ppo-LunarLander-v2 / config.json
Wulichao's picture
Push the first trained ppo model
f5b06d7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd6b764040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd6b7640d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd6b764160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd6b7641f0>", "_build": "<function ActorCriticPolicy._build at 0x7fdd6b764280>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd6b764310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd6b7643a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd6b764430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd6b7644c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd6b764550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd6b7645e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd6b764670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd6b75aa00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684822542860533732, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE8eVgQYk6MAWyUS+2MAXSUR0CmZhsNUfgadX2UKGgGR0Bua0yWRigCaAdL62gIR0CmZx31SOzZdX2UKGgGR0BEE61b7j1gaAdLumgIR0CmZ/F4TsY3dX2UKGgGR0By3v4rSVnmaAdNQQFoCEdApmldYW+GoXV9lChoBkdAbN1iFTNt7GgHS/loCEdApm17K3d9D3V9lChoBkdAa90cAiml7GgHS/1oCEdApm49+TeO43V9lChoBkdAckunhbW3B2gHTQIBaAhHQKZvBv9cbBJ1fZQoaAZHQHG8kMXrMTxoB00cAWgIR0Cmb+CTMaCMdX2UKGgGR0Bw+4iTt9hJaAdNAwFoCEdApnCoB7u2JHV9lChoBkdAcP2+wC8vmGgHS/poCEdApnFj+BH09XV9lChoBkdAcdBeY2Kl6GgHS+RoCEdApnIUvduYQnV9lChoBkdAcOjydnTRY2gHS/toCEdApnLYX668QXV9lChoBkdAcYbSFoL5RGgHTQQBaAhHQKZ2XTYukDZ1fZQoaAZHQHCcmgWac7RoB00dAWgIR0Cmdzsg2ZRbdX2UKGgGR0BvBUYCQtBfaAdNAgFoCEdApngGe6I3znV9lChoBkdAcaKsjmjj72gHTRwBaAhHQKZ45SVnmJZ1fZQoaAZHQHKU33lCCz1oB00LAWgIR0CmebDrAxi5dX2UKGgGR0BwoTCVKPGRaAdNCgFoCEdApnp9uDSPVHV9lChoBkdAbsS7FsHjZWgHS/doCEdApntBRsMy8HV9lChoBkdAcO+1twaR6mgHS+hoCEdApnv2NxVAA3V9lChoBkdAcQKiQ1aW5mgHTRgBaAhHQKZ/eBltj1B1fZQoaAZHQG/lzrmhdt5oB00IAWgIR0CmgILsrupkdX2UKGgGR0Bx3YarFOwgaAdL6mgIR0CmgW++VTrFdX2UKGgGR0BwWBradtl7aAdNCwFoCEdApoJ6S9ugpXV9lChoBkdAXvnBFd9lVmgHTegDaAhHQKaG2w1R+Bp1fZQoaAZHQG+c8Gs3hn9oB00BAWgIR0CmiyLMcIZ7dX2UKGgGR0BxMVdIGyHEaAdNBwFoCEdApovyfBeok3V9lChoBkdAb5C8FINEw2gHTQYBaAhHQKaMxpLVWjp1fZQoaAZHQG8pb8WKuSxoB0vvaAhHQKaNhbu+h5B1fZQoaAZHQHDOZjUd7v5oB0vvaAhHQKaOOekpI+Z1fZQoaAZHQHBfN6cAimloB0v/aAhHQKaO95prULF1fZQoaAZHQExYG0NSZShoB03oA2gIR0CmlLpTdcjadX2UKGgGR0BwpaEDhcZ+aAdL7WgIR0CmlW8fvF3qdX2UKGgGR0Bt4SvNeMQ3aAdL+2gIR0CmljHmq5skdX2UKGgGR0BwWzQJHAh0aAdL8mgIR0CmluccuJ1rdX2UKGgGR0Bv0r/0dzXCaAdNEQFoCEdAppe4dn0033V9lChoBkdAchfmNR3u/mgHTRQBaAhHQKaYiA6uGK11fZQoaAZHQG8GGEXcgyNoB0v6aAhHQKaZQl2NedF1fZQoaAZHQHKj5HI6r/9oB00xAWgIR0CmnM8L0BfbdX2UKGgGR0BxuiA5Jbt7aAdNCAFoCEdApp22zF+/g3V9lChoBkdAcOGcKw6hg2gHTQsBaAhHQKae0Shakh11fZQoaAZHQHFyHRb8m8doB0vjaAhHQKafuY/mknF1fZQoaAZHQHB+Y7eVLSNoB0v7aAhHQKagtMSsbNt1fZQoaAZHQG8+Y9Pk7wNoB003AWgIR0CmofefywwCdX2UKGgGR0BvFKSs8xKyaAdL9WgIR0CmowxBu4wzdX2UKGgGR0BxO2mm+CbuaAdNHwFoCEdApqfijSG8EnV9lChoBkdAcyfUxVQyh2gHTT8BaAhHQKao2dsi0OV1fZQoaAZHQGgtSZBsyi5oB01QAmgIR0CmqqlFc6eYdX2UKGgGR0BxqEtUXHinaAdNBwFoCEdApqtzS9du53V9lChoBkdAcHwX+ERJ3GgHTRgBaAhHQKasTNWU8mt1fZQoaAZHQG/llUZNwitoB00JAWgIR0CmrRlTFVDKdX2UKGgGR0BxQA9SuQp4aAdL6WgIR0Cmrc0u+RHPdX2UKGgGR0BtwyYqoZQ6aAdNAAFoCEdAprE86cRUWHV9lChoBkdAcfDFY+0PYmgHTRMBaAhHQKayD7NSqER1fZQoaAZHQHJ2z8LrontoB00CAWgIR0CmsuDfWMCLdX2UKGgGR0BdCYzrNW2gaAdN6ANoCEdAprXkjTrmhnV9lChoBkdAcSAYODrZ8WgHS/9oCEdApraxsTFl1HV9lChoBkdAcVDfYBeXzGgHTRUBaAhHQKa6TFjurp91fZQoaAZHQG4eCzC1qnFoB0v4aAhHQKa7BuhK15V1fZQoaAZHQHAGdgF5fMRoB0v2aAhHQKa8CwTufEp1fZQoaAZHQG4NhwMpgCxoB0v2aAhHQKa9GO3DvVp1fZQoaAZHQHC/YtxuKoBoB0vnaAhHQKa+CEzO5ax1fZQoaAZHQHCPaZH/cWVoB0vwaAhHQKa++hwEQoV1fZQoaAZHQG0FjO9nK4hoB00EAWgIR0CmwBVndweedX2UKGgGR0Bxi2u1WsBAaAdL6WgIR0CmwSVWKdhBdX2UKGgGR0BtQaH/LkjpaAdL8mgIR0CmxddSEUTMdX2UKGgGR0BwVLMfRu0kaAdNIAFoCEdApsaxpWV/t3V9lChoBkdAcGtbe/Ho5mgHS+xoCEdApsdk6o2n9HV9lChoBkdAcNPBoEjgRGgHTQ4BaAhHQKbIM+VTrE91fZQoaAZHQG29LbxmTTxoB0vwaAhHQKbI62eg+Ql1fZQoaAZHQHDgyIUJv5xoB00dAWgIR0Cmycbn5i3HdX2UKGgGR0BwIecslLOBaAdNBgFoCEdApsqMsasIV3V9lChoBkdAcRCESM98qmgHS/RoCEdApstMWhysCHV9lChoBkdAcGH3PAwfyWgHTQsBaAhHQKbO3M5fdAR1fZQoaAZHQHBndQ0oBq9oB0v3aAhHQKbPnguyu6p1fZQoaAZHQHEnO938n/loB0v0aAhHQKbQV1lGwzN1fZQoaAZHQHBCJs0pEx9oB0vzaAhHQKbREdOIqLF1fZQoaAZHQHBkLDIikftoB00vAWgIR0Cm0gB5gPVedX2UKGgGR0BwwBlkH2RJaAdNBgFoCEdAptLJDgIhQnV9lChoBkdAch9UmUnogWgHTRwBaAhHQKbTqBDohZB1fZQoaAZHQG/jEk8ifQNoB00JAWgIR0Cm1HHFglWwdX2UKGgGR0BtAxrLyMDPaAdL9GgIR0Cm1+vsZ5zHdX2UKGgGR0BvKlp48lolaAdNBQFoCEdAptiz/4qPO3V9lChoBkdAcYEdwvQF92gHTU8BaAhHQKbZ/2zv7WN1fZQoaAZHQHADn2h7E51oB00QAWgIR0Cm2wza0x/NdX2UKGgGR0BuH1k+X7cgaAdL82gIR0Cm3AdU83dcdX2UKGgGR0BtGOUt7KJVaAdNAAFoCEdApt0H7aZhKHV9lChoBkdAcYFkkrwvx2gHTTgBaAhHQKbeaBT4tYl1fZQoaAZHQHBbKL0jC55oB00EAWgIR0Cm4z6y0KJEdX2UKGgGR0BsYyqXF98aaAdL+2gIR0Cm5AXV9Wp7dX2UKGgGR0BuaBqoIfKZaAdNFgFoCEdApuTfK0UoKHV9lChoBkdAb3KhQm/nGWgHTQABaAhHQKblplkpZwJ1fZQoaAZHQHJLZrULDyhoB01FAWgIR0Cm5qB1DBuXdX2UKGgGR0BxKwDJU5uJaAdNKQFoCEdApueBJPIn0HV9lChoBkdAcI0t16mfoWgHTTwBaAhHQKboeF0PpY91fZQoaAZHQHFxYBq9GqhoB00gAWgIR0Cm7BDqGDcudX2UKGgGR0ByG9e1KGtZaAdNEAFoCEdApuzfT9bX6XV9lChoBkdAcnbwmE4//2gHTRoBaAhHQKbtvhmXgLt1fZQoaAZHQHHUqMir1dxoB00eAWgIR0Cm7pupCKJmdX2UKGgGR0BxELTMJQchaAdL6GgIR0Cm71eAmReUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5870, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oRUnB2j4jqjY7e5EyqwByzmQCMA2luY5SKEGduWJLy3MFc74CvqHkLuS91jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEFXLR2dVcl+KsmCw7Rnm2huMA2luY5SKEPcRwZHu58YXYOh+sJRoKFl1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBVEWRp4AdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}