keys():
|
96 |
+
iter_time = log_vars.pop('time')
|
97 |
+
data_time = log_vars.pop('data_time')
|
98 |
+
|
99 |
+
total_time = time.time() - self.start_time
|
100 |
+
time_sec_avg = total_time / (current_iter - self.start_iter + 1)
|
101 |
+
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
|
102 |
+
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
|
103 |
+
message += f'[eta: {eta_str}, '
|
104 |
+
message += f'time (data): {iter_time:.3f} ({data_time:.3f})] '
|
105 |
+
|
106 |
+
# other items, especially losses
|
107 |
+
for k, v in log_vars.items():
|
108 |
+
message += f'{k}: {v:.4e} '
|
109 |
+
# tensorboard logger
|
110 |
+
if self.use_tb_logger and 'debug' not in self.exp_name:
|
111 |
+
if k.startswith('l_'):
|
112 |
+
self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
|
113 |
+
else:
|
114 |
+
self.tb_logger.add_scalar(k, v, current_iter)
|
115 |
+
self.logger.info(message)
|
116 |
+
|
117 |
+
|
118 |
+
@master_only
|
119 |
+
def init_tb_logger(log_dir):
|
120 |
+
from torch.utils.tensorboard import SummaryWriter
|
121 |
+
tb_logger = SummaryWriter(log_dir=log_dir)
|
122 |
+
return tb_logger
|
123 |
+
|
124 |
+
|
125 |
+
@master_only
|
126 |
+
def init_wandb_logger(opt):
|
127 |
+
"""We now only use wandb to sync tensorboard log."""
|
128 |
+
import wandb
|
129 |
+
logger = get_root_logger()
|
130 |
+
|
131 |
+
project = opt['logger']['wandb']['project']
|
132 |
+
resume_id = opt['logger']['wandb'].get('resume_id')
|
133 |
+
if resume_id:
|
134 |
+
wandb_id = resume_id
|
135 |
+
resume = 'allow'
|
136 |
+
logger.warning(f'Resume wandb logger with id={wandb_id}.')
|
137 |
+
else:
|
138 |
+
wandb_id = wandb.util.generate_id()
|
139 |
+
resume = 'never'
|
140 |
+
|
141 |
+
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True)
|
142 |
+
|
143 |
+
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.')
|
144 |
+
|
145 |
+
|
146 |
+
def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None):
|
147 |
+
"""Get the root logger.
|
148 |
+
|
149 |
+
The logger will be initialized if it has not been initialized. By default a
|
150 |
+
StreamHandler will be added. If `log_file` is specified, a FileHandler will
|
151 |
+
also be added.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
logger_name (str): root logger name. Default: 'basicsr'.
|
155 |
+
log_file (str | None): The log filename. If specified, a FileHandler
|
156 |
+
will be added to the root logger.
|
157 |
+
log_level (int): The root logger level. Note that only the process of
|
158 |
+
rank 0 is affected, while other processes will set the level to
|
159 |
+
"Error" and be silent most of the time.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
logging.Logger: The root logger.
|
163 |
+
"""
|
164 |
+
logger = logging.getLogger(logger_name)
|
165 |
+
# if the logger has been initialized, just return it
|
166 |
+
if logger_name in initialized_logger:
|
167 |
+
return logger
|
168 |
+
|
169 |
+
format_str = '%(asctime)s %(levelname)s: %(message)s'
|
170 |
+
stream_handler = logging.StreamHandler()
|
171 |
+
stream_handler.setFormatter(logging.Formatter(format_str))
|
172 |
+
logger.addHandler(stream_handler)
|
173 |
+
logger.propagate = False
|
174 |
+
rank, _ = get_dist_info()
|
175 |
+
if rank != 0:
|
176 |
+
logger.setLevel('ERROR')
|
177 |
+
elif log_file is not None:
|
178 |
+
logger.setLevel(log_level)
|
179 |
+
# add file handler
|
180 |
+
file_handler = logging.FileHandler(log_file, 'w')
|
181 |
+
file_handler.setFormatter(logging.Formatter(format_str))
|
182 |
+
file_handler.setLevel(log_level)
|
183 |
+
logger.addHandler(file_handler)
|
184 |
+
initialized_logger[logger_name] = True
|
185 |
+
return logger
|
186 |
+
|
187 |
+
|
188 |
+
def get_env_info():
|
189 |
+
"""Get environment information.
|
190 |
+
|
191 |
+
Currently, only log the software version.
