ironrock commited on
Commit
ef07c61
·
verified ·
1 Parent(s): 467e907

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +80 -81
  2. checkpoint-1900/README.md +204 -0
  3. checkpoint-1900/adapter_config.json +32 -0
  4. checkpoint-1900/adapter_model.safetensors +3 -0
  5. checkpoint-1900/optimizer.pt +3 -0
  6. checkpoint-1900/rng_state.pth +3 -0
  7. checkpoint-1900/scheduler.pt +3 -0
  8. checkpoint-1900/special_tokens_map.json +24 -0
  9. checkpoint-1900/tokenizer.json +0 -0
  10. checkpoint-1900/tokenizer.model +3 -0
  11. checkpoint-1900/tokenizer_config.json +45 -0
  12. checkpoint-1900/trainer_state.json +990 -0
  13. checkpoint-1900/training_args.bin +3 -0
  14. checkpoint-2000/README.md +204 -0
  15. checkpoint-2000/adapter_config.json +32 -0
  16. checkpoint-2000/adapter_model.safetensors +3 -0
  17. checkpoint-2000/optimizer.pt +3 -0
  18. checkpoint-2000/rng_state.pth +3 -0
  19. checkpoint-2000/scheduler.pt +3 -0
  20. checkpoint-2000/special_tokens_map.json +24 -0
  21. checkpoint-2000/tokenizer.json +0 -0
  22. checkpoint-2000/tokenizer.model +3 -0
  23. checkpoint-2000/tokenizer_config.json +45 -0
  24. checkpoint-2000/trainer_state.json +1041 -0
  25. checkpoint-2000/training_args.bin +3 -0
  26. checkpoint-2100/README.md +204 -0
  27. checkpoint-2100/adapter_config.json +32 -0
  28. checkpoint-2100/adapter_model.safetensors +3 -0
  29. checkpoint-2100/optimizer.pt +3 -0
  30. checkpoint-2100/rng_state.pth +3 -0
  31. checkpoint-2100/scheduler.pt +3 -0
  32. checkpoint-2100/special_tokens_map.json +24 -0
  33. checkpoint-2100/tokenizer.json +0 -0
  34. checkpoint-2100/tokenizer.model +3 -0
  35. checkpoint-2100/tokenizer_config.json +45 -0
  36. checkpoint-2100/trainer_state.json +1092 -0
  37. checkpoint-2100/training_args.bin +3 -0
  38. checkpoint-2200/README.md +204 -0
  39. checkpoint-2200/adapter_config.json +32 -0
  40. checkpoint-2200/adapter_model.safetensors +3 -0
  41. checkpoint-2200/optimizer.pt +3 -0
  42. checkpoint-2200/rng_state.pth +3 -0
  43. checkpoint-2200/scheduler.pt +3 -0
  44. checkpoint-2200/special_tokens_map.json +24 -0
  45. checkpoint-2200/tokenizer.json +0 -0
  46. checkpoint-2200/tokenizer.model +3 -0
  47. checkpoint-2200/tokenizer_config.json +45 -0
  48. checkpoint-2200/trainer_state.json +1143 -0
  49. checkpoint-2200/training_args.bin +3 -0
  50. checkpoint-2300/README.md +204 -0
README.md CHANGED
@@ -1,110 +1,109 @@
1
  ---
2
- license: apache-2.0
3
- library_name: peft
4
  tags:
5
- - trl
6
- - sft
7
- - generated_from_trainer
8
  base_model: mistralai/Mistral-7B-Instruct-v0.2
9
  model-index:
10
- - name: ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0
11
  results: []
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0
18
 
19
- This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.3035
22
 
23
- ## Model description
24
 
25
- More information needed
26
 
27
- ## Intended uses & limitations
28
 
29
- More information needed
30
 
31
- ## Training and evaluation data
 
 
 
 
32
 
33
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
  - learning_rate: 0.0002
41
- - train_batch_size: 8
42
- - eval_batch_size: 8
43
- - seed: 42
44
  - gradient_accumulation_steps: 2
 
45
  - total_train_batch_size: 16
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: linear
48
- - lr_scheduler_warmup_ratio: 0.1
49
- - training_steps: 2344
50
- - mixed_precision_training: Native AMP
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss |
55
- |:-------------:|:-----:|:----:|:---------------:|
56
- | 1.1297 | 0.04 | 50 | 0.5451 |
57
- | 0.4425 | 0.09 | 100 | 0.4280 |
58
- | 0.4241 | 0.13 | 150 | 0.4138 |
59
- | 0.4059 | 0.17 | 200 | 0.4060 |
60
- | 0.4125 | 0.21 | 250 | 0.4003 |
61
- | 0.3948 | 0.26 | 300 | 0.3946 |
62
- | 0.3979 | 0.3 | 350 | 0.3886 |
63
- | 0.3938 | 0.34 | 400 | 0.3846 |
64
- | 0.3739 | 0.38 | 450 | 0.3805 |
65
- | 0.3726 | 0.43 | 500 | 0.3775 |
66
- | 0.363 | 0.47 | 550 | 0.3730 |
67
- | 0.3718 | 0.51 | 600 | 0.3698 |
68
- | 0.3711 | 0.55 | 650 | 0.3667 |
69
- | 0.3665 | 0.6 | 700 | 0.3636 |
70
- | 0.3625 | 0.64 | 750 | 0.3618 |
71
- | 0.3756 | 0.68 | 800 | 0.3584 |
72
- | 0.3493 | 0.72 | 850 | 0.3540 |
73
- | 0.3585 | 0.77 | 900 | 0.3510 |
74
- | 0.3466 | 0.81 | 950 | 0.3471 |
75
- | 0.3483 | 0.85 | 1000 | 0.3437 |
76
- | 0.343 | 0.9 | 1050 | 0.3401 |
77
- | 0.3373 | 0.94 | 1100 | 0.3368 |
78
- | 0.3388 | 0.98 | 1150 | 0.3337 |
79
- | 0.256 | 1.02 | 1200 | 0.3355 |
80
- | 0.2485 | 1.07 | 1250 | 0.3336 |
81
- | 0.2452 | 1.11 | 1300 | 0.3301 |
82
- | 0.2573 | 1.15 | 1350 | 0.3278 |
83
- | 0.245 | 1.19 | 1400 | 0.3246 |
84
- | 0.2446 | 1.24 | 1450 | 0.3240 |
85
- | 0.2416 | 1.28 | 1500 | 0.3212 |
86
- | 0.2432 | 1.32 | 1550 | 0.3201 |
87
- | 0.242 | 1.36 | 1600 | 0.3168 |
88
- | 0.231 | 1.41 | 1650 | 0.3156 |
89
- | 0.2369 | 1.45 | 1700 | 0.3140 |
90
- | 0.2405 | 1.49 | 1750 | 0.3110 |
91
- | 0.2263 | 1.53 | 1800 | 0.3092 |
92
- | 0.2324 | 1.58 | 1850 | 0.3087 |
93
- | 0.2203 | 1.62 | 1900 | 0.3084 |
94
- | 0.223 | 1.66 | 1950 | 0.3060 |
95
- | 0.2218 | 1.71 | 2000 | 0.3055 |
96
- | 0.2278 | 1.75 | 2050 | 0.3049 |
97
- | 0.2229 | 1.79 | 2100 | 0.3043 |
98
- | 0.2189 | 1.83 | 2150 | 0.3041 |
99
- | 0.23 | 1.88 | 2200 | 0.3038 |
100
- | 0.2235 | 1.92 | 2250 | 0.3036 |
101
- | 0.2368 | 1.96 | 2300 | 0.3035 |
102
-
103
-
104
  ### Framework versions
105
 
106
- - PEFT 0.8.2
107
- - Transformers 4.38.2
108
- - Pytorch 2.1.0+cu118
109
- - Datasets 2.17.1
110
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - SFT
6
+ - ZeroShot
 
7
  base_model: mistralai/Mistral-7B-Instruct-v0.2
8
  model-index:
9
+ - name: Weni/ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0
10
  results: []
11
+ language: ['en', 'es', 'pt']
12
  ---
13
 
14
+ # Weni/ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0
 
15
 
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2] on the dataset Weni/zeroshot-3.3.0 with the SFT trainer. It is part of the ZeroShot project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 0.3034871220588684, 'eval_runtime': 270.9068, 'eval_samples_per_second': 7.696, 'eval_steps_per_second': 0.963, 'epoch': 2.0}
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model mistralai/Mistral-7B-Instruct-v0.2 with the following prompt:
28
 
