|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" KCLGPT configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class KCLGPTConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`KCLGPTModel`]. It is used to instantiate a |
|
KCLGPT model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the KCLGPT |
|
[gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50257): |
|
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`KCLGPTModel`]. |
|
n_positions (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_inner (`int`, *optional*, defaults to None): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", |
|
"gelu_pytorch_tanh"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
scale_attn_weights (`bool`, *optional*, defaults to `True`): |
|
Scale attention weights by dividing by sqrt(hidden_size).. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): |
|
Whether to call the fused softmax in float32. |
|
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): |
|
Whether to scale the attention softmax in float32. |
|
attention_type (`bool`, *optional*, defaults to `True`): |
|
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`). |
|
Example: |
|
|
|
```python |
|
>>> from transformers import KCLGPTConfig, KCLGPTModel |
|
|
|
>>> # Initializing a KCLGPT configuration |
|
>>> configuration = KCLGPTConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = KCLGPTModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "kclgpt" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "n_embd", |
|
"max_position_embeddings": "n_positions", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50257, |
|
n_positions=1024, |
|
n_embd=768, |
|
n_layer=12, |
|
n_head=12, |
|
n_inner=None, |
|
activation_function="gelu_pytorch_tanh", |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
attn_pdrop=0.1, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
attention_softmax_in_fp32=True, |
|
scale_attention_softmax_in_fp32=True, |
|
group_query_attention=True, |
|
num_query_groups=1, |
|
position_embedding_type="learned_absolute", |
|
rope_scaling=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
self.attention_softmax_in_fp32 = attention_softmax_in_fp32 |
|
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32 |
|
self.group_query_attention = group_query_attention |
|
self.num_query_groups = num_query_groups |
|
self.position_embedding_type = position_embedding_type |
|
self.rope_scaling = rope_scaling |
|
assert self.position_embedding_type in [ |
|
"learned_absolute", "rope" |
|
], "position_embedding_type must be one of ['learned_absolute', 'rope']" |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|