|
192 |
+
"""
|
193 |
+
import torch
|
194 |
+
import torchvision
|
195 |
+
|
196 |
+
from basicsr.version import __version__
|
197 |
+
msg = r"""
|
198 |
+
____ _ _____ ____
|
199 |
+
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \
|
200 |
+
/ __ |/ __ `// ___// // ___/\__ \ / /_/ /
|
201 |
+
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/
|
202 |
+
/_____/ \__,_//____//_/ \___//____//_/ |_|
|
203 |
+
______ __ __ __ __
|
204 |
+
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / /
|
205 |
+
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / /
|
206 |
+
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/
|
207 |
+
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_)
|
208 |
+
"""
|
209 |
+
msg += ('\nVersion Information: '
|
210 |
+
f'\n\tBasicSR: {__version__}'
|
211 |
+
f'\n\tPyTorch: {torch.__version__}'
|
212 |
+
f'\n\tTorchVision: {torchvision.__version__}')
|
213 |
+
return msg
|
utils/matlab_functions.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def cubic(x):
|
7 |
+
"""cubic function used for calculate_weights_indices."""
|
8 |
+
absx = torch.abs(x)
|
9 |
+
absx2 = absx**2
|
10 |
+
absx3 = absx**3
|
11 |
+
return (1.5 * absx3 - 2.5 * absx2 + 1) * (
|
12 |
+
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
|
13 |
+
(absx <= 2)).type_as(absx))
|
14 |
+
|
15 |
+
|
16 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
17 |
+
"""Calculate weights and indices, used for imresize function.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
in_length (int): Input length.
|
21 |
+
out_length (int): Output length.
|
22 |
+
scale (float): Scale factor.
|
23 |
+
kernel_width (int): Kernel width.
|
24 |
+
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
25 |
+
"""
|
26 |
+
|
27 |
+
if (scale < 1) and antialiasing:
|
28 |
+
# Use a modified kernel (larger kernel width) to simultaneously
|
29 |
+
# interpolate and antialias
|
30 |
+
kernel_width = kernel_width / scale
|
31 |
+
|
32 |
+
# Output-space coordinates
|
33 |
+
x = torch.linspace(1, out_length, out_length)
|
34 |
+
|
35 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
36 |
+
# in output space maps to 0.5 in input space, and 0.5 + scale in output
|
37 |
+
# space maps to 1.5 in input space.
|
38 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
39 |
+
|
40 |
+
# What is the left-most pixel that can be involved in the computation?
|
41 |
+
left = torch.floor(u - kernel_width / 2)
|
42 |
+
|
43 |
+
# What is the maximum number of pixels that can be involved in the
|
44 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
45 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
46 |
+
# of this function.
|
47 |
+
p = math.ceil(kernel_width) + 2
|
48 |
+
|
49 |
+
# The indices of the input pixels involved in computing the k-th output
|
50 |
+
# pixel are in row k of the indices matrix.
|
51 |
+
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
|
52 |
+
out_length, p)
|
53 |
+
|
54 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
55 |
+
# weights matrix.
|
56 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
|
57 |
+
|
58 |
+
# apply cubic kernel
|
59 |
+
if (scale < 1) and antialiasing:
|
60 |
+
weights = scale * cubic(distance_to_center * scale)
|
61 |
+
else:
|
62 |
+
weights = cubic(distance_to_center)
|
63 |
+
|
64 |
+
# Normalize the weights matrix so that each row sums to 1.
|
65 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
66 |
+
weights = weights / weights_sum.expand(out_length, p)
|
67 |
+
|
68 |
+
# If a column in weights is all zero, get rid of it. only consider the
|
69 |
+
# first and last column.
|
70 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
71 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
72 |
+
indices = indices.narrow(1, 1, p - 2)
|
73 |
+
weights = weights.narrow(1, 1, p - 2)
|
74 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
75 |
+
indices = indices.narrow(1, 0, p - 2)
|
76 |
+
weights = weights.narrow(1, 0, p - 2)
|
77 |
+
weights = weights.contiguous()
|
78 |
+
indices = indices.contiguous()
|
79 |
+
sym_len_s = -indices.min() + 1
|
80 |
+
sym_len_e = indices.max() - in_length
|
81 |
+
indices = indices + sym_len_s - 1
|
82 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
83 |
+
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def imresize(img, scale, antialiasing=True):
|
87 |
+
"""imresize function same as MATLAB.
|
88 |
+
|
89 |
+
It now only supports bicubic.