29
+ ```
30
+ ---------------------
31
+ Portuguese:
32
+ [INST] Você é muito especialista em classificar a frase do usuário em um chatbot sobre: {context}
33
+ Pare, pense bem e responda com APENAS UM ÚNICO \`id\` da classe que melhor represente a intenção para a frase do usuário de acordo com a análise de seu contexto, responda APENAS com o \`id\` da classe só se você tiver muita certeza e não explique o motivo. Na ausência, falta de informações ou caso a frase do usuário não se enquadre em nenhuma classe, classifique como "-1".
34
 
35
+ # Essas são as Classes com seus Id e Contexto:
36
+ {all_classes}
37
+
38
+ # Frase do usuário: {input}
39
+ # Id da Classe: [/INST] {output_id}
40
+
41
+
42
+ ---------------------
43
+ Spanish:
44
+ [INST] Eres muy experto en clasificar la frase del usuario en un chatbot sobre: {context}
45
+ Deténgase, piense bien y responda con SOLO UN ÚNICO \`id\` de la clase que mejor represente la intención para la frase del usuario de acuerdo con el análisis de su contexto, responda SOLO con el \`id\` de la clase si está muy seguro y no explique el motivo. En ausencia, falta de información o en caso de que la frase del usuario no se ajuste a ninguna clase, clasifique como "-1".
46
+
47
+ # Estas son las Clases con sus Id y Contexto:
48
+ {all_classes}
49
+
50
+ # Frase del usuario: {input}
51
+ # Id de la Clase: [/INST] {output_id}
52
 
53
+
54
+ ---------------------
55
+ English:
56
+ [INST] You are very expert in classifying the user sentence in a chatbot about: {context}
57
+ Stop, think carefully, and respond with ONLY ONE SINGLE \`id\` of the class that best represents the intention for the user's sentence according to the analysis of its context, respond ONLY with the \`id\` of the class if you are very sure and do not explain the reason. In the absence, lack of information, or if the user's sentence does not fit into any class, classify as "-1".
58
+
59
+ # These are the Classes and its Context:
60
+ {all_classes}
61
+
62
+ # User's sentence: {input}
63
+ # Class Id: [/INST] {output_id}
64
+
65
+
66
+ ---------------------
67
+
68
+ ```
69
 
70
  ### Training hyperparameters
71
 
72
  The following hyperparameters were used during training:
73
  - learning_rate: 0.0002
74
+ - per_device_train_batch_size: 8
75
+ - per_device_eval_batch_size: 8
 
76
  - gradient_accumulation_steps: 2
77
+ - num_gpus: 1
78
  - total_train_batch_size: 16
79
+ - optimizer: AdamW
80
+ - lr_scheduler_type: cosine
81
+ - num_steps: 2344
82
+ - quantization_type: bitsandbytes
83
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
84
 
85
  ### Training results
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  ### Framework versions
88
 
