File size: 1,469 Bytes
caa26aa
 
 
 
83a7367
 
 
 
 
caa26aa
83a7367
caa26aa
83a7367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa26aa
 
7837b8e
93b926f
7837b8e
93b926f
7837b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc6339
 
 
 
 
 
 
 
93b926f
afc6339
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
language: en
license: cc-by-4.0
tags:
- automatic-speech-recognition
- nemo
- conformer
- entity_tagging
- intent
datasets:
- slurp
metrics:
- wer
- cer
model-index:
- name: 1step ASR-NL for Slurp dataset
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Slurp dataset
      type: slurp
    metrics:
    - name: Word Error Rate
      type: wer
      value:
      - Insert WER Value
    - name: Character Error Rate
      type: cer
      value:
      - Insert CER Value
---


# This speech tagger performs transcription, annotates entities, predict intent for SLURP dataset

Model is suitable for voiceAI applications.

## Model Details

- **Model type**: NeMo ASR
- **Architecture**: Conformer CTC
- **Language**: English
- **Training data**: Slurp dataset
- **Performance metrics**: [Metrics]

## Usage

To use this model, you need to install the NeMo library:

```bash
pip install nemo_toolkit
```

### How to run

```python
import nemo.collections.asr as nemo_asr

# Step 1: Load the ASR model from Hugging Face
model_name = 'WhissleAI/speech-tagger_en_slurp-iot'
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)

# Step 2: Provide the path to your audio file
audio_file_path = '/path/to/your/audio_file.wav'

# Step 3: Transcribe the audio
transcription = asr_model.transcribe(paths2audio_files=[audio_file_path])
print(f'Transcription: {transcription[0]}')
```