|
90 |
+
The same scale applies for both height and width.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
img (Tensor | Numpy array):
|
94 |
+
Tensor: Input image with shape (c, h, w), [0, 1] range.
|
95 |
+
Numpy: Input image with shape (h, w, c), [0, 1] range.
|
96 |
+
scale (float): Scale factor. The same scale applies for both height
|
97 |
+
and width.
|
98 |
+
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
99 |
+
Default: True.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
|
103 |
+
"""
|
104 |
+
squeeze_flag = False
|
105 |
+
if type(img).__module__ == np.__name__: # numpy type
|
106 |
+
numpy_type = True
|
107 |
+
if img.ndim == 2:
|
108 |
+
img = img[:, :, None]
|
109 |
+
squeeze_flag = True
|
110 |
+
img = torch.from_numpy(img.transpose(2, 0, 1)).float()
|
111 |
+
else:
|
112 |
+
numpy_type = False
|
113 |
+
if img.ndim == 2:
|
114 |
+
img = img.unsqueeze(0)
|
115 |
+
squeeze_flag = True
|
116 |
+
|
117 |
+
in_c, in_h, in_w = img.size()
|
118 |
+
out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
|
119 |
+
kernel_width = 4
|
120 |
+
kernel = 'cubic'
|
121 |
+
|
122 |
+
# get weights and indices
|
123 |
+
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
|
124 |
+
antialiasing)
|
125 |
+
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
|
126 |
+
antialiasing)
|
127 |
+
# process H dimension
|
128 |
+
# symmetric copying
|
129 |
+
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
|
130 |
+
img_aug.narrow(1, sym_len_hs, in_h).copy_(img)
|
131 |
+
|
132 |
+
sym_patch = img[:, :sym_len_hs, :]
|
133 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
134 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
135 |
+
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
|
136 |
+
|
137 |
+
sym_patch = img[:, -sym_len_he:, :]
|
138 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
139 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
140 |
+
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
|
141 |
+
|
142 |
+
out_1 = torch.FloatTensor(in_c, out_h, in_w)
|
143 |
+
kernel_width = weights_h.size(1)
|
144 |
+
for i in range(out_h):
|
145 |
+
idx = int(indices_h[i][0])
|
146 |
+
for j in range(in_c):
|
147 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
|
148 |
+
|
149 |
+
# process W dimension
|
150 |
+
# symmetric copying
|
151 |
+
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
|
152 |
+
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
|
153 |
+
|
154 |
+
sym_patch = out_1[:, :, :sym_len_ws]
|
155 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
156 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
157 |
+
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
|
158 |
+
|
159 |
+
sym_patch = out_1[:, :, -sym_len_we:]
|
160 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
161 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
162 |
+
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
|
163 |
+
|
164 |
+
out_2 = torch.FloatTensor(in_c, out_h, out_w)
|
165 |
+
kernel_width = weights_w.size(1)
|
166 |
+
for i in range(out_w):
|
167 |
+
idx = int(indices_w[i][0])
|
168 |
+
for j in range(in_c):
|
169 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
|
170 |
+
|
171 |
+
if squeeze_flag:
|
172 |
+
out_2 = out_2.squeeze(0)
|
173 |
+
if numpy_type:
|
174 |
+
out_2 = out_2.numpy()
|
175 |
+
if not squeeze_flag:
|
176 |
+
out_2 = out_2.transpose(1, 2, 0)
|
177 |
+
|
178 |
+
return out_2
|
179 |
+
|
180 |
+
|
181 |
+
def rgb2ycbcr(img, y_only=False):
|
182 |
+
"""Convert a RGB image to YCbCr image.
|
183 |
+
|
184 |
+
This function produces the same results as Matlab's `rgb2ycbcr` function.
|
185 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
186 |
+
television. See more details in
|
187 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
188 |
+
|
189 |
+
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
|
190 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
191 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
img (ndarray): The input image. It accepts:
|
195 |
+
1. np.uint8 type with range [0, 255];
|
196 |
+
2. np.float32 type with range [0, 1].
|
197 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
201 |
+
and range as input image.
|
202 |
+
"""
|
203 |
+
img_type = img.dtype
|
204 |
+
img = _convert_input_type_range(img)
|
205 |
+
if y_only:
|
206 |
+
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
|
207 |
+
else:
|
208 |
+
out_img = np.matmul(
|
209 |
+
img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
|
210 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
211 |
+
return out_img
|
212 |
+
|
213 |
+
|
214 |
+
def bgr2ycbcr(img, y_only=False):
|
215 |
+
"""Convert a BGR image to YCbCr image.
