XavierSpycy
commited on
Fix typo
Browse files
README.md
CHANGED
@@ -1,258 +1,258 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
- zh
|
6 |
-
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
-
tags:
|
8 |
-
- text-generation
|
9 |
-
- transformers
|
10 |
-
- lora
|
11 |
-
- llama.cpp
|
12 |
-
- autoawq
|
13 |
-
- auto-gptq
|
14 |
-
datasets:
|
15 |
-
- llamafactory/alpaca_zh
|
16 |
-
- llamafactory/alpaca_gpt4_zh
|
17 |
-
---
|
18 |
-
|
19 |
-
# Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙
|
20 |
-
|
21 |
-
## Model Details / 模型细节
|
22 |
-
This model, <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u>, was fine-tuned from the original [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) due to its underperformance in Chinese. Utilizing the LoRa technology within the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) utilities, this model was adapted to better handle Chinese through three epochs on three corpora: `alpaca_zh`, `alpaca_gpt4_zh`, and `oaast_sft_zh`, amounting to approximately 10,000 examples. This is reflected in the `10k` in its name.
|
23 |
-
|
24 |
-
由于原模型[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)在中文上表现欠佳,于是该模型 <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u> 微调自此。在[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)工具下,利用LoRa 技术,通过`alpaca_zh`、`alpaca_gpt4_zh`和`oaast_sft_zh`三个语料库上、经过三个训练轮次,我们将该模型调整得更好地掌握了中文。三个语料库共计约10,000个样本,这也是其名字中的 `10k` 的由来。
|
25 |
-
|
26 |
-
For efficient inference, the model was converted to the gguf format using [llama.cpp](https://github.com/ggerganov/llama.cpp) and underwent quantization, resulting in a compact model size of about 3.18 GB, suitable for distribution across various devices.
|
27 |
-
|
28 |
-
为了高效的推理,使用 [llama.cpp](https://github.com/ggerganov/llama.cpp),我们将该模型转化为了gguf格式并量化,从而得到了一个压缩到约 3.18 GB 大小的模型,适合分发在各类设备上。
|
29 |
-
|
30 |
-
### LoRa Hardware / LoRa 硬件
|
31 |
-
- RTX 4090D x 1
|
32 |
-
|
33 |
-
> [!NOTE]
|
34 |
-
> The complete fine-tuning process took approximately 12 hours. / 完整微调过程花费约12小时。
|
35 |
-
|
36 |
-
Additional fine-tuning configurations are avaiable at [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) or [Llama3Ops](https://github.com/XavierSpycy/llama-ops).
|
37 |
-
|
38 |
-
更多微调配置可以在我的个人仓库 [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) 或 [Llama3Ops](https://github.com/XavierSpycy/llama-ops) 获得。
|
39 |
-
|
40 |
-
### Other Models / 其他模型
|
41 |
-
- <u>LLaMA-Factory</u>
|
42 |
-
- [Meta-Llama-3-8B-Instruct-zh-10k](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k)
|
43 |
-
|
44 |
-
- <u>llama.cpp</u>
|
45 |
-
- [Meta-Llama-3-8B-Instruct-zh-10k-GGUF](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF)
|
46 |
-
|
47 |
-
- <u>AutoAWQ</u>
|
48 |
-
- [Meta-Llama-3-8B-Instruct-zh-10k-AWQ](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ)
|
49 |
-
|
50 |
-
### Model Developer / 模型开发者
|
51 |
-
- **Pretraining**: Meta
|
52 |
-
- **Fine-tuning**: [XavierSpycy @ GitHub ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗](https://huggingface.co/XavierSpycy)
|
53 |
-
|
54 |
-
- **预训练**: Meta
|
55 |
-
- **微调**: [XavierSpycy @ GitHub](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗 ](https://huggingface.co/XavierSpycy)
|
56 |
-
|
57 |
-
|
58 |
-
### Usage / 用法
|
59 |
-
This model can be utilized like the original <u>Meta-Llama3</u> but offers enhanced performance in Chinese.
|
60 |
-
|
61 |
-
我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
|
62 |
-
|
63 |
-
#### 1. How to use in transformers
|
64 |
-
```python
|
65 |
-
# !pip install accelerate
|
66 |
-
|
67 |
-
import torch
|
68 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
69 |
-
|
70 |
-
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k"
|
71 |
-
|
72 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
74 |
-
|
75 |
-
prompt = "你好,你是谁?"