89
+ - transformers==4.38.2
90
+ - datasets==2.17.1
91
+ - peft==0.8.2
92
+ - safetensors==0.4.2
93
+ - evaluate==0.4.1
94
+ - bitsandbytes==0.42
95
+ - huggingface_hub==0.20.3
96
+ - seqeval==1.2.2
97
+ - optimum==1.17.1
98
+ - auto-gptq==0.7.0
99
+ - gpustat==1.1.1
100
+ - deepspeed==0.13.2
101
+ - wandb==0.16.3
102
+ - trl==0.7.11
103
+ - accelerate==0.27.2
104
+ - coloredlogs==15.0.1
105
+ - traitlets==5.14.1
106
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
107
+
108
+ ### Hardware
109
+ - Cloud provided: runpod.io
checkpoint-1900/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-1900/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "o_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-1900/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a08b71a69b720c0a871142a214166be9af14ff52a4a49319bf823031079e4e8c
3
+ size 167832240
checkpoint-1900/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9c397c08a0932fe11937f9381c4a088e90aa8419ddd648d756841479a3ce83
3
+ size 335811770
checkpoint-1900/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0716b5fcf625a0e485be88459224eeffb8f3d71611c492cab7c039711b602169
3
+ size 14244
checkpoint-1900/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f78e6606e5ae8a2ca936dd99e95c3569b58d69b81ca18a457d164177385e3be
3
+ size 1000
checkpoint-1900/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1900/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1900/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-1900/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 2048,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "<unk>",
39
+ "padding": true,
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-1900/trainer_state.json ADDED
@@ -0,0 +1,990 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.30838343501091003,
3
+ "best_model_checkpoint": "./Mistral/17-03-24-Weni-ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0_ZeroShot SFT Training with its best hyperparameters-2_max_steps-2344_batch_16_2024-03-17_ppid_9/checkpoint-1900",
4
+ "epoch": 1.619778346121057,
5
+ "eval_steps": 50,
6
+ "global_step": 1900,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 5.4808268547058105,
14
+ "learning_rate": 1.623931623931624e-05,
15
+ "loss": 1.7023,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "grad_norm": 2.232806444168091,
21
+ "learning_rate": 3.3333333333333335e-05,
22
+ "loss": 1.1297,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.04,
27
+ "eval_loss": 0.5450807809829712,
28
+ "eval_runtime": 271.242,
29
+ "eval_samples_per_second": 7.687,
30
+ "eval_steps_per_second": 0.962,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.05,
35
+ "grad_norm": 0.8864539265632629,
36
+ "learning_rate": 4.9572649572649575e-05,
37
+ "loss": 0.5849,
38
+ "step": 60
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "grad_norm": 0.8033413887023926,
43
+ "learning_rate": 6.666666666666667e-05,
44
+ "loss": 0.4593,
45
+ "step": 80
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "grad_norm": 0.6578605771064758,
50
+ "learning_rate": 8.376068376068377e-05,
51
+ "loss": 0.4425,
52
+ "step": 100
53
+ },
54
+ {
55
+ "epoch": 0.09,
56
+ "eval_loss": 0.42795854806900024,
57
+ "eval_runtime": 271.0229,
58
+ "eval_samples_per_second": 7.693,
59
+ "eval_steps_per_second": 0.963,
60
+ "step": 100
61
+ },
62
+ {
63
+ "epoch": 0.1,
64
+ "grad_norm": 0.5158710479736328,
65
+ "learning_rate": 0.00010085470085470086,
66
+ "loss": 0.4249,
67
+ "step": 120
68
+ },
69
+ {
70
+ "epoch": 0.12,
71
+ "grad_norm": 0.4536530375480652,
72
+ "learning_rate": 0.00011794871794871796,
73
+ "loss": 0.4241,
74
+ "step": 140
75
+ },
76
+ {
77
+ "epoch": 0.13,
78
+ "eval_loss": 0.4137832820415497,
79
+ "eval_runtime": 271.1041,
80
+ "eval_samples_per_second": 7.691,
81
+ "eval_steps_per_second": 0.963,
82
+ "step": 150
83
+ },
84
+ {
85
+ "epoch": 0.14,
86
+ "grad_norm": 0.3979959785938263,
87
+ "learning_rate": 0.00013504273504273505,
88
+ "loss": 0.4154,
89
+ "step": 160
90
+ },
91
+ {
92
+ "epoch": 0.15,
93
+ "grad_norm": 0.4166259467601776,
94
+ "learning_rate": 0.00015213675213675214,
95
+ "loss": 0.4107,
96
+ "step": 180
97
+ },
98
+ {
99
+ "epoch": 0.17,
100
+ "grad_norm": 0.40765708684921265,
101
+ "learning_rate": 0.00016923076923076923,
102
+ "loss": 0.4059,
103
+ "step": 200
104
+ },
105
+ {
106
+ "epoch": 0.17,
107
+ "eval_loss": 0.40599754452705383,
108
+ "eval_runtime": 271.1072,
109
+ "eval_samples_per_second": 7.691,
110
+ "eval_steps_per_second": 0.963,
111
+ "step": 200
112
+ },
113
+ {
114
+ "epoch": 0.19,
115
+ "grad_norm": 0.39934784173965454,
116
+ "learning_rate": 0.00018632478632478634,
117
+ "loss": 0.3935,
118
+ "step": 220
119
+ },
120
+ {
121
+ "epoch": 0.2,
122
+ "grad_norm": 0.39337554574012756,
123
+ "learning_rate": 0.00019999822653125876,
124
+ "loss": 0.4125,
125
+ "step": 240
126
+ },
127
+ {
128
+ "epoch": 0.21,
129
+ "eval_loss": 0.4002617597579956,
130
+ "eval_runtime": 271.1099,
131
+ "eval_samples_per_second": 7.691,
132
+ "eval_steps_per_second": 0.963,
133
+ "step": 250
134
+ },
135
+ {
136
+ "epoch": 0.22,
137
+ "grad_norm": 0.4723268449306488,
138
+ "learning_rate": 0.00019993616172996704,
139
+ "loss": 0.4074,
140
+ "step": 260
141
+ },
142
+ {
143
+ "epoch": 0.24,
144
+ "grad_norm": 0.4829658269882202,
145
+ "learning_rate": 0.00019978548638541202,
146
+ "loss": 0.3933,
147
+ "step": 280
148
+ },
149
+ {
150
+ "epoch": 0.26,
151
+ "grad_norm": 0.7815160155296326,
152
+ "learning_rate": 0.00019954633409712276,
153
+ "loss": 0.3948,
154
+ "step": 300
155
+ },
156
+ {
157
+ "epoch": 0.26,
158
+ "eval_loss": 0.3945770263671875,
159
+ "eval_runtime": 271.0451,
160
+ "eval_samples_per_second": 7.692,
161
+ "eval_steps_per_second": 0.963,
162
+ "step": 300
163
+ },
164
+ {
165
+ "epoch": 0.27,
166
+ "grad_norm": 0.4525783956050873,
167
+ "learning_rate": 0.00019921891691460983,
168
+ "loss": 0.3777,
169
+ "step": 320
170
+ },
171
+ {
172
+ "epoch": 0.29,
173
+ "grad_norm": 0.3549365699291229,
174
+ "learning_rate": 0.00019880352514934724,
175
+ "loss": 0.3979,
176
+ "step": 340
177
+ },
178
+ {
179
+ "epoch": 0.3,
180
+ "eval_loss": 0.3886016309261322,
181
+ "eval_runtime": 271.0939,
182
+ "eval_samples_per_second": 7.691,
183
+ "eval_steps_per_second": 0.963,
184
+ "step": 350
185
+ },
186
+ {
187
+ "epoch": 0.31,
188
+ "grad_norm": 0.38849011063575745,
189
+ "learning_rate": 0.00019830052711736142,
190
+ "loss": 0.3895,
191
+ "step": 360
192
+ },
193
+ {
194
+ "epoch": 0.32,
195
+ "grad_norm": 0.4513374865055084,
196
+ "learning_rate": 0.00019771036881265598,
197
+ "loss": 0.3866,
198
+ "step": 380
199
+ },
200
+ {
201
+ "epoch": 0.34,
202
+ "grad_norm": 0.4288094639778137,
203
+ "learning_rate": 0.00019703357351176151,
204
+ "loss": 0.3938,
205
+ "step": 400
206
+ },
207
+ {
208
+ "epoch": 0.34,
209
+ "eval_loss": 0.38462838530540466,
210
+ "eval_runtime": 271.1664,
211
+ "eval_samples_per_second": 7.689,
212
+ "eval_steps_per_second": 0.963,
213
+ "step": 400
214
+ },
215
+ {
216
+ "epoch": 0.36,
217
+ "grad_norm": 0.3525382876396179,
218
+ "learning_rate": 0.00019627074130976126,
219
+ "loss": 0.3891,
220
+ "step": 420
221
+ },
222
+ {
223
+ "epoch": 0.38,
224
+ "grad_norm": 0.5788955688476562,
225
+ "learning_rate": 0.0001954225485882039,
226
+ "loss": 0.3739,
227
+ "step": 440
228
+ },
229
+ {
230
+ "epoch": 0.38,
231
+ "eval_loss": 0.3804500699043274,
232
+ "eval_runtime": 271.0816,
233
+ "eval_samples_per_second": 7.691,
234
+ "eval_steps_per_second": 0.963,
235
+ "step": 450
236
+ },
237
+ {
238
+ "epoch": 0.39,
239
+ "grad_norm": 0.47232553362846375,
240
+ "learning_rate": 0.00019448974741537525,
241
+ "loss": 0.371,
242
+ "step": 460
243
+ },
244
+ {
245
+ "epoch": 0.41,
246
+ "grad_norm": 0.38733381032943726,
247
+ "learning_rate": 0.0001934731648794609,
248
+ "loss": 0.37,
249
+ "step": 480
250
+ },
251
+ {
252
+ "epoch": 0.43,
253
+ "grad_norm": 0.42200860381126404,
254
+ "learning_rate": 0.00019237370235519077,
255
+ "loss": 0.3726,
256
+ "step": 500
257
+ },
258
+ {
259
+ "epoch": 0.43,
260
+ "eval_loss": 0.3774518370628357,
261
+ "eval_runtime": 271.1201,
262
+ "eval_samples_per_second": 7.69,
263
+ "eval_steps_per_second": 0.963,
264
+ "step": 500
265
+ },
266
+ {
267
+ "epoch": 0.44,
268
+ "grad_norm": 0.5560094118118286,
269
+ "learning_rate": 0.00019119233470461558,
270
+ "loss": 0.3754,
271
+ "step": 520
272
+ },
273
+ {
274
+ "epoch": 0.46,
275
+ "grad_norm": 0.3813556134700775,
276
+ "learning_rate": 0.00018993010941272478,
277
+ "loss": 0.363,
278
+ "step": 540
279
+ },
280
+ {
281
+ "epoch": 0.47,
282
+ "eval_loss": 0.37297067046165466,
283
+ "eval_runtime": 271.0879,
284
+ "eval_samples_per_second": 7.691,
285
+ "eval_steps_per_second": 0.963,
286
+ "step": 550
287
+ },
288
+ {
289
+ "epoch": 0.48,
290
+ "grad_norm": 0.5384305715560913,
291
+ "learning_rate": 0.0001885881456586713,
292
+ "loss": 0.3656,
293
+ "step": 560
294
+ },
295
+ {
296
+ "epoch": 0.49,
297
+ "grad_norm": 0.4100024700164795,
298
+ "learning_rate": 0.0001871676333234274,
299
+ "loss": 0.3668,
300
+ "step": 580
301
+ },
302
+ {
303
+ "epoch": 0.51,
304
+ "grad_norm": 0.4203307628631592,
305
+ "learning_rate": 0.0001856698319347513,
306
+ "loss": 0.3718,
307
+ "step": 600
308
+ },
309
+ {
310
+ "epoch": 0.51,
311
+ "eval_loss": 0.3698495626449585,
312
+ "eval_runtime": 271.0857,
313
+ "eval_samples_per_second": 7.691,
314
+ "eval_steps_per_second": 0.963,
315
+ "step": 600
316
+ },
317
+ {
318
+ "epoch": 0.53,
319
+ "grad_norm": 0.5422376990318298,
320
+ "learning_rate": 0.0001840960695503995,
321
+ "loss": 0.3813,
322
+ "step": 620
323
+ },
324
+ {
325
+ "epoch": 0.55,
326
+ "grad_norm": 0.41980084776878357,
327
+ "learning_rate": 0.00018244774158057624,
328
+ "loss": 0.3711,
329
+ "step": 640
330
+ },
331
+ {
332
+ "epoch": 0.55,
333
+ "eval_loss": 0.3666984438896179,
334
+ "eval_runtime": 271.059,
335
+ "eval_samples_per_second": 7.692,
336
+ "eval_steps_per_second": 0.963,
337
+ "step": 650
338
+ },
339
+ {
340
+ "epoch": 0.56,
341
+ "grad_norm": 0.49988237023353577,
342
+ "learning_rate": 0.00018072630955066288,
343
+ "loss": 0.3669,
344
+ "step": 660
345
+ },
346
+ {
347
+ "epoch": 0.58,
348
+ "grad_norm": 0.4338107407093048,
349
+ "learning_rate": 0.00017893329980532498,
350
+ "loss": 0.3709,
351
+ "step": 680
352
+ },
353
+ {
354
+ "epoch": 0.6,
355
+ "grad_norm": 0.46425387263298035,
356
+ "learning_rate": 0.0001770703021551463,
357
+ "loss": 0.3665,
358
+ "step": 700
359
+ },
360
+ {
361
+ "epoch": 0.6,
362
+ "eval_loss": 0.36363786458969116,
363
+ "eval_runtime": 271.1155,
364
+ "eval_samples_per_second": 7.69,
365
+ "eval_steps_per_second": 0.963,
366
+ "step": 700
367
+ },
368
+ {
369
+ "epoch": 0.61,
370
+ "grad_norm": 0.5348316431045532,
371
+ "learning_rate": 0.00017513896846698882,
372
+ "loss": 0.3574,
373
+ "step": 720
374
+ },
375
+ {
376
+ "epoch": 0.63,
377
+ "grad_norm": 0.4046632945537567,
378
+ "learning_rate": 0.00017314101119932974,
379
+ "loss": 0.3625,
380
+ "step": 740
381
+ },
382
+ {
383
+ "epoch": 0.64,
384
+ "eval_loss": 0.3617616891860962,
385
+ "eval_runtime": 271.137,
386
+ "eval_samples_per_second": 7.69,
387
+ "eval_steps_per_second": 0.963,
388
+ "step": 750
389
+ },
390
+ {
391
+ "epoch": 0.65,
392
+ "grad_norm": 0.44371724128723145,
393
+ "learning_rate": 0.00017107820188387327,
394
+ "loss": 0.3752,
395
+ "step": 760
396
+ },
397
+ {
398
+ "epoch": 0.66,
399
+ "grad_norm": 0.4216190576553345,
400
+ "learning_rate": 0.00016895236955478412,
401
+ "loss": 0.3606,
402
+ "step": 780
403
+ },
404
+ {
405
+ "epoch": 0.68,
406
+ "grad_norm": 0.5870906114578247,
407
+ "learning_rate": 0.00016676539912693501,
408
+ "loss": 0.3756,
409
+ "step": 800
410
+ },
411
+ {
412
+ "epoch": 0.68,
413
+ "eval_loss": 0.3583546280860901,
414
+ "eval_runtime": 271.1679,
415
+ "eval_samples_per_second": 7.689,
416
+ "eval_steps_per_second": 0.963,
417
+ "step": 800
418
+ },
419
+ {
420
+ "epoch": 0.7,
421
+ "grad_norm": 0.4018837511539459,
422
+ "learning_rate": 0.00016451922972460643,
423
+ "loss": 0.358,
424
+ "step": 820
425
+ },
426
+ {
427
+ "epoch": 0.72,
428
+ "grad_norm": 0.4688343107700348,
429
+ "learning_rate": 0.00016221585296212054,
430
+ "loss": 0.3493,
431
+ "step": 840
432
+ },
433
+ {
434
+ "epoch": 0.72,
435
+ "eval_loss": 0.35402199625968933,
436
+ "eval_runtime": 271.1165,
437
+ "eval_samples_per_second": 7.69,
438
+ "eval_steps_per_second": 0.963,
439
+ "step": 850
440
+ },
441
+ {
442
+ "epoch": 0.73,
443
+ "grad_norm": 0.4941730797290802,
444
+ "learning_rate": 0.00015985731117793353,
445
+ "loss": 0.3502,
446
+ "step": 860
447
+ },
448
+ {
449
+ "epoch": 0.75,
450
+ "grad_norm": 0.4220365583896637,
451
+ "learning_rate": 0.00015744569562375235,
452
+ "loss": 0.3478,
453
+ "step": 880
454
+ },
455
+ {
456
+ "epoch": 0.77,
457
+ "grad_norm": 0.4305894374847412,
458
+ "learning_rate": 0.00015498314461028157,
459
+ "loss": 0.3585,
460
+ "step": 900
461
+ },
462
+ {
463
+ "epoch": 0.77,
464
+ "eval_loss": 0.3510061800479889,
465
+ "eval_runtime": 271.1908,
466
+ "eval_samples_per_second": 7.688,
467
+ "eval_steps_per_second": 0.962,
468
+ "step": 900
469
+ },
470
+ {
471
+ "epoch": 0.78,
472
+ "grad_norm": 0.45022985339164734,
473
+ "learning_rate": 0.00015247184161124415,
474
+ "loss": 0.3558,
475
+ "step": 920
476
+ },
477
+ {
478
+ "epoch": 0.8,
479
+ "grad_norm": 0.4498714506626129,
480
+ "learning_rate": 0.00014991401332735781,
481
+ "loss": 0.3466,
482
+ "step": 940
483
+ },
484
+ {
485
+ "epoch": 0.81,
486
+ "eval_loss": 0.34707528352737427,
487
+ "eval_runtime": 271.0841,
488
+ "eval_samples_per_second": 7.691,
489
+ "eval_steps_per_second": 0.963,
490
+ "step": 950
491
+ },
492
+ {
493
+ "epoch": 0.82,
494
+ "grad_norm": 0.49369582533836365,
495
+ "learning_rate": 0.00014731192771198282,
496
+ "loss": 0.3463,
497
+ "step": 960
498
+ },
499
+ {
500
+ "epoch": 0.84,
501
+ "grad_norm": 0.36855530738830566,
502
+ "learning_rate": 0.00014466789196019257,
503
+ "loss": 0.3428,
504
+ "step": 980
505
+ },
506
+ {
507
+ "epoch": 0.85,
508
+ "grad_norm": 0.501837968826294,
509
+ "learning_rate": 0.00014198425046304942,
510
+ "loss": 0.3483,
511
+ "step": 1000
512
+ },
513
+ {
514
+ "epoch": 0.85,
515
+ "eval_loss": 0.34373167157173157,
516
+ "eval_runtime": 271.0714,
517
+ "eval_samples_per_second": 7.692,
518
+ "eval_steps_per_second": 0.963,
519
+ "step": 1000
520
+ },
521
+ {
522
+ "epoch": 0.87,
523
+ "grad_norm": 0.35614344477653503,
524
+ "learning_rate": 0.00013926338272890026,
525
+ "loss": 0.3322,
526
+ "step": 1020
527
+ },
528
+ {
529
+ "epoch": 0.89,
530
+ "grad_norm": 0.5366308689117432,
531
+ "learning_rate": 0.00013650770127353416,
532
+ "loss": 0.343,
533
+ "step": 1040
534
+ },
535
+ {
536
+ "epoch": 0.9,
537
+ "eval_loss": 0.3401084542274475,
538
+ "eval_runtime": 271.1104,
539
+ "eval_samples_per_second": 7.691,
540
+ "eval_steps_per_second": 0.963,
541
+ "step": 1050
542
+ },
543
+ {
544
+ "epoch": 0.9,
545
+ "grad_norm": 0.46004125475883484,
546
+ "learning_rate": 0.00013371964948107344,
547
+ "loss": 0.3417,
548
+ "step": 1060
549
+ },
550
+ {
551
+ "epoch": 0.92,
552
+ "grad_norm": 0.5817845463752747,
553
+ "learning_rate": 0.00013090169943749476,
554
+ "loss": 0.332,
555
+ "step": 1080
556
+ },
557
+ {
558
+ "epoch": 0.94,
559
+ "grad_norm": 0.9298326969146729,
560
+ "learning_rate": 0.00012805634973870103,
561
+ "loss": 0.3373,
562
+ "step": 1100
563
+ },
564
+ {
565
+ "epoch": 0.94,
566
+ "eval_loss": 0.3367879390716553,
567
+ "eval_runtime": 271.219,
568
+ "eval_samples_per_second": 7.688,
569
+ "eval_steps_per_second": 0.962,
570
+ "step": 1100
571
+ },
572
+ {
573
+ "epoch": 0.95,
574
+ "grad_norm": 0.5731242299079895,
575
+ "learning_rate": 0.00012518612327508773,
576
+ "loss": 0.3443,
577
+ "step": 1120
578
+ },
579
+ {
580
+ "epoch": 0.97,
581
+ "grad_norm": 0.6886520981788635,
582
+ "learning_rate": 0.00012229356499456783,
583
+ "loss": 0.3388,
584
+ "step": 1140
585
+ },
586
+ {
587
+ "epoch": 0.98,
588
+ "eval_loss": 0.3337441086769104,
589
+ "eval_runtime": 271.0416,
590
+ "eval_samples_per_second": 7.693,
591
+ "eval_steps_per_second": 0.963,
592
+ "step": 1150
593
+ },
594
+ {
595
+ "epoch": 0.99,
596
+ "grad_norm": 0.5007095336914062,
597
+ "learning_rate": 0.00011938123964603922,
598
+ "loss": 0.3375,
599
+ "step": 1160
600
+ },
601
+ {
602
+ "epoch": 1.01,
603
+ "grad_norm": 0.49403801560401917,
604
+ "learning_rate": 0.00011645172950529504,
605
+ "loss": 0.3091,
606
+ "step": 1180
607
+ },
608
+ {
609
+ "epoch": 1.02,
610
+ "grad_norm": 0.36014652252197266,
611
+ "learning_rate": 0.00011350763208539337,
612
+ "loss": 0.256,
613
+ "step": 1200
614
+ },
615
+ {
616
+ "epoch": 1.02,
617
+ "eval_loss": 0.33549007773399353,
618
+ "eval_runtime": 271.1529,
619
+ "eval_samples_per_second": 7.689,
620
+ "eval_steps_per_second": 0.963,
621
+ "step": 1200
622
+ },
623
+ {
624
+ "epoch": 1.04,
625
+ "grad_norm": 0.4871821403503418,
626
+ "learning_rate": 0.0001105515578335165,
627
+ "loss": 0.2534,
628
+ "step": 1220
629
+ },
630
+ {
631
+ "epoch": 1.06,
632
+ "grad_norm": 0.4773302376270294,
633
+ "learning_rate": 0.00010758612781636189,
634
+ "loss": 0.2485,
635
+ "step": 1240
636
+ },
637
+ {
638
+ "epoch": 1.07,
639
+ "eval_loss": 0.3336337208747864,
640
+ "eval_runtime": 270.9871,
641
+ "eval_samples_per_second": 7.694,
642
+ "eval_steps_per_second": 0.963,
643
+ "step": 1250
644
+ },
645
+ {
646
+ "epoch": 1.07,
647
+ "grad_norm": 0.4584294259548187,
648
+ "learning_rate": 0.00010461397139611717,
649
+ "loss": 0.2621,
650
+ "step": 1260
651
+ },
652
+ {
653
+ "epoch": 1.09,
654
+ "grad_norm": 0.45226892828941345,
655
+ "learning_rate": 0.00010163772389907971,
656
+ "loss": 0.244,
657
+ "step": 1280
658
+ },
659
+ {
660
+ "epoch": 1.11,
661
+ "grad_norm": 0.5343567728996277,
662
+ "learning_rate": 9.86600242789879e-05,
663
+ "loss": 0.2452,
664
+ "step": 1300
665
+ },
666
+ {
667
+ "epoch": 1.11,
668
+ "eval_loss": 0.33007845282554626,
669
+ "eval_runtime": 271.0147,
670
+ "eval_samples_per_second": 7.693,
671
+ "eval_steps_per_second": 0.963,
672
+ "step": 1300
673
+ },
674
+ {
675
+ "epoch": 1.13,
676
+ "grad_norm": 0.4986325800418854,
677
+ "learning_rate": 9.568351277713618e-05,
678
+ "loss": 0.2525,
679
+ "step": 1320
680
+ },
681
+ {
682
+ "epoch": 1.14,
683
+ "grad_norm": 0.4909712076187134,
684
+ "learning_rate": 9.271082858134854e-05,
685
+ "loss": 0.2573,
686
+ "step": 1340
687
+ },
688
+ {
689
+ "epoch": 1.15,
690
+ "eval_loss": 0.3278447985649109,
691
+ "eval_runtime": 271.052,
692
+ "eval_samples_per_second": 7.692,
693
+ "eval_steps_per_second": 0.963,
694
+ "step": 1350
695
+ },
696
+ {
697
+ "epoch": 1.16,
698
+ "grad_norm": 0.4675891697406769,
699
+ "learning_rate": 8.974460748588577e-05,
700
+ "loss": 0.2516,
701
+ "step": 1360
702
+ },
703
+ {
704
+ "epoch": 1.18,
705
+ "grad_norm": 0.5919708013534546,
706
+ "learning_rate": 8.678747955436209e-05,
707
+ "loss": 0.2459,
708
+ "step": 1380
709
+ },
710
+ {
711
+ "epoch": 1.19,
712
+ "grad_norm": 0.5164061784744263,
713
+ "learning_rate": 8.384206678774267e-05,
714
+ "loss": 0.245,
715
+ "step": 1400
716
+ },
717
+ {
718
+ "epoch": 1.19,
719
+ "eval_loss": 0.3246319591999054,
720
+ "eval_runtime": 270.8895,
721
+ "eval_samples_per_second": 7.697,
722
+ "eval_steps_per_second": 0.963,
723
+ "step": 1400
724
+ },
725
+ {
726
+ "epoch": 1.21,
727
+ "grad_norm": 0.5498049855232239,
728
+ "learning_rate": 8.091098079949022e-05,
729
+ "loss": 0.244,
730
+ "step": 1420
731
+ },
732
+ {
733
+ "epoch": 1.23,
734
+ "grad_norm": 0.40771761536598206,
735
+ "learning_rate": 7.79968204999218e-05,
736
+ "loss": 0.2446,
737
+ "step": 1440
738
+ },
739
+ {
740
+ "epoch": 1.24,
741
+ "eval_loss": 0.32402417063713074,
742
+ "eval_runtime": 270.9055,
743
+ "eval_samples_per_second": 7.696,
744
+ "eval_steps_per_second": 0.963,
745
+ "step": 1450
746
+ },
747
+ {
748
+ "epoch": 1.24,
749
+ "grad_norm": 0.4820304811000824,
750
+ "learning_rate": 7.510216979182932e-05,
751
+ "loss": 0.2485,
752
+ "step": 1460
753
+ },
754
+ {
755
+ "epoch": 1.26,
756
+ "grad_norm": 0.40890711545944214,
757
+ "learning_rate": 7.222959527940643e-05,
758
+ "loss": 0.2426,
759
+ "step": 1480
760
+ },
761
+ {
762
+ "epoch": 1.28,
763
+ "grad_norm": 0.4243795573711395,
764
+ "learning_rate": 6.93816439925141e-05,
765
+ "loss": 0.2416,
766
+ "step": 1500
767
+ },
768
+ {
769
+ "epoch": 1.28,
770
+ "eval_loss": 0.32116860151290894,
771
+ "eval_runtime": 270.8886,
772
+ "eval_samples_per_second": 7.697,
773
+ "eval_steps_per_second": 0.963,
774
+ "step": 1500
775
+ },
776
+ {
777
+ "epoch": 1.3,
778
+ "grad_norm": 0.5360056161880493,
779
+ "learning_rate": 6.656084112830165e-05,
780
+ "loss": 0.2454,
781
+ "step": 1520
782
+ },
783
+ {
784
+ "epoch": 1.31,
785
+ "grad_norm": 0.5155255198478699,
786
+ "learning_rate": 6.376968781218665e-05,
787
+ "loss": 0.2432,
788
+ "step": 1540
789
+ },
790
+ {
791
+ "epoch": 1.32,
792
+ "eval_loss": 0.32005202770233154,
793
+ "eval_runtime": 271.08,
794
+ "eval_samples_per_second": 7.691,
795
+ "eval_steps_per_second": 0.963,
796
+ "step": 1550
797
+ },
798
+ {
799
+ "epoch": 1.33,
800
+ "grad_norm": 0.564046323299408,
801
+ "learning_rate": 6.101065888017833e-05,
802
+ "loss": 0.2414,
803