|
216 |
+
|
217 |
+
The bgr version of rgb2ycbcr.
|
218 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
219 |
+
television. See more details in
|
220 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
221 |
+
|
222 |
+
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
223 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
224 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
img (ndarray): The input image. It accepts:
|
228 |
+
1. np.uint8 type with range [0, 255];
|
229 |
+
2. np.float32 type with range [0, 1].
|
230 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
234 |
+
and range as input image.
|
235 |
+
"""
|
236 |
+
img_type = img.dtype
|
237 |
+
img = _convert_input_type_range(img)
|
238 |
+
if y_only:
|
239 |
+
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
240 |
+
else:
|
241 |
+
out_img = np.matmul(
|
242 |
+
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
243 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
244 |
+
return out_img
|
245 |
+
|
246 |
+
|
247 |
+
def ycbcr2rgb(img):
|
248 |
+
"""Convert a YCbCr image to RGB image.
|
249 |
+
|
250 |
+
This function produces the same results as Matlab's ycbcr2rgb function.
|
251 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
252 |
+
television. See more details in
|
253 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
254 |
+
|
255 |
+
It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
|
256 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
257 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
img (ndarray): The input image. It accepts:
|
261 |
+
1. np.uint8 type with range [0, 255];
|
262 |
+
2. np.float32 type with range [0, 1].
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
ndarray: The converted RGB image. The output image has the same type
|
266 |
+
and range as input image.
|
267 |
+
"""
|
268 |
+
img_type = img.dtype
|
269 |
+
img = _convert_input_type_range(img) * 255
|
270 |
+
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
271 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126
|
272 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
273 |
+
return out_img
|
274 |
+
|
275 |
+
|
276 |
+
def ycbcr2bgr(img):
|
277 |
+
"""Convert a YCbCr image to BGR image.
|
278 |
+
|
279 |
+
The bgr version of ycbcr2rgb.
|
280 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
281 |
+
television. See more details in
|
282 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
283 |
+
|
284 |
+
It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
|
285 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
286 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
img (ndarray): The input image. It accepts:
|
290 |
+
1. np.uint8 type with range [0, 255];
|
291 |
+
2. np.float32 type with range [0, 1].
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
ndarray: The converted BGR image. The output image has the same type
|
295 |
+
and range as input image.
|
296 |
+
"""
|
297 |
+
img_type = img.dtype
|
298 |
+
img = _convert_input_type_range(img) * 255
|
299 |
+
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
|
300 |
+
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126
|
301 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
302 |
+
return out_img
|
303 |
+
|
304 |
+
|
305 |
+
def _convert_input_type_range(img):
|
306 |
+
"""Convert the type and range of the input image.
|
307 |
+
|
308 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
309 |
+
It is mainly used for pre-processing the input image in colorspace
|
310 |
+
conversion functions such as rgb2ycbcr and ycbcr2rgb.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
img (ndarray): The input image. It accepts:
|
314 |
+
1. np.uint8 type with range [0, 255];
|
315 |
+
2. np.float32 type with range [0, 1].
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
(ndarray): The converted image with type of np.float32 and range of
|
319 |
+
[0, 1].
|
320 |
+
"""
|
321 |
+
img_type = img.dtype
|
322 |
+
img = img.astype(np.float32)
|
323 |
+
if img_type == np.float32:
|
324 |
+
pass
|
325 |
+
elif img_type == np.uint8:
|
326 |
+
img /= 255.
|
327 |
+
else:
|
328 |
+
raise TypeError(f'The img type should be np.float32 or np.uint8, but got {img_type}')
|
329 |
+
return img
|
330 |
+
|
331 |
+
|
332 |
+
def _convert_output_type_range(img, dst_type):
|
333 |
+
"""Convert the type and range of the image according to dst_type.
|
334 |
+
|
335 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
336 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
337 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
338 |
+
range [0, 1].
|
339 |
+
It is mainly used for post-processing images in colorspace conversion
|
340 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
img (ndarray): The image to be converted with np.float32 type and
|
344 |
+
range [0, 255].
|
345 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
346 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
347 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
348 |
+
with range [0, 1].