|
76 |
-
|
77 |
-
messages = [
|
78 |
-
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
79 |
-
{"role": "user", "content": prompt}]
|
80 |
-
|
81 |
-
input_ids = tokenizer.apply_chat_template(
|
82 |
-
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
83 |
-
|
84 |
-
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
85 |
-
|
86 |
-
outputs = model.generate(
|
87 |
-
input_ids,
|
88 |
-
max_new_tokens=256,
|
89 |
-
eos_token_id=terminators,
|
90 |
-
do_sample=True,
|
91 |
-
temperature=0.6,
|
92 |
-
top_p=0.9)
|
93 |
-
|
94 |
-
response = outputs[0][input_ids.shape[-1]:]
|
95 |
-
|
96 |
-
print(tokenizer.decode(response, skip_special_tokens=True))
|
97 |
-
# 我是一个人工智能助手,旨在帮助用户解决问题和完成任务。
|
98 |
-
# 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
|
99 |
-
```
|
100 |
-
|
101 |
-
#### 2. How to use in llama.cpp / 如何在llama.cpp中使用
|
102 |
-
|
103 |
-
|
104 |
-
```python
|
105 |
-
# CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS # -DLLAMA_CUDA=on" \
|
106 |
-
# pip install llama-cpp-python \
|
107 |
-
# --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
|
108 |
-
|
109 |
-
# Please download the model weights first. / 请先下载模型权重。
|
110 |
-
|
111 |
-
from llama_cpp import Llama
|
112 |
-
|
113 |
-
llm = Llama(
|
114 |
-
model_path="/
|
115 |
-
n_gpu_layers=-1)
|
116 |
-
|
117 |
-
# Alternatively / 或者
|
118 |
-
# llm = Llama.from_pretrained(
|
119 |
-
# repo_id="XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF",
|
120 |
-
# filename="*Q8_0.gguf",
|
121 |
-
# verbose=False
|
122 |
-
# )
|
123 |
-
|
124 |
-
output = llm(
|
125 |
-
"Q: 你好,你是谁?A:", # Prompt
|
126 |
-
max_tokens=256, # Generate up to 32 tokens, set to None to generate up to the end of the context window
|
127 |
-
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
|
128 |
-
echo=True # Echo the prompt back in the output
|
129 |
-
) # Generate a completion, can also call create_completion
|
130 |
-
|
131 |
-
print(output['choices'][0]['text'].split("A:")[1].strip())
|
132 |
-
|
133 |
-
# 我是一个人工智能聊天机器人,我的名字叫做“智慧助手”,我由一群程序员设计和开发的。我的主要任务就是通过与您交流来帮助您解决问题,为您提供相关的建议和支持。
|
134 |
-
```
|
135 |
-
|
136 |
-
#### 3. How to use with AutoAWQ / 如何与AutoAWQ一起使用
|
137 |
-
```python
|
138 |
-
# !pip install autoawq
|
139 |
-
|
140 |
-
import torch
|
141 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
-
|
143 |
-
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ"
|
144 |
-
|
145 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
146 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
147 |
-
|
148 |
-
prompt = "你好,你是谁?"
|
149 |
-
|
150 |
-
messages = [
|
151 |
-
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
152 |
-
{"role": "user", "content": prompt}]
|
153 |
-
|
154 |
-
input_ids = tokenizer.apply_chat_template(
|
155 |
-
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
156 |
-
|
157 |
-
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
158 |
-
|
159 |
-
outputs = model.generate(
|
160 |
-
input_ids,
|
161 |
-
max_new_tokens=256,
|
162 |
-
eos_token_id=terminators,
|
163 |
-
do_sample=True,
|
164 |
-
temperature=0.6,
|
165 |
-
top_p=0.9)
|
166 |
-
|
167 |
-
response = outputs[0][input_ids.shape[-1]:]
|
168 |
-
|
169 |
-
print(tokenizer.decode(response, skip_special_tokens=True))
|
170 |
-
# 你好!我是一个人工智能助手,我的目的是帮助人们解决问题,回答问题,提供信息和建议。
|
171 |
-
```
|
172 |
-
|
173 |
-
#### 4. How to use with AutoGPTQ / 如何与AutoGPTQ一起使用
|
174 |
-
```python
|
175 |
-
# !pip install auto-gptq --no-build-isolation
|
176 |
-
|
177 |
-
import torch
|
178 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
179 |
-
|
180 |
-
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ"
|
181 |
-
|
182 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
183 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
184 |
-
|
185 |
-
prompt = "什么是机器学习?"
