| base_model: distilbert-base-uncased-finetuned-sst-2-english | |
| library_name: transformers.js | |
| https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english with ONNX weights to be compatible with Transformers.js. | |
| ## Usage (Transformers.js) | |
| If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: | |
| ```bash | |
| npm i @huggingface/transformers | |
| ``` | |
| You can then use the model to classify text like this: | |
| ```js | |
| import { pipeline } from "@huggingface/transformers"; | |
| // Create a sentiment analysis pipeline | |
| const classifier = await pipeline('sentiment-analysis', 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'); | |
| // Classify input text | |
| const output = await classifier('I love transformers!'); | |
| console.log(output); | |
| // [{ label: 'POSITIVE', score: 0.999788761138916 }] | |
| // Classify input text (and return all classes) | |
| const output2 = await classifier('I love transformers!', { top_k: null }); | |
| console.log(output2); | |
| // [ | |
| // { label: 'POSITIVE', score: 0.999788761138916 }, | |
| // { label: 'NEGATIVE', score: 0.00021126774663571268 } | |
| // ] | |
| ``` | |
| --- | |
| Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |