File size: 4,942 Bytes
78f739d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Configuration
config = {
    "learning_rate": 1e-4,
    "batch_size": 32,
    "vocab_size": 30522,
    "max_len": 256,
    "hidden_size": 768,
    "dropout": 0.1,
    "n_layer": 12,
    "n_head": 12,
    "ff_expansion_factor": 4,
    "rnn_units": 768,
    "num_labels": 5
}

class MyClass:
    def __init__(self, value):
        self.value = value

# Custom Initializer
def custom_initializer(shape):
    return torch.normal(mean=0.0, std=0.02, size=shape)

class CustomEmbedding(nn.Module):
    def __init__(self, vocab_size, hidden_size):
        super(CustomEmbedding, self).__init__()
        self.embedding = nn.Embedding(vocab_size, hidden_size, _weight=custom_initializer((vocab_size, hidden_size)))

    def forward(self, inputs):
        return self.embedding(inputs)

class PositionalEncoding(nn.Module):
    def __init__(self, n_embd, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.n_embd = n_embd
        self.max_len = max_len

        pe = torch.zeros(max_len, n_embd)
        position = torch.arange(0, max_len).unsqueeze(1).float()
        div_term = torch.exp(torch.arange(0, n_embd, 2).float() * -(np.log(10000.0) / n_embd))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return x + self.pe[:x.size(0), :]

class MultiheadAttention(nn.Module):
    def __init__(self, config):
        super(MultiheadAttention, self).__init__()
        self.attention = nn.MultiheadAttention(config['hidden_size'], config['n_head'], dropout=config['dropout'])

    def forward(self, v, k, q, mask=None):
        attn_output, attn_output_weights = self.attention(q, k, v, attn_mask=mask)
        return attn_output

class FeedForward(nn.Module):
    def __init__(self, config):
        super(FeedForward, self).__init__()
        self.dense1 = nn.Linear(config['hidden_size'], config['hidden_size'] * config['ff_expansion_factor'])
        self.dense2 = nn.Linear(config['hidden_size'] * config['ff_expansion_factor'], config['hidden_size'])
        self.dropout = nn.Dropout(config['dropout'])

    def forward(self, x):
        x = torch.nn.functional.gelu(self.dense1(x))
        x = self.dropout(x)
        return self.dense2(x)

class TransformerXLBlock(nn.Module):
    def __init__(self, config):
        super(TransformerXLBlock, self).__init__()
        self.attn = MultiheadAttention(config)
        self.ff = FeedForward(config)
        self.ln1 = nn.LayerNorm(config['hidden_size'])
        self.ln2 = nn.LayerNorm(config['hidden_size'])

    def forward(self, x, mask=None):
        attn_out = self.attn(v=x, k=x, q=x, mask=mask)
        out1 = self.ln1(x + attn_out)
        ff_out = self.ff(out1)
        return self.ln2(out1 + ff_out)

class JudgeXL(nn.Module):
    def __init__(self, config):
        super(JudgeXL, self).__init__()
        self.token_embedding = CustomEmbedding(config['vocab_size'], config['hidden_size'])
        self.pos_encoding = PositionalEncoding(config['hidden_size'], config['max_len'])
        self.transformer_blocks = nn.ModuleList([TransformerXLBlock(config) for _ in range(config['n_layer'])])
        self.ln_f = nn.LayerNorm(config['hidden_size'])
        self.rnn = nn.LSTM(config['hidden_size'], config['rnn_units'], num_layers=2, dropout=config['dropout'], bidirectional=True, batch_first=True)
        self.fc = nn.Linear(config['rnn_units'] * 2, config['vocab_size'])  # Adjusted to rnn_units * 2
    
    def forward(self, x, mask=None):
        x = self.token_embedding(x)
        x = self.pos_encoding(x)
        for block in self.transformer_blocks:
            x = block(x, mask=mask)
        x = self.ln_f(x)
        x, _ = self.rnn(x)
        x = self.fc(x)
        return x
    
    def generate(self, prompt, max_len=100):
        self.eval()
        input_ids = self.tokenizer(prompt, return_tensors='pt').input_ids.to(device)
        generated = input_ids
        with torch.no_grad():
            for _ in range(max_len):
                outputs = self.forward(generated)
                next_token_logits = outputs[:, :]  # Adjusted indexing
                next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
                generated = torch.cat((generated, next_token_id), dim=1)
                if next_token_id.item() == self.tokenizer.sep_token_id:
                    break
        generated_text = self.tokenizer.decode(generated[0], skip_special_tokens=True)
        return generated_text

# Load the last saved model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = JudgeXL(config)
model = torch.load('C:/AIstuffing/Judge_XL-LLM/xl-llm_weights/judgeXL-LLm_wiki.pth', weights_only=False)