+ "step": 1560
804
+ },
805
+ {
806
+ "epoch": 1.35,
807
+ "grad_norm": 0.45059406757354736,
808
+ "learning_rate": 5.828620068451111e-05,
809
+ "loss": 0.2408,
810
+ "step": 1580
811
+ },
812
+ {
813
+ "epoch": 1.36,
814
+ "grad_norm": 0.5122149586677551,
815
+ "learning_rate": 5.559872892453375e-05,
816
+ "loss": 0.242,
817
+ "step": 1600
818
+ },
819
+ {
820
+ "epoch": 1.36,
821
+ "eval_loss": 0.316841185092926,
822
+ "eval_runtime": 271.0293,
823
+ "eval_samples_per_second": 7.693,
824
+ "eval_steps_per_second": 0.963,
825
+ "step": 1600
826
+ },
827
+ {
828
+ "epoch": 1.38,
829
+ "grad_norm": 0.48864319920539856,
830
+ "learning_rate": 5.29506265047779e-05,
831
+ "loss": 0.2432,
832
+ "step": 1620
833
+ },
834
+ {
835
+ "epoch": 1.4,
836
+ "grad_norm": 0.603583812713623,
837
+ "learning_rate": 5.034424142210443e-05,
838
+ "loss": 0.231,
839
+ "step": 1640
840
+ },
841
+ {
842
+ "epoch": 1.41,
843
+ "eval_loss": 0.3156278729438782,
844
+ "eval_runtime": 271.0109,
845
+ "eval_samples_per_second": 7.693,
846
+ "eval_steps_per_second": 0.963,
847
+ "step": 1650
848
+ },
849
+ {
850
+ "epoch": 1.42,
851
+ "grad_norm": 0.5807139873504639,
852
+ "learning_rate": 4.778188468380169e-05,
853
+ "loss": 0.2425,
854
+ "step": 1660
855
+ },
856
+ {
857
+ "epoch": 1.43,
858
+ "grad_norm": 0.4968738555908203,
859
+ "learning_rate": 4.526582825848131e-05,
860
+ "loss": 0.2362,
861
+ "step": 1680
862
+ },
863
+ {
864
+ "epoch": 1.45,
865
+ "grad_norm": 0.6385018825531006,
866
+ "learning_rate": 4.2798303061588404e-05,
867
+ "loss": 0.2369,
868
+ "step": 1700
869
+ },
870
+ {
871
+ "epoch": 1.45,
872
+ "eval_loss": 0.3140126168727875,
873
+ "eval_runtime": 270.9649,
874
+ "eval_samples_per_second": 7.695,
875
+ "eval_steps_per_second": 0.963,
876
+ "step": 1700
877
+ },
878
+ {
879
+ "epoch": 1.47,
880
+ "grad_norm": 0.5020663738250732,
881
+ "learning_rate": 4.038149697731247e-05,
882
+ "loss": 0.2425,
883
+ "step": 1720
884
+ },
885
+ {
886
+ "epoch": 1.48,
887
+ "grad_norm": 0.5276768207550049,
888
+ "learning_rate": 3.801755291865307e-05,
889
+ "loss": 0.2405,
890
+ "step": 1740
891
+ },
892
+ {
893
+ "epoch": 1.49,
894
+ "eval_loss": 0.3110227882862091,
895
+ "eval_runtime": 270.8888,
896
+ "eval_samples_per_second": 7.697,
897
+ "eval_steps_per_second": 0.963,
898
+ "step": 1750
899
+ },
900
+ {
901
+ "epoch": 1.5,
902
+ "grad_norm": 0.5092354416847229,
903
+ "learning_rate": 3.570856692735976e-05,
904
+ "loss": 0.2356,
905
+ "step": 1760
906
+ },
907
+ {
908
+ "epoch": 1.52,
909
+ "grad_norm": 0.4134100079536438,
910
+ "learning_rate": 3.3456586315431874e-05,
911
+ "loss": 0.2397,
912
+ "step": 1780
913
+ },
914
+ {
915
+ "epoch": 1.53,
916
+ "grad_norm": 0.41335973143577576,
917
+ "learning_rate": 3.126360784982532e-05,
918
+ "loss": 0.2263,
919
+ "step": 1800
920
+ },
921
+ {
922
+ "epoch": 1.53,
923
+ "eval_loss": 0.309181272983551,
924
+ "eval_runtime": 270.9592,
925
+ "eval_samples_per_second": 7.695,
926
+ "eval_steps_per_second": 0.963,
927
+ "step": 1800
928
+ },
929
+ {
930
+ "epoch": 1.55,
931
+ "grad_norm": 0.6216692924499512,
932
+ "learning_rate": 2.9131575981976245e-05,
933
+ "loss": 0.2371,
934
+ "step": 1820
935
+ },
936
+ {
937
+ "epoch": 1.57,
938
+ "grad_norm": 0.6529776453971863,
939
+ "learning_rate": 2.7062381123711532e-05,
940
+ "loss": 0.2324,
941
+ "step": 1840
942
+ },
943
+ {
944
+ "epoch": 1.58,
945
+ "eval_loss": 0.3087258040904999,
946
+ "eval_runtime": 270.9376,
947
+ "eval_samples_per_second": 7.695,
948
+ "eval_steps_per_second": 0.963,
949
+ "step": 1850
950
+ },
951
+ {
952
+ "epoch": 1.59,
953
+ "grad_norm": 0.41469648480415344,
954
+ "learning_rate": 2.505785797107446e-05,
955
+ "loss": 0.2148,
956
+ "step": 1860
957
+ },
958
+ {
959
+ "epoch": 1.6,
960
+ "grad_norm": 0.5092002749443054,
961
+ "learning_rate": 2.3119783877552126e-05,
962
+ "loss": 0.2287,
963
+ "step": 1880
964
+ },
965
+ {
966
+ "epoch": 1.62,
967
+ "grad_norm": 0.6236806511878967,
968
+ "learning_rate": 2.1249877278146868e-05,
969
+ "loss": 0.2203,
970
+ "step": 1900
971
+ },
972
+ {
973
+ "epoch": 1.62,
974
+ "eval_loss": 0.30838343501091003,
975
+ "eval_runtime": 270.9479,
976
+ "eval_samples_per_second": 7.695,
977
+ "eval_steps_per_second": 0.963,
978
+ "step": 1900
979
+ }
980
+ ],
981
+ "logging_steps": 20,
982
+ "max_steps": 2344,
983
+ "num_input_tokens_seen": 0,
984
+ "num_train_epochs": 2,
985
+ "save_steps": 100,
986
+ "total_flos": 9.941656300877414e+17,
987
+ "train_batch_size": 8,
988
+ "trial_name": null,
989
+ "trial_params": null
990
+ }
checkpoint-1900/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb8fa2435e433c3f852730900572fbfd7369fa856e86f09819c1794580c69b1
3
+ size 5304
checkpoint-2000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "o_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d3f5a7a89ce26117d3cba51f3e9d306dc080e0738574f084ef3a3bfdc0ac99
3
+ size 167832240
checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3725f3bbaa4dc5ad41cb60a5cd1e918b694b6f1ab596a82e1004a9795242632f
3
+ size 335811770
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ba3861df1944efef170daf9467a3af5796b0b65ef9631c128eafadfc6fd079b
3
+ size 14244
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7658b1ce9badf417edb7056dc16a56bb1f9716f15149593615abc9c97c17b17
3
+ size 1000
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-2000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 2048,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "<unk>",
39
+ "padding": true,
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,1041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.3054625391960144,
3
+ "best_model_checkpoint": "./Mistral/17-03-24-Weni-ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0_ZeroShot SFT Training with its best hyperparameters-2_max_steps-2344_batch_16_2024-03-17_ppid_9/checkpoint-2000",
4
+ "epoch": 1.7050298380221653,
5
+ "eval_steps": 50,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 5.4808268547058105,
14
+ "learning_rate": 1.623931623931624e-05,
15
+ "loss": 1.7023,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "grad_norm": 2.232806444168091,
21
+ "learning_rate": 3.3333333333333335e-05,
22
+ "loss": 1.1297,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.04,
27
+ "eval_loss": 0.5450807809829712,
28
+ "eval_runtime": 271.242,
29
+ "eval_samples_per_second": 7.687,
30
+ "eval_steps_per_second": 0.962,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.05,
35
+ "grad_norm": 0.8864539265632629,
36
+ "learning_rate": 4.9572649572649575e-05,
37
+ "loss": 0.5849,
38
+ "step": 60
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "grad_norm": 0.8033413887023926,
43
+ "learning_rate": 6.666666666666667e-05,
44
+ "loss": 0.4593,
45
+ "step": 80
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "grad_norm": 0.6578605771064758,
50
+ "learning_rate": 8.376068376068377e-05,
51
+ "loss": 0.4425,
52
+ "step": 100
53
+ },
54
+ {
55
+ "epoch": 0.09,
56
+ "eval_loss": 0.42795854806900024,
57
+ "eval_runtime": 271.0229,
58
+ "eval_samples_per_second": 7.693,
59