|
186 |
-
|
187 |
-
messages = [
|
188 |
-
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
189 |
-
{"role": "user", "content": prompt}]
|
190 |
-
|
191 |
-
input_ids = tokenizer.apply_chat_template(
|
192 |
-
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
193 |
-
|
194 |
-
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
195 |
-
|
196 |
-
outputs = model.generate(
|
197 |
-
input_ids,
|
198 |
-
max_new_tokens=256,
|
199 |
-
eos_token_id=terminators,
|
200 |
-
do_sample=True,
|
201 |
-
temperature=0.6,
|
202 |
-
top_p=0.9)
|
203 |
-
|
204 |
-
response = outputs[0][input_ids.shape[-1]:]
|
205 |
-
|
206 |
-
print(tokenizer.decode(response, skip_special_tokens=True))
|
207 |
-
# 机器学习是人工智能(AI)的一个分支,它允许计算机从数据中学习并改善其性能。它是一种基于算法的方法,用于从数据中识别模式并进行预测。机器学习算法可以从数据中学习,例如文本、图像和音频,并从中获得知识和见解。
|
208 |
-
```
|
209 |
-
|
210 |
-
Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
|
211 |
-
|
212 |
-
更多关于部署的细节可以在我的个人仓库 [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops) 获得。
|
213 |
-
|
214 |
-
## Ethical Considerations, Safety & Risks / 伦理考量、安全性和风险
|
215 |
-
Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations) for more information. Key points include bias monitoring, responsible usage guidelines, and transparency in model limitations.
|
216 |
-
|
217 |
-
请参考 [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations),以获取更多细节。关键点包括偏见监控、负责任的使用指南和模型限制的透明度。
|
218 |
-
|
219 |
-
## Limitations / 局限性
|
220 |
-
- The comprehensive abilities of the model have not been fully tested.
|
221 |
-
|
222 |
-
- While it performs smoothly in Chinese conversations, further benchmarks are required to evaluate its full capabilities. The quality and quantity of the Chinese corpora used may also limit model outputs.
|
223 |
-
|
224 |
-
- Based on current observations, it fundamentally meets the standards in common sense, logic, sentiment analysis, safety, writing, code, and function calls. However, there is room for improvement in role-playing, mathematics, and handling complex tasks with the same text but different meanings.
|
225 |
-
|
226 |
-
- Additionally, catastrophic forgetting in the fine-tuned model has not been evaluated.
|
227 |
-
|
228 |
-
- 该模型的全面的能力尚未全部测试。
|
229 |
-
|
230 |
-
- 尽管它在中文对话中表现流畅,但需要更多的测评以评估其完整的能力。中文语料库的质量和数量可能都会对模型输出有所制约。
|
231 |
-
|
232 |
-
- 根据目前的观察,它在常识、逻辑、情绪分析、安全性、写作、代码和函数调用上基本达标,然而,在角色扮演、数学、复杂的同文异义等任务上有待提高。
|
233 |
-
|
234 |
-
- 另外,微调模型中的灾难性遗忘尚未评估。
|
235 |
-
|
236 |
-
## Acknowledgements / 致谢
|
237 |
-
We thank Meta for their open-source contributions, which have greatly benefited the developer community, and acknowledge the collaborative efforts of developers in enhancing this community.