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
(ndarray): The converted image with desired type and range.
|
352 |
+
"""
|
353 |
+
if dst_type not in (np.uint8, np.float32):
|
354 |
+
raise TypeError(f'The dst_type should be np.float32 or np.uint8, but got {dst_type}')
|
355 |
+
if dst_type == np.uint8:
|
356 |
+
img = img.round()
|
357 |
+
else:
|
358 |
+
img /= 255.
|
359 |
+
return img.astype(dst_type)
|
utils/misc.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
from os import path as osp
|
7 |
+
|
8 |
+
from .dist_util import master_only
|
9 |
+
|
10 |
+
|
11 |
+
def set_random_seed(seed):
|
12 |
+
"""Set random seeds."""
|
13 |
+
random.seed(seed)
|
14 |
+
np.random.seed(seed)
|
15 |
+
torch.manual_seed(seed)
|
16 |
+
torch.cuda.manual_seed(seed)
|
17 |
+
torch.cuda.manual_seed_all(seed)
|
18 |
+
|
19 |
+
|
20 |
+
def get_time_str():
|
21 |
+
return time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
22 |
+
|
23 |
+
|
24 |
+
def mkdir_and_rename(path):
|
25 |
+
"""mkdirs. If path exists, rename it with timestamp and create a new one.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
path (str): Folder path.
|
29 |
+
"""
|
30 |
+
if osp.exists(path):
|
31 |
+
new_name = path + '_archived_' + get_time_str()
|
32 |
+
print(f'Path already exists. Rename it to {new_name}', flush=True)
|
33 |
+
os.rename(path, new_name)
|
34 |
+
os.makedirs(path, exist_ok=True)
|
35 |
+
|
36 |
+
|
37 |
+
@master_only
|
38 |
+
def make_exp_dirs(opt):
|
39 |
+
"""Make dirs for experiments."""
|
40 |
+
path_opt = opt['path'].copy()
|
41 |
+
if opt['is_train']:
|
42 |
+
mkdir_and_rename(path_opt.pop('experiments_root'))
|
43 |
+
else:
|
44 |
+
mkdir_and_rename(path_opt.pop('results_root'))
|
45 |
+
for key, path in path_opt.items():
|
46 |
+
if ('strict_load' in key) or ('pretrain_network' in key) or ('resume' in key) or ('param_key' in key):
|
47 |
+
continue
|
48 |
+
else:
|
49 |
+
os.makedirs(path, exist_ok=True)
|
50 |
+
|
51 |
+
|
52 |
+
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
|
53 |
+
"""Scan a directory to find the interested files.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
dir_path (str): Path of the directory.
|
57 |
+
suffix (str | tuple(str), optional): File suffix that we are
|
58 |
+
interested in. Default: None.
|
59 |
+
recursive (bool, optional): If set to True, recursively scan the
|
60 |
+
directory. Default: False.
|
61 |
+
full_path (bool, optional): If set to True, include the dir_path.
|
62 |
+
Default: False.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
A generator for all the interested files with relative paths.
|
66 |
+
"""
|
67 |
+
|
68 |
+
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
|
69 |
+
raise TypeError('"suffix" must be a string or tuple of strings')
|
70 |
+
|
71 |
+
root = dir_path
|
72 |
+
|
73 |
+
def _scandir(dir_path, suffix, recursive):
|
74 |
+
for entry in os.scandir(dir_path):
|
75 |
+
if not entry.name.startswith('.') and entry.is_file():
|
76 |
+
if full_path:
|
77 |
+
return_path = entry.path
|
78 |
+
else:
|
79 |
+
return_path = osp.relpath(entry.path, root)
|
80 |
+
|
81 |
+
if suffix is None:
|
82 |
+
yield return_path
|
83 |
+
elif return_path.endswith(suffix):
|
84 |
+
yield return_path
|
85 |
+
else:
|
86 |
+
if recursive:
|
87 |
+
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
|
88 |
+
else:
|
89 |
+
continue
|
90 |
+
|
91 |
+
return _scandir(dir_path, suffix=suffix, recursive=recursive)
|
92 |
+
|
93 |
+
|
94 |
+
def check_resume(opt, resume_iter):
|
95 |
+
"""Check resume states and pretrain_network paths.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
opt (dict): Options.
|
99 |
+
resume_iter (int): Resume iteration.
|
100 |
+
"""
|
101 |
+
if opt['path']['resume_state']:
|
102 |
+
# get all the networks
|
103 |
+
networks = [key for key in opt.keys() if key.startswith('network_')]
|
104 |
+
flag_pretrain = False
|
105 |
+
for network in networks:
|
106 |
+
if opt['path'].get(f'pretrain_{network}') is not None:
|
107 |
+
flag_pretrain = True
|
108 |
+
if flag_pretrain:
|
109 |
+
print('pretrain_network path will be ignored during resuming.')