+ "eval_steps_per_second": 0.963,
60
+ "step": 100
61
+ },
62
+ {
63
+ "epoch": 0.1,
64
+ "grad_norm": 0.5158710479736328,
65
+ "learning_rate": 0.00010085470085470086,
66
+ "loss": 0.4249,
67
+ "step": 120
68
+ },
69
+ {
70
+ "epoch": 0.12,
71
+ "grad_norm": 0.4536530375480652,
72
+ "learning_rate": 0.00011794871794871796,
73
+ "loss": 0.4241,
74
+ "step": 140
75
+ },
76
+ {
77
+ "epoch": 0.13,
78
+ "eval_loss": 0.4137832820415497,
79
+ "eval_runtime": 271.1041,
80
+ "eval_samples_per_second": 7.691,
81
+ "eval_steps_per_second": 0.963,
82
+ "step": 150
83
+ },
84
+ {
85
+ "epoch": 0.14,
86
+ "grad_norm": 0.3979959785938263,
87
+ "learning_rate": 0.00013504273504273505,
88
+ "loss": 0.4154,
89
+ "step": 160
90
+ },
91
+ {
92
+ "epoch": 0.15,
93
+ "grad_norm": 0.4166259467601776,
94
+ "learning_rate": 0.00015213675213675214,
95
+ "loss": 0.4107,
96
+ "step": 180
97
+ },
98
+ {
99
+ "epoch": 0.17,
100
+ "grad_norm": 0.40765708684921265,
101
+ "learning_rate": 0.00016923076923076923,
102
+ "loss": 0.4059,
103
+ "step": 200
104
+ },
105
+ {
106
+ "epoch": 0.17,
107
+ "eval_loss": 0.40599754452705383,
108
+ "eval_runtime": 271.1072,
109
+ "eval_samples_per_second": 7.691,
110
+ "eval_steps_per_second": 0.963,
111
+ "step": 200
112
+ },
113
+ {
114
+ "epoch": 0.19,
115
+ "grad_norm": 0.39934784173965454,
116
+ "learning_rate": 0.00018632478632478634,
117
+ "loss": 0.3935,
118
+ "step": 220
119
+ },
120
+ {
121
+ "epoch": 0.2,
122
+ "grad_norm": 0.39337554574012756,
123
+ "learning_rate": 0.00019999822653125876,
124
+ "loss": 0.4125,
125
+ "step": 240
126
+ },
127
+ {
128
+ "epoch": 0.21,
129
+ "eval_loss": 0.4002617597579956,
130
+ "eval_runtime": 271.1099,
131
+ "eval_samples_per_second": 7.691,
132
+ "eval_steps_per_second": 0.963,
133
+ "step": 250
134
+ },
135
+ {
136
+ "epoch": 0.22,
137
+ "grad_norm": 0.4723268449306488,
138
+ "learning_rate": 0.00019993616172996704,
139
+ "loss": 0.4074,
140
+ "step": 260
141
+ },
142
+ {
143
+ "epoch": 0.24,
144
+ "grad_norm": 0.4829658269882202,
145
+ "learning_rate": 0.00019978548638541202,
146
+ "loss": 0.3933,
147
+ "step": 280
148
+ },
149
+ {
150
+ "epoch": 0.26,
151
+ "grad_norm": 0.7815160155296326,
152
+ "learning_rate": 0.00019954633409712276,
153
+ "loss": 0.3948,
154
+ "step": 300
155
+ },
156
+ {
157
+ "epoch": 0.26,
158
+ "eval_loss": 0.3945770263671875,
159
+ "eval_runtime": 271.0451,
160
+ "eval_samples_per_second": 7.692,
161
+ "eval_steps_per_second": 0.963,
162
+ "step": 300
163
+ },
164
+ {
165
+ "epoch": 0.27,
166
+ "grad_norm": 0.4525783956050873,
167
+ "learning_rate": 0.00019921891691460983,
168
+ "loss": 0.3777,
169
+ "step": 320
170
+ },
171
+ {
172
+ "epoch": 0.29,
173
+ "grad_norm": 0.3549365699291229,
174
+ "learning_rate": 0.00019880352514934724,
175
+ "loss": 0.3979,
176
+ "step": 340
177
+ },
178
+ {
179
+ "epoch": 0.3,
180
+ "eval_loss": 0.3886016309261322,
181
+ "eval_runtime": 271.0939,
182
+ "eval_samples_per_second": 7.691,
183
+ "eval_steps_per_second": 0.963,
184
+ "step": 350
185
+ },
186
+ {
187
+ "epoch": 0.31,
188
+ "grad_norm": 0.38849011063575745,
189
+ "learning_rate": 0.00019830052711736142,
190
+ "loss": 0.3895,
191
+ "step": 360
192
+ },
193
+ {
194
+ "epoch": 0.32,
195
+ "grad_norm": 0.4513374865055084,
196
+ "learning_rate": 0.00019771036881265598,
197
+ "loss": 0.3866,
198
+ "step": 380
199
+ },
200
+ {
201
+ "epoch": 0.34,
202
+ "grad_norm": 0.4288094639778137,
203
+ "learning_rate": 0.00019703357351176151,
204
+ "loss": 0.3938,
205
+ "step": 400
206
+ },
207
+ {
208
+ "epoch": 0.34,
209
+ "eval_loss": 0.38462838530540466,
210
+ "eval_runtime": 271.1664,
211
+ "eval_samples_per_second": 7.689,
212
+ "eval_steps_per_second": 0.963,
213
+ "step": 400
214
+ },
215
+ {
216
+ "epoch": 0.36,
217
+ "grad_norm": 0.3525382876396179,
218
+ "learning_rate": 0.00019627074130976126,
219
+ "loss": 0.3891,
220
+ "step": 420
221
+ },
222
+ {
223
+ "epoch": 0.38,
224
+ "grad_norm": 0.5788955688476562,
225
+ "learning_rate": 0.0001954225485882039,
226
+ "loss": 0.3739,
227
+ "step": 440
228
+ },
229
+ {
230
+ "epoch": 0.38,
231
+ "eval_loss": 0.3804500699043274,
232
+ "eval_runtime": 271.0816,
233
+ "eval_samples_per_second": 7.691,
234
+ "eval_steps_per_second": 0.963,
235
+ "step": 450
236
+ },
237
+ {
238
+ "epoch": 0.39,
239
+ "grad_norm": 0.47232553362846375,
240
+ "learning_rate": 0.00019448974741537525,
241
+ "loss": 0.371,
242
+ "step": 460
243
+ },
244
+ {
245
+ "epoch": 0.41,
246
+ "grad_norm": 0.38733381032943726,
247
+ "learning_rate": 0.0001934731648794609,
248
+ "loss": 0.37,
249
+ "step": 480
250
+ },
251
+ {
252
+ "epoch": 0.43,
253
+ "grad_norm": 0.42200860381126404,
254
+ "learning_rate": 0.00019237370235519077,
255
+ "loss": 0.3726,
256
+ "step": 500
257
+ },
258
+ {
259
+ "epoch": 0.43,
260
+ "eval_loss": 0.3774518370628357,
261
+ "eval_runtime": 271.1201,
262
+ "eval_samples_per_second": 7.69,
263
+ "eval_steps_per_second": 0.963,
264
+ "step": 500
265
+ },
266
+ {
267
+ "epoch": 0.44,
268
+ "grad_norm": 0.5560094118118286,
269
+ "learning_rate": 0.00019119233470461558,
270
+ "loss": 0.3754,
271
+ "step": 520
272
+ },
273
+ {
274
+ "epoch": 0.46,
275
+ "grad_norm": 0.3813556134700775,
276
+ "learning_rate": 0.00018993010941272478,
277
+ "loss": 0.363,
278
+ "step": 540
279
+ },
280
+ {
281
+ "epoch": 0.47,
282
+ "eval_loss": 0.37297067046165466,
283
+ "eval_runtime": 271.0879,
284
+ "eval_samples_per_second": 7.691,
285
+ "eval_steps_per_second": 0.963,
286
+ "step": 550
287
+ },
288
+ {
289
+ "epoch": 0.48,
290
+ "grad_norm": 0.5384305715560913,
291
+ "learning_rate": 0.0001885881456586713,
292
+ "loss": 0.3656,
293
+ "step": 560
294
+ },
295
+ {
296
+ "epoch": 0.49,
297
+ "grad_norm": 0.4100024700164795,
298
+ "learning_rate": 0.0001871676333234274,
299
+ "loss": 0.3668,
300
+ "step": 580
301
+ },
302
+ {
303
+ "epoch": 0.51,
304
+ "grad_norm": 0.4203307628631592,
305
+ "learning_rate": 0.0001856698319347513,
306
+ "loss": 0.3718,
307
+ "step": 600
308
+ },
309
+ {
310
+ "epoch": 0.51,
311
+ "eval_loss": 0.3698495626449585,
312
+ "eval_runtime": 271.0857,
313
+ "eval_samples_per_second": 7.691,
314
+ "eval_steps_per_second": 0.963,
315
+ "step": 600
316
+ },
317
+ {
318
+ "epoch": 0.53,
319
+ "grad_norm": 0.5422376990318298,
320
+ "learning_rate": 0.0001840960695503995,
321
+ "loss": 0.3813,
322
+ "step": 620
323
+ },
324
+ {
325
+ "epoch": 0.55,
326
+ "grad_norm": 0.41980084776878357,
327
+ "learning_rate": 0.00018244774158057624,
328
+ "loss": 0.3711,
329
+ "step": 640
330
+ },
331
+ {
332
+ "epoch": 0.55,
333
+ "eval_loss": 0.3666984438896179,
334
+ "eval_runtime": 271.059,
335
+ "eval_samples_per_second": 7.692,
336
+ "eval_steps_per_second": 0.963,
337
+ "step": 650
338
+ },
339
+ {
340
+ "epoch": 0.56,
341
+ "grad_norm": 0.49988237023353577,
342
+ "learning_rate": 0.00018072630955066288,
343
+ "loss": 0.3669,
344
+ "step": 660
345
+ },
346
+ {
347
+ "epoch": 0.58,
348
+ "grad_norm": 0.4338107407093048,
349
+ "learning_rate": 0.00017893329980532498,
350
+ "loss": 0.3709,
351
+ "step": 680
352
+ },
353
+ {
354
+ "epoch": 0.6,
355
+ "grad_norm": 0.46425387263298035,