|
238 |
-
|
239 |
-
我们感谢 Meta 的开源贡献,这极大地帮助了开发者社区,同时,也感谢致力于提升社区的开发者们的努力。
|
240 |
-
|
241 |
-
## References / 参考资料
|
242 |
-
|
243 |
-
```
|
244 |
-
@article{llama3modelcard,
|
245 |
-
title={Llama 3 Model Card},
|
246 |
-
author={AI@Meta},
|
247 |
-
year={2024},
|
248 |
-
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}}
|
249 |
-
|
250 |
-
@inproceedings{zheng2024llamafactory,
|
251 |
-
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
252 |
-
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
253 |
-
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
254 |
-
address={Bangkok, Thailand},
|
255 |
-
publisher={Association for Computational Linguistics},
|
256 |
-
year={2024},
|
257 |
-
url={http://arxiv.org/abs/2403.13372}}
|
258 |
```
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
tags:
|
8 |
+
- text-generation
|
9 |
+
- transformers
|
10 |
+
- lora
|
11 |
+
- llama.cpp
|
12 |
+
- autoawq
|
13 |
+
- auto-gptq
|
14 |
+
datasets:
|
15 |
+
- llamafactory/alpaca_zh
|
16 |
+
- llamafactory/alpaca_gpt4_zh
|
17 |
+
---
|
18 |
+
|
19 |
+
# Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙
|
20 |
+
|
21 |
+
## Model Details / 模型细节
|
22 |
+
This model, <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u>, was fine-tuned from the original [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) due to its underperformance in Chinese. Utilizing the LoRa technology within the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) utilities, this model was adapted to better handle Chinese through three epochs on three corpora: `alpaca_zh`, `alpaca_gpt4_zh`, and `oaast_sft_zh`, amounting to approximately 10,000 examples. This is reflected in the `10k` in its name.
|
23 |
+
|
24 |
+
由于原模型[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)在中文上表现欠佳,于是该模型 <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u> 微调自此。在[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)工具下,利用LoRa 技术,通过`alpaca_zh`、`alpaca_gpt4_zh`和`oaast_sft_zh`三个语料库上、经过三个训练轮次,我们将该模型调整得更好地掌握了中文。三个语料库共计约10,000个样本,这也是其名字中的 `10k` 的由来。
|
25 |
+
|
26 |
+
For efficient inference, the model was converted to the gguf format using [llama.cpp](https://github.com/ggerganov/llama.cpp) and underwent quantization, resulting in a compact model size of about 3.18 GB, suitable for distribution across various devices.
|
27 |
+
|
28 |
+
为了高效的推理,使用 [llama.cpp](https://github.com/ggerganov/llama.cpp),我们将该模型转化为了gguf格式并量化,从而得到了一个压缩到约 3.18 GB 大小的模型,适合分发在各类设备上。
|
29 |
+
|
30 |
+
### LoRa Hardware / LoRa 硬件
|
31 |
+
- RTX 4090D x 1
|
32 |
+
|
33 |
+
> [!NOTE]
|
34 |
+
> The complete fine-tuning process took approximately 12 hours. / 完整微调过程花费约12小时。
|
35 |
+
|
36 |
+
Additional fine-tuning configurations are avaiable at [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) or [Llama3Ops](https://github.com/XavierSpycy/llama-ops).
|
37 |
+
|
38 |
+
更多微调配置可以在我的个人仓库 [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) 或 [Llama3Ops](https://github.com/XavierSpycy/llama-ops) 获得。
|
39 |
+
|
40 |
+
### Other Models / 其他模型
|
41 |
+
- <u>LLaMA-Factory</u>
|
42 |
+
- [Meta-Llama-3-8B-Instruct-zh-10k](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k)
|
43 |
+
|
44 |
+
- <u>llama.cpp</u>
|
45 |
+
- [Meta-Llama-3-8B-Instruct-zh-10k-GGUF](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF)
|
46 |
+
|
47 |
+
- <u>AutoAWQ</u>
|
48 |
+
- [Meta-Llama-3-8B-Instruct-zh-10k-AWQ](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ)
|
49 |
+
|
50 |
+
### Model Developer / 模型开发者
|
51 |
+
- **Pretraining**: Meta
|
52 |
+
- **Fine-tuning**: [XavierSpycy @ GitHub ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗](https://huggingface.co/XavierSpycy)
|
53 |
+
|
54 |
+
- **预训练**: Meta
|
55 |
+
- **微调**: [XavierSpycy @ GitHub](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗 ](https://huggingface.co/XavierSpycy)
|
56 |
+
|
57 |
+
|
58 |
+
### Usage / 用法
|
59 |
+
This model can be utilized like the original <u>Meta-Llama3</u> but offers enhanced performance in Chinese.
|
60 |
+
|
61 |
+
我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
|
62 |
+
|
63 |
+
#### 1. How to use in transformers
|
64 |
+
```python
|
65 |
+
# !pip install accelerate
|
66 |
+
|
67 |
+
import torch
|
68 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
69 |
+
|
70 |
+
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k"
|
71 |
+
|
72 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
74 |
+
|
75 |
+
prompt = "你好,你是谁?"