|
110 |
+
# set pretrained model paths
|
111 |
+
for network in networks:
|
112 |
+
name = f'pretrain_{network}'
|
113 |
+
basename = network.replace('network_', '')
|
114 |
+
if opt['path'].get('ignore_resume_networks') is None or (network
|
115 |
+
not in opt['path']['ignore_resume_networks']):
|
116 |
+
opt['path'][name] = osp.join(opt['path']['models'], f'net_{basename}_{resume_iter}.pth')
|
117 |
+
print(f"Set {name} to {opt['path'][name]}")
|
118 |
+
|
119 |
+
# change param_key to params in resume
|
120 |
+
param_keys = [key for key in opt['path'].keys() if key.startswith('param_key')]
|
121 |
+
for param_key in param_keys:
|
122 |
+
if opt['path'][param_key] == 'params_ema':
|
123 |
+
opt['path'][param_key] = 'params'
|
124 |
+
print(f'Set {param_key} to params')
|
125 |
+
|
126 |
+
|
127 |
+
def sizeof_fmt(size, suffix='B'):
|
128 |
+
"""Get human readable file size.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
size (int): File size.
|
132 |
+
suffix (str): Suffix. Default: 'B'.
|
133 |
+
|
134 |
+
Return:
|
135 |
+
str: Formatted file siz.
|
136 |
+
"""
|
137 |
+
for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
|
138 |
+
if abs(size) < 1024.0:
|
139 |
+
return f'{size:3.1f} {unit}{suffix}'
|
140 |
+
size /= 1024.0
|
141 |
+
return f'{size:3.1f} Y{suffix}'
|
utils/options.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
from collections import OrderedDict
|
6 |
+
from os import path as osp
|
7 |
+
|
8 |
+
from basicsr.utils import set_random_seed
|
9 |
+
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only
|
10 |
+
|
11 |
+
|
12 |
+
def ordered_yaml():
|
13 |
+
"""Support OrderedDict for yaml.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
yaml Loader and Dumper.
|
17 |
+
"""
|
18 |
+
try:
|
19 |
+
from yaml import CDumper as Dumper
|
20 |
+
from yaml import CLoader as Loader
|
21 |
+
except ImportError:
|
22 |
+
from yaml import Dumper, Loader
|
23 |
+
|
24 |
+
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
|
25 |
+
|
26 |
+
def dict_representer(dumper, data):
|
27 |
+
return dumper.represent_dict(data.items())
|
28 |
+
|
29 |
+
def dict_constructor(loader, node):
|
30 |
+
return OrderedDict(loader.construct_pairs(node))
|
31 |
+
|
32 |
+
Dumper.add_representer(OrderedDict, dict_representer)
|
33 |
+
Loader.add_constructor(_mapping_tag, dict_constructor)
|
34 |
+
return Loader, Dumper
|
35 |
+
|
36 |
+
|
37 |
+
def dict2str(opt, indent_level=1):
|
38 |
+
"""dict to string for printing options.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
opt (dict): Option dict.
|
42 |
+
indent_level (int): Indent level. Default: 1.
|
43 |
+
|
44 |
+
Return:
|
45 |
+
(str): Option string for printing.
|
46 |
+
"""
|
47 |
+
msg = '\n'
|
48 |
+
for k, v in opt.items():
|
49 |
+
if isinstance(v, dict):
|
50 |
+
msg += ' ' * (indent_level * 2) + k + ':['
|
51 |
+
msg += dict2str(v, indent_level + 1)
|
52 |
+
msg += ' ' * (indent_level * 2) + ']\n'
|
53 |
+
else:
|
54 |
+
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
|
55 |
+
return msg
|
56 |
+
|
57 |
+
|
58 |
+
def _postprocess_yml_value(value):
|
59 |
+
# None
|
60 |
+
if value == '~' or value.lower() == 'none':
|
61 |
+
return None
|
62 |
+
# bool
|
63 |
+
if value.lower() == 'true':
|
64 |
+
return True
|
65 |
+
elif value.lower() == 'false':
|
66 |
+
return False
|
67 |
+
# !!float number
|
68 |
+
if value.startswith('!!float'):
|
69 |
+
return float(value.replace('!!float', ''))
|
70 |
+
# number
|
71 |
+
if value.isdigit():
|
72 |
+
return int(value)
|
73 |
+
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
|
74 |
+
return float(value)
|
75 |
+
# list
|
76 |
+
if value.startswith('['):
|
77 |
+
return eval(value)
|
78 |
+
# str
|
79 |
+
return value
|
80 |
+
|
81 |
+
|
82 |
+
def parse_options(root_path, is_train=True):
|
83 |
+
parser = argparse.ArgumentParser()
|
84 |
+
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
|
85 |
+
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
|
86 |
+
parser.add_argument('--auto_resume', action='store_true')
|
87 |
+
parser.add_argument('--debug', action='store_true')
|
88 |
+
parser.add_argument('--local_rank', type=int, default=0)
|
89 |
+
parser.add_argument(
|
90 |
+
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999')
|
91 |
+
args = parser.parse_args()
|
92 |
+
|
93 |
+
# parse yml to dict
|
94 |
+
with open(args.opt, mode='r') as f:
|
95 |
+
opt = yaml.load(f, Loader=ordered_yaml()[0])
|
96 |
+
|
97 |
+
# distributed settings
|
98 |
+
if args.launcher == 'none':
|
99 |
+
opt['dist'] = False
|
100 |
+
print('Disable distributed.', flush=True)
|
101 |
+
else:
|
102 |
+
opt['dist'] = True
|
103 |
+
if args.launcher == 'slurm' and 'dist_params' in opt:
|
104 |
+
init_dist(args.launcher, **opt['dist_params'])
|
105 |
+
else:
|
106 |
+
init_dist(args.launcher)
|
107 |
+
opt['rank'], opt['world_size'] = get_dist_info()
|
108 |
+
|
109 |
+
# random seed
|
110 |
+
seed = opt.get('manual_seed')
|
111 |
+
if seed is None:
|
112 |
+
seed = random.randint(1, 10000)
|
113 |
+
opt['manual_seed'] = seed
|
114 |
+
set_random_seed(seed + opt['rank'])
|
115 |
+
|
116 |
+
# force to update yml options
|
117 |
+
if args.force_yml is not None:
|
118 |
+
for entry in args.force_yml:
|
119 |
+
# now do not support creating new keys
|
120 |
+
keys, value = entry.split('=')
|
121 |
+
keys, value = keys.strip(), value.strip()
|
122 |
+
value = _postprocess_yml_value(value)
|
123 |
+
eval_str = 'opt'
|
124 |
+
for key in keys.split(':'):
|
125 |
+
eval_str += f'["{key}"]'
|
126 |
+
eval_str += '=value'
|
127 |
+
# using exec function
|
128 |
+
exec(eval_str)
|
129 |
+
|
130 |
+
opt['auto_resume'] = args.auto_resume
|
131 |
+
opt['is_train'] = is_train
|
132 |
+
|
133 |
+
# debug setting
|
134 |
+
if args.debug and not opt['name'].startswith('debug'):
|
135 |
+
opt['name'] = 'debug_' + opt['name']
|
136 |
+
|
137 |
+
if opt['num_gpu'] == 'auto':
|
138 |
+
opt['num_gpu'] = torch.cuda.device_count()
|
139 |
+
|
140 |
+
# datasets
|
141 |
+
for phase, dataset in opt['datasets'].items():
|
142 |
+
# for multiple datasets, e.g., val_1, val_2; test_1, test_2
|
143 |
+
phase = phase.split('_')[0]
|
144 |
+
dataset['phase'] = phase
|
145 |
+
if 'scale' in opt:
|
146 |
+
dataset['scale'] = opt['scale']
|
147 |
+
if dataset.get('dataroot_gt') is not None:
|
148 |
+
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
|
149 |
+
if dataset.get('dataroot_lq') is not None:
|
150 |
+
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])
|
151 |
+
|
152 |
+
# paths
|
153 |
+
for key, val in opt['path'].items():
|
154 |
+
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
|
155 |
+
opt['path'][key] = osp.expanduser(val)
|
156 |
+
|
157 |
+
if is_train:
|
158 |
+
