File size: 6,193 Bytes
ec66d9f
 
 
 
 
 
 
 
 
 
 
9045596
ec66d9f
aee78d9
 
 
ec66d9f
 
 
 
a47a07c
ec66d9f
10d8eff
5138e3c
ec66d9f
a47a07c
ec66d9f
 
 
 
 
 
 
 
a47a07c
 
 
 
 
ec66d9f
4e1a5ec
 
 
 
 
ec66d9f
 
a47a07c
 
1cc505e
ec66d9f
4e1a5ec
ec66d9f
a47a07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec66d9f
 
 
 
 
 
 
 
 
 
 
 
a47a07c
 
 
 
 
 
 
 
 
 
 
 
ec66d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a47a07c
ec66d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
language:
- en
pipeline_tag: text-to-image
tags:
- Stable Diffusion
- image-generation
- Flux
- diffusers
---

![Controlnet collections for Flux](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/flux-controlnet-collections.png?raw=true)
[<img src="https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/join-our-discord-rev1.png?raw=true">](https://discord.gg/FHY2guThfy)

This repository provides a collection of ControlNet checkpoints for
[FLUX.1-dev model](https://huggingface.co/black-forest-labs/FLUX.1-dev) by Black Forest Labs

![Example Picture 1](./assets/depth_v2_res1.png?raw=true)

[See our github](https://github.com/XLabs-AI/x-flux-comfyui) for comfy ui workflows.
![Example Picture 1](https://github.com/XLabs-AI/x-flux-comfyui/blob/main/assets/image1.png?raw=true)

[See our github](https://github.com/XLabs-AI/x-flux) for train script, train configs and demo script for inference.

# Models

Our collection supports 3 models:
- Canny
- HED
- Depth (Midas)

Each ControlNet is trained on 1024x1024 resolution and works for 1024x1024 resolution.
We release **v2 versions** - better and realistic versions, which can be used directly in ComfyUI!   

Please, see our [ComfyUI custom nodes installation guide](https://github.com/XLabs-AI/x-flux-comfyui)


# Examples

See examples of our models results below.  
Also, some generation results with input images are provided in "Files and versions"

# Inference

To try our models, you have 2 options:
1. Use main.py from our [official repo](https://github.com/XLabs-AI/x-flux)
2. Use our custom nodes for ComfyUI and test it with provided workflows (check out folder /workflows)

See examples how to launch our models:

## Canny ControlNet (version 2)

1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes
2. Launch ComfyUI
3. Try our canny_workflow.json

![Example Picture 1](./assets/canny_v2_res1.png?raw=true)
![Example Picture 1](./assets/canny_v2_res2.png?raw=true)
![Example Picture 1](./assets/canny_v2_res3.png?raw=true)


## Canny ControlNet (version 1)

1. Clone [our repo](https://github.com/XLabs-AI/x-flux), install requirements
2. Launch main.py in command line with parameters

```bash
python3 main.py \
 --prompt "a viking man with white hair looking, cinematic, MM full HD" \
 --image input_image_canny.jpg \
 --control_type canny \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-canny-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_example_1.png?raw=true)

## Depth ControlNet (version 2)

1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes
2. Launch ComfyUI
3. Try our depth_workflow.json

![Example Picture 1](./assets/depth_v2_res1.png?raw=true)
![Example Picture 1](./assets/depth_v2_res2.png?raw=true)

## Depth ControlNet (version 1)
1. Clone [our repo](https://github.com/XLabs-AI/x-flux), install requirements
2. Launch main.py in command line with parameters
```bash
python3 main.py \
 --prompt "Photo of the bold man with beard and laptop, full hd, cinematic photo" \
 --image input_image_depth1.jpg \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_1.png?raw=true)

```bash
python3 main.py \
 --prompt "photo of handsome fluffy black dog standing on a forest path, full hd, cinematic photo" \
 --image input_image_depth2.jpg \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_2.png?raw=true)

```bash
python3 main.py \
 --prompt "Photo of japanese village with houses and sakura, full hd, cinematic photo" \
 --image input_image_depth3.webp \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_3.png?raw=true)


## HED ControlNet (version 1)
```bash
python3 main.py \
 --prompt "2d art of a sitting african rich woman, full hd, cinematic photo" \
 --image input_image_hed1.jpg \
 --control_type hed \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_1.png?raw=true)

```bash
python3 main.py \
 --prompt "anime ghibli style art of a running happy white dog, full hd" \
 --image input_image_hed2.jpg \
 --control_type hed \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_2.png?raw=true)


## License

Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License<br/>