|
76 |
+
|
77 |
+
messages = [
|
78 |
+
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
79 |
+
{"role": "user", "content": prompt}]
|
80 |
+
|
81 |
+
input_ids = tokenizer.apply_chat_template(
|
82 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
83 |
+
|
84 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
85 |
+
|
86 |
+
outputs = model.generate(
|
87 |
+
input_ids,
|
88 |
+
max_new_tokens=256,
|
89 |
+
eos_token_id=terminators,
|
90 |
+
do_sample=True,
|
91 |
+
temperature=0.6,
|
92 |
+
top_p=0.9)
|
93 |
+
|
94 |
+
response = outputs[0][input_ids.shape[-1]:]
|
95 |
+
|
96 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
97 |
+
# 我是一个人工智能助手,旨在帮助用户解决问题和完成任务。
|
98 |
+
# 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
|
99 |
+
```
|
100 |
+
|
101 |
+
#### 2. How to use in llama.cpp / 如何在llama.cpp中使用
|
102 |
+
|
103 |
+
|
104 |
+
```python
|
105 |
+
# CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS # -DLLAMA_CUDA=on" \
|
106 |
+
# pip install llama-cpp-python \
|
107 |
+
# --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
|
108 |
+
|
109 |
+
# Please download the model weights first. / 请先下载模型权重。
|
110 |
+
|
111 |
+
from llama_cpp import Llama
|
112 |
+
|
113 |
+
llm = Llama(
|
114 |
+
model_path="/path/to/your/model/Meta-Llama-3-8B-Instruct-zh-10k-GGUF/meta-llama-3-8b-instruct-zh-10k.Q8_0.gguf",
|
115 |
+
n_gpu_layers=-1)
|
116 |
+
|
117 |
+
# Alternatively / 或者
|
118 |
+
# llm = Llama.from_pretrained(
|
119 |
+
# repo_id="XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF",
|
120 |
+
# filename="*Q8_0.gguf",
|
121 |
+
# verbose=False
|
122 |
+
# )
|
123 |
+
|
124 |
+
output = llm(
|
125 |
+
"Q: 你好,你是谁?A:", # Prompt
|
126 |
+
max_tokens=256, # Generate up to 32 tokens, set to None to generate up to the end of the context window
|
127 |
+
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
|
128 |
+
echo=True # Echo the prompt back in the output
|
129 |
+
) # Generate a completion, can also call create_completion
|
130 |
+
|
131 |
+
print(output['choices'][0]['text'].split("A:")[1].strip())
|
132 |
+
|
133 |
+
# 我是一个人工智能聊天机器人,我的名字叫做“智慧助手”,我由一群程序员设计和开发的。我的主要任务就是通过与您交流来帮助您解决问题,为您提供相关的建议和支持。
|
134 |
+
```
|
135 |
+
|
136 |
+
#### 3. How to use with AutoAWQ / 如何与AutoAWQ一起使用
|
137 |
+
```python
|
138 |
+
# !pip install autoawq
|
139 |
+
|
140 |
+
import torch
|
141 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
+
|
143 |
+
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ"
|
144 |
+
|
145 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
147 |
+
|
148 |
+
prompt = "你好,你是谁?"
|
149 |
+
|
150 |
+
messages = [
|
151 |
+
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
152 |
+
{"role": "user", "content": prompt}]
|
153 |
+
|
154 |
+
input_ids = tokenizer.apply_chat_template(
|
155 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
156 |
+
|
157 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
158 |
+
|
159 |
+
outputs = model.generate(
|
160 |
+
input_ids,
|
161 |
+
max_new_tokens=256,
|
162 |
+
eos_token_id=terminators,
|
163 |
+
do_sample=True,
|
164 |
+
temperature=0.6,
|
165 |
+
top_p=0.9)
|
166 |
+
|
167 |
+
response = outputs[0][input_ids.shape[-1]:]
|
168 |
+
|
169 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
170 |
+
# 你好!我是一个人工智能助手,我的目的是帮助人们解决问题,回答问题,提供信息和建议。
|
171 |
+
```
|
172 |
+
|
173 |
+
#### 4. How to use with AutoGPTQ / 如何与AutoGPTQ一起使用
|
174 |
+
```python
|
175 |
+
# !pip install auto-gptq --no-build-isolation
|
176 |
+
|
177 |
+
import torch
|
178 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
179 |
+
|
180 |
+
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ"
|
181 |
+
|
182 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
184 |
+
|
185 |
+
prompt = "什么是机器学习?"