experiments_root = osp.join(root_path, 'experiments', opt['name'])
|
159 |
+
opt['path']['experiments_root'] = experiments_root
|
160 |
+
opt['path']['models'] = osp.join(experiments_root, 'models')
|
161 |
+
opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
|
162 |
+
opt['path']['log'] = experiments_root
|
163 |
+
opt['path']['visualization'] = osp.join(experiments_root, 'visualization')
|
164 |
+
|
165 |
+
# change some options for debug mode
|
166 |
+
if 'debug' in opt['name']:
|
167 |
+
if 'val' in opt:
|
168 |
+
opt['val']['val_freq'] = 8
|
169 |
+
opt['logger']['print_freq'] = 1
|
170 |
+
opt['logger']['save_checkpoint_freq'] = 8
|
171 |
+
else: # test
|
172 |
+
results_root = osp.join(root_path, 'results', opt['name'])
|
173 |
+
opt['path']['results_root'] = results_root
|
174 |
+
opt['path']['log'] = results_root
|
175 |
+
opt['path']['visualization'] = osp.join(results_root, 'visualization')
|
176 |
+
|
177 |
+
return opt, args
|
178 |
+
|
179 |
+
|
180 |
+
@master_only
|
181 |
+
def copy_opt_file(opt_file, experiments_root):
|
182 |
+
# copy the yml file to the experiment root
|
183 |
+
import sys
|
184 |
+
import time
|
185 |
+
from shutil import copyfile
|
186 |
+
cmd = ' '.join(sys.argv)
|
187 |
+
filename = osp.join(experiments_root, osp.basename(opt_file))
|
188 |
+
copyfile(opt_file, filename)
|
189 |
+
|
190 |
+
with open(filename, 'r+') as f:
|
191 |
+
lines = f.readlines()
|
192 |
+
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
|
193 |
+
f.seek(0)
|
194 |
+
f.writelines(lines)
|
utils/registry.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from: https://github.com/facebookresearch/fvcore/blob/master/fvcore/common/registry.py # noqa: E501
|
2 |
+
|
3 |
+
|
4 |
+
class Registry():
|
5 |
+
"""
|
6 |
+
The registry that provides name -> object mapping, to support third-party
|
7 |
+
users' custom modules.
|
8 |
+
|
9 |
+
To create a registry (e.g. a backbone registry):
|
10 |
+
|
11 |
+
.. code-block:: python
|
12 |
+
|
13 |
+
BACKBONE_REGISTRY = Registry('BACKBONE')
|
14 |
+
|
15 |
+
To register an object:
|
16 |
+
|
17 |
+
.. code-block:: python
|
18 |
+
|
19 |
+
@BACKBONE_REGISTRY.register()
|
20 |
+
class MyBackbone():
|
21 |
+
...
|
22 |
+
|
23 |
+
Or:
|
24 |
+
|
25 |
+
.. code-block:: python
|
26 |
+
|
27 |
+
BACKBONE_REGISTRY.register(MyBackbone)
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, name):
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
name (str): the name of this registry
|
34 |
+
"""
|
35 |
+
self._name = name
|
36 |
+
self._obj_map = {}
|
37 |
+
|
38 |
+
def _do_register(self, name, obj):
|
39 |
+
assert (name not in self._obj_map), (f"An object named '{name}' was already registered "
|
40 |
+
f"in '{self._name}' registry!")
|
41 |
+
self._obj_map[name] = obj
|
42 |
+
|
43 |
+
def register(self, obj=None):
|
44 |
+
"""
|
45 |
+
Register the given object under the the name `obj.__name__`.
|
46 |
+
Can be used as either a decorator or not.
|
47 |
+
See docstring of this class for usage.
|
48 |
+
"""
|
49 |
+
if obj is None:
|
50 |
+
# used as a decorator
|
51 |
+
def deco(func_or_class):
|
52 |
+
name = func_or_class.__name__
|
53 |
+
self._do_register(name, func_or_class)
|
54 |
+
return func_or_class
|
55 |
+
|
56 |
+
return deco
|
57 |
+
|
58 |
+
# used as a function call
|
59 |
+
name = obj.__name__
|
60 |
+
self._do_register(name, obj)
|
61 |
+
|
62 |
+
def get(self, name):
|
63 |
+
ret = self._obj_map.get(name)
|
64 |
+
if ret is None:
|
65 |
+
raise KeyError(f"No object named '{name}' found in '{self._name}' registry!")
|
66 |
+
return ret
|
67 |
+
|
68 |
+
def __contains__(self, name):
|
69 |
+
return name in self._obj_map
|
70 |
+
|
71 |
+
def __iter__(self):
|
72 |
+
return iter(self._obj_map.items())
|
73 |
+
|
74 |
+
def keys(self):
|
75 |
+
return self._obj_map.keys()
|
76 |
+
|
77 |
+
|
78 |
+
DATASET_REGISTRY = Registry('dataset')
|
79 |
+
ARCH_REGISTRY = Registry('arch')
|
80 |
+
MODEL_REGISTRY = Registry('model')
|
81 |
+
LOSS_REGISTRY = Registry('loss')
|
82 |
+
METRIC_REGISTRY = Registry('metric')
|