File size: 5,308 Bytes
ec66d9f
 
 
 
 
 
 
 
 
 
 
 
 
aee78d9
 
 
ec66d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
language:
- en
pipeline_tag: text-to-image
tags:
- LoRA
- Stable Diffusion
- image-generation
- Flux
---

![Controlnet collections for Flux](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/flux-controlnet-collections.png?raw=true)
[<img src="https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/join-our-discord-rev1.png?raw=true">](https://discord.gg/FHY2guThfy)

This repository provides a collection of ControlNet checkpoints for
[FLUX.1-dev model](https://huggingface.co/black-forest-labs/FLUX.1-dev) by Black Forest Labs

![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_3.png?raw=true)

# Training details
[XLabs AI](https://github.com/XLabs-AI) team is happy to publish fune-tuning Flux scripts, including:

- **LoRA** πŸ”₯
- **ControlNet** πŸ”₯

[See our github](https://github.com/XLabs-AI/x-flux) for train script and train configs.

# Training Dataset
Dataset has the following format for the training process:

```
β”œβ”€β”€ images/
β”‚    β”œβ”€β”€ 1.png
β”‚    β”œβ”€β”€ 1.json
β”‚    β”œβ”€β”€ 2.png
β”‚    β”œβ”€β”€ 2.json
β”‚    β”œβ”€β”€ ...
```
A .json file contains "caption" field with a text prompt.


# Models

Our collection supports 3 models:
- Canny
- HED
- Depth (Midas)

Each ControlNet is trained on 1024x1024 resolution. 
However, we recommend you to generate images with 1024x1024 for Depth, and use 768x768 resolution for Canny and HED for better results.

# Inference
Use main.py from our [official repo](https://github.com/XLabs-AI/x-flux)   

We do not guarantee that our checkpoints will work 100% correctly with other repositories and tools due to the nature of our sampling implementation and so on until we add our support.



## Canny ControlNet
```bash
python3 main.py \
 --prompt "a viking man with white hair looking, cinematic, MM full HD" \
 --image input_image_canny.jpg \
 --control_type canny \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-canny-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_example_1.png?raw=true)

## Depth ControlNet
```bash
python3 main.py \
 --prompt "Photo of the bold man with beard and laptop, full hd, cinematic photo" \
 --image input_image_depth1.jpg \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_1.png?raw=true)

```bash
python3 main.py \
 --prompt "photo of handsome fluffy black dog standing on a forest path, full hd, cinematic photo" \
 --image input_image_depth2.jpg \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_2.png?raw=true)

```bash
python3 main.py \
 --prompt "Photo of japanese village with houses and sakura, full hd, cinematic photo" \
 --image input_image_depth3.webp \
 --control_type depth \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 1024 --height 1024 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_3.png?raw=true)


## HED ControlNet
```bash
python3 main.py \
 --prompt "2d art of a sitting african rich woman, full hd, cinematic photo" \
 --image input_image_hed1.jpg \
 --control_type hed \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_1.png?raw=true)

```bash
python3 main.py \
 --prompt "anime ghibli style art of a running happy white dog, full hd" \
 --image input_image_hed2.jpg \
 --control_type hed \
 --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \
 --model_type flux-dev --width 768 --height 768 \
 --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4

```
![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_2.png?raw=true)


## License

Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License<br/>