update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-large-robust-ft-libri-960h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-libri-960h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-libri-960h) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.9736
|
21 |
+
- Accuracy: 0.6354
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 30
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.0795 | 1.0 | 18 | 2.0783 | 0.1007 |
|
56 |
+
| 2.0703 | 2.0 | 36 | 2.0743 | 0.1181 |
|
57 |
+
| 2.062 | 3.0 | 54 | 2.0632 | 0.1597 |
|
58 |
+
| 2.0444 | 4.0 | 72 | 2.0439 | 0.1910 |
|
59 |
+
| 2.0031 | 5.0 | 90 | 1.9762 | 0.2778 |
|
60 |
+
| 1.9632 | 6.0 | 108 | 1.8421 | 0.3576 |
|
61 |
+
| 1.8249 | 7.0 | 126 | 1.7072 | 0.3889 |
|
62 |
+
| 1.6733 | 8.0 | 144 | 1.5729 | 0.3819 |
|
63 |
+
| 1.5452 | 9.0 | 162 | 1.4826 | 0.4201 |
|
64 |
+
| 1.4479 | 10.0 | 180 | 1.4214 | 0.4236 |
|
65 |
+
| 1.443 | 11.0 | 198 | 1.3441 | 0.4340 |
|
66 |
+
| 1.3341 | 12.0 | 216 | 1.3241 | 0.5 |
|
67 |
+
| 1.2697 | 13.0 | 234 | 1.2810 | 0.5069 |
|
68 |
+
| 1.2348 | 14.0 | 252 | 1.2349 | 0.5069 |
|
69 |
+
| 1.1785 | 15.0 | 270 | 1.1948 | 0.5208 |
|
70 |
+
| 1.1687 | 16.0 | 288 | 1.1831 | 0.5451 |
|
71 |
+
| 1.1168 | 17.0 | 306 | 1.1481 | 0.5764 |
|
72 |
+
| 1.0975 | 18.0 | 324 | 1.1342 | 0.5764 |
|
73 |
+
| 1.0491 | 19.0 | 342 | 1.1138 | 0.6146 |
|
74 |
+
| 1.033 | 20.0 | 360 | 1.0800 | 0.6146 |
|
75 |
+
| 1.0523 | 21.0 | 378 | 1.0678 | 0.6146 |
|
76 |
+
| 1.0136 | 22.0 | 396 | 1.0472 | 0.6111 |
|
77 |
+
| 0.9777 | 23.0 | 414 | 1.0175 | 0.6111 |
|
78 |
+
| 1.0007 | 24.0 | 432 | 1.0703 | 0.6215 |
|
79 |
+
| 0.9584 | 25.0 | 450 | 0.9935 | 0.6181 |
|
80 |
+
| 0.9102 | 26.0 | 468 | 0.9736 | 0.6354 |
|
81 |
+
| 0.9101 | 27.0 | 486 | 0.9758 | 0.6285 |
|
82 |
+
| 0.9405 | 28.0 | 504 | 0.9659 | 0.6319 |
|
83 |
+
| 0.9366 | 29.0 | 522 | 0.9719 | 0.625 |
|
84 |
+
| 0.9498 | 30.0 | 540 | 0.9713 | 0.6215 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.31.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.14.4
|
92 |
+
- Tokenizers 0.13.3
|