|
186 |
+
|
187 |
+
messages = [
|
188 |
+
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
189 |
+
{"role": "user", "content": prompt}]
|
190 |
+
|
191 |
+
input_ids = tokenizer.apply_chat_template(
|
192 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
193 |
+
|
194 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
195 |
+
|
196 |
+
outputs = model.generate(
|
197 |
+
input_ids,
|
198 |
+
max_new_tokens=256,
|
199 |
+
eos_token_id=terminators,
|
200 |
+
do_sample=True,
|
201 |
+
temperature=0.6,
|
202 |
+
top_p=0.9)
|
203 |
+
|
204 |
+
response = outputs[0][input_ids.shape[-1]:]
|
205 |
+
|
206 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
207 |
+
# 机器学习是人工智能(AI)的一个分支,它允许计算机从数据中学习并改善其性能。它是一种基于算法的方法,用于从数据中识别模式并进行预测。机器学习算法可以从数据中学习,例如文本、图像和音频,并从中获得知识和见解。
|
208 |
+
```
|
209 |
+
|
210 |
+
Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
|
211 |
+
|
212 |
+
更多关于部署的细节可以在我的个人仓库 [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops) 获得。
|
213 |
+
|
214 |
+
## Ethical Considerations, Safety & Risks / 伦理考量、安全性和风险
|
215 |
+
Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations) for more information. Key points include bias monitoring, responsible usage guidelines, and transparency in model limitations.
|
216 |
+
|
217 |
+
请参考 [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations),以获取更多细节。关键点包括偏见监控、负责任的使用指南和模型限制的透明度。
|
218 |
+
|
219 |
+
## Limitations / 局限性
|
220 |
+
- The comprehensive abilities of the model have not been fully tested.
|
221 |
+
|
222 |
+
- While it performs smoothly in Chinese conversations, further benchmarks are required to evaluate its full capabilities. The quality and quantity of the Chinese corpora used may also limit model outputs.
|
223 |
+
|
224 |
+
- Based on current observations, it fundamentally meets the standards in common sense, logic, sentiment analysis, safety, writing, code, and function calls. However, there is room for improvement in role-playing, mathematics, and handling complex tasks with the same text but different meanings.
|
225 |
+
|
226 |
+
- Additionally, catastrophic forgetting in the fine-tuned model has not been evaluated.
|
227 |
+
|
228 |
+
- 该模型的全面的能力尚未全部测试。
|
229 |
+
|
230 |
+
- 尽管它在中文对话中表现流畅,但需要更多的测评以评估其完整的能力。中文语料库的质量和数量可能都会对模型输出有所制约。
|
231 |
+
|
232 |
+
- 根据目前的观察,它在常识、逻辑、情绪分析、安全性、写作、代码和函数调用上基本达标,然而,在角色扮演、数学、复杂的同文异义等任务上有待提高。
|
233 |
+
|
234 |
+
- 另外,微调模型中的灾难性遗忘尚未评估。
|
235 |
+
|
236 |
+
## Acknowledgements / 致谢
|
237 |
+
We thank Meta for their open-source contributions, which have greatly benefited the developer community, and acknowledge the collaborative efforts of developers in enhancing this community.
|
238 |
+
|
239 |
+
我们感谢 Meta 的开源贡献,这极大地帮助了开发者社区,同时,也感谢致力于提升社区的开发者们的努力。
|
240 |
+
|
241 |
+
## References / 参考资料
|
242 |
+
|
243 |
+
```
|
244 |
+
@article{llama3modelcard,
|
245 |
+
title={Llama 3 Model Card},
|
246 |
+
author={AI@Meta},
|
247 |
+
year={2024},
|
248 |
+
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}}
|
249 |
+
|
250 |
+
@inproceedings{zheng2024llamafactory,
|
251 |
+
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
252 |
+
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
253 |
+
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
254 |
+
address={Bangkok, Thailand},
|
255 |
+
publisher={Association for Computational Linguistics},
|
256 |
+
year={2024},
|
257 |
+
url={http://arxiv.org/abs/2403.13372}}
|
258 |
```
|