356
+ "learning_rate": 0.0001770703021551463,
357
+ "loss": 0.3665,
358
+ "step": 700
359
+ },
360
+ {
361
+ "epoch": 0.6,
362
+ "eval_loss": 0.36363786458969116,
363
+ "eval_runtime": 271.1155,
364
+ "eval_samples_per_second": 7.69,
365
+ "eval_steps_per_second": 0.963,
366
+ "step": 700
367
+ },
368
+ {
369
+ "epoch": 0.61,
370
+ "grad_norm": 0.5348316431045532,
371
+ "learning_rate": 0.00017513896846698882,
372
+ "loss": 0.3574,
373
+ "step": 720
374
+ },
375
+ {
376
+ "epoch": 0.63,
377
+ "grad_norm": 0.4046632945537567,
378
+ "learning_rate": 0.00017314101119932974,
379
+ "loss": 0.3625,
380
+ "step": 740
381
+ },
382
+ {
383
+ "epoch": 0.64,
384
+ "eval_loss": 0.3617616891860962,
385
+ "eval_runtime": 271.137,
386
+ "eval_samples_per_second": 7.69,
387
+ "eval_steps_per_second": 0.963,
388
+ "step": 750
389
+ },
390
+ {
391
+ "epoch": 0.65,
392
+ "grad_norm": 0.44371724128723145,
393
+ "learning_rate": 0.00017107820188387327,
394
+ "loss": 0.3752,
395
+ "step": 760
396
+ },
397
+ {
398
+ "epoch": 0.66,
399
+ "grad_norm": 0.4216190576553345,
400
+ "learning_rate": 0.00016895236955478412,
401
+ "loss": 0.3606,
402
+ "step": 780
403
+ },
404
+ {
405
+ "epoch": 0.68,
406
+ "grad_norm": 0.5870906114578247,
407
+ "learning_rate": 0.00016676539912693501,
408
+ "loss": 0.3756,
409
+ "step": 800
410
+ },
411
+ {
412
+ "epoch": 0.68,
413
+ "eval_loss": 0.3583546280860901,
414
+ "eval_runtime": 271.1679,
415
+ "eval_samples_per_second": 7.689,
416
+ "eval_steps_per_second": 0.963,
417
+ "step": 800
418
+ },
419
+ {
420
+ "epoch": 0.7,
421
+ "grad_norm": 0.4018837511539459,
422
+ "learning_rate": 0.00016451922972460643,
423
+ "loss": 0.358,
424
+ "step": 820
425
+ },
426
+ {
427
+ "epoch": 0.72,
428
+ "grad_norm": 0.4688343107700348,
429
+ "learning_rate": 0.00016221585296212054,
430
+ "loss": 0.3493,
431
+ "step": 840
432
+ },
433
+ {
434
+ "epoch": 0.72,
435
+ "eval_loss": 0.35402199625968933,
436
+ "eval_runtime": 271.1165,
437
+ "eval_samples_per_second": 7.69,
438
+ "eval_steps_per_second": 0.963,
439
+ "step": 850
440
+ },
441
+ {
442
+ "epoch": 0.73,
443
+ "grad_norm": 0.4941730797290802,
444
+ "learning_rate": 0.00015985731117793353,
445
+ "loss": 0.3502,
446
+ "step": 860
447
+ },
448
+ {
449
+ "epoch": 0.75,
450
+ "grad_norm": 0.4220365583896637,
451
+ "learning_rate": 0.00015744569562375235,
452
+ "loss": 0.3478,
453
+ "step": 880
454
+ },
455
+ {
456
+ "epoch": 0.77,
457
+ "grad_norm": 0.4305894374847412,
458
+ "learning_rate": 0.00015498314461028157,
459
+ "loss": 0.3585,
460
+ "step": 900
461
+ },
462
+ {
463
+ "epoch": 0.77,
464
+ "eval_loss": 0.3510061800479889,
465
+ "eval_runtime": 271.1908,
466
+ "eval_samples_per_second": 7.688,
467
+ "eval_steps_per_second": 0.962,
468
+ "step": 900
469
+ },
470
+ {
471
+ "epoch": 0.78,
472
+ "grad_norm": 0.45022985339164734,
473
+ "learning_rate": 0.00015247184161124415,
474
+ "loss": 0.3558,
475
+ "step": 920
476
+ },
477
+ {
478
+ "epoch": 0.8,
479
+ "grad_norm": 0.4498714506626129,
480
+ "learning_rate": 0.00014991401332735781,
481
+ "loss": 0.3466,
482
+ "step": 940
483
+ },
484
+ {
485
+ "epoch": 0.81,
486
+ "eval_loss": 0.34707528352737427,
487
+ "eval_runtime": 271.0841,
488
+ "eval_samples_per_second": 7.691,
489
+ "eval_steps_per_second": 0.963,
490
+ "step": 950
491
+ },
492
+ {
493
+ "epoch": 0.82,
494
+ "grad_norm": 0.49369582533836365,
495
+ "learning_rate": 0.00014731192771198282,
496
+ "loss": 0.3463,
497
+ "step": 960
498
+ },
499
+ {
500
+ "epoch": 0.84,
501
+ "grad_norm": 0.36855530738830566,
502
+ "learning_rate": 0.00014466789196019257,
503
+ "loss": 0.3428,
504
+ "step": 980
505
+ },
506
+ {
507
+ "epoch": 0.85,
508
+ "grad_norm": 0.501837968826294,
509
+ "learning_rate": 0.00014198425046304942,
510
+ "loss": 0.3483,
511
+ "step": 1000
512
+ },
513
+ {
514
+ "epoch": 0.85,
515
+ "eval_loss": 0.34373167157173157,
516
+ "eval_runtime": 271.0714,
517
+ "eval_samples_per_second": 7.692,
518
+ "eval_steps_per_second": 0.963,
519
+ "step": 1000
520
+ },
521
+ {
522
+ "epoch": 0.87,
523
+ "grad_norm": 0.35614344477653503,
524
+ "learning_rate": 0.00013926338272890026,
525
+ "loss": 0.3322,
526
+ "step": 1020
527
+ },
528
+ {
529
+ "epoch": 0.89,
530
+ "grad_norm": 0.5366308689117432,
531
+ "learning_rate": 0.00013650770127353416,
532
+ "loss": 0.343,
533
+ "step": 1040
534
+ },
535
+ {
536
+ "epoch": 0.9,
537
+ "eval_loss": 0.3401084542274475,
538
+ "eval_runtime": 271.1104,
539
+ "eval_samples_per_second": 7.691,
540
+ "eval_steps_per_second": 0.963,
541
+ "step": 1050
542
+ },
543
+ {
544
+ "epoch": 0.9,
545
+ "grad_norm": 0.46004125475883484,
546
+ "learning_rate": 0.00013371964948107344,
547
+ "loss": 0.3417,
548
+ "step": 1060
549
+ },
550
+ {
551
+ "epoch": 0.92,
552
+ "grad_norm": 0.5817845463752747,
553
+ "learning_rate": 0.00013090169943749476,
554
+ "loss": 0.332,
555
+ "step": 1080
556
+ },
557
+ {
558
+ "epoch": 0.94,
559
+ "grad_norm": 0.9298326969146729,
560
+ "learning_rate": 0.00012805634973870103,
561
+ "loss": 0.3373,
562
+ "step": 1100
563
+ },
564
+ {
565
+ "epoch": 0.94,
566
+ "eval_loss": 0.3367879390716553,
567
+ "eval_runtime": 271.219,
568
+ "eval_samples_per_second": 7.688,
569
+ "eval_steps_per_second": 0.962,
570
+ "step": 1100
571
+ },
572
+ {
573
+ "epoch": 0.95,
574
+ "grad_norm": 0.5731242299079895,
575
+ "learning_rate": 0.00012518612327508773,
576
+ "loss": 0.3443,
577
+ "step": 1120
578
+ },
579
+ {
580
+ "epoch": 0.97,
581
+ "grad_norm": 0.6886520981788635,
582
+ "learning_rate": 0.00012229356499456783,
583
+ "loss": 0.3388,
584
+ "step": 1140
585
+ },
586
+ {
587
+ "epoch": 0.98,
588
+ "eval_loss": 0.3337441086769104,
589
+ "eval_runtime": 271.0416,
590
+ "eval_samples_per_second": 7.693,
591
+ "eval_steps_per_second": 0.963,
592
+ "step": 1150
593
+ },
594
+ {
595
+ "epoch": 0.99,
596
+ "grad_norm": 0.5007095336914062,
597
+ "learning_rate": 0.00011938123964603922,
598
+ "loss": 0.3375,
599
+ "step": 1160
600
+ },
601
+ {
602
+ "epoch": 1.01,
603
+ "grad_norm": 0.49403801560401917,
604
+ "learning_rate": 0.00011645172950529504,
605
+ "loss": 0.3091,
606
+ "step": 1180
607
+ },
608
+ {
609
+ "epoch": 1.02,
610
+ "grad_norm": 0.36014652252197266,
611
+ "learning_rate": 0.00011350763208539337,
612
+ "loss": 0.256,
613
+ "step": 1200
614
+ },
615
+ {
616
+ "epoch": 1.02,
617
+ "eval_loss": 0.33549007773399353,
618
+ "eval_runtime": 271.1529,
619
+ "eval_samples_per_second": 7.689,
620
+ "eval_steps_per_second": 0.963,
621
+ "step": 1200
622
+ },
623
+ {
624
+ "epoch": 1.04,
625
+ "grad_norm": 0.4871821403503418,
626
+ "learning_rate": 0.0001105515578335165,
627
+ "loss": 0.2534,
628
+ "step": 1220
629
+ },
630
+ {
631
+ "epoch": 1.06,
632
+ "grad_norm": 0.4773302376270294,
633
+ "learning_rate": 0.00010758612781636189,
634
+ "loss": 0.2485,
635
+ "step": 1240
636
+ },
637
+ {
638
+ "epoch": 1.07,
639
+ "eval_loss": 0.3336337208747864,
640
+ "eval_runtime": 270.9871,
641
+ "eval_samples_per_second": 7.694,
642
+ "eval_steps_per_second": 0.963,
643
+ "step": 1250
644
+ },
645
+ {
646
+ "epoch": 1.07,
647
+ "grad_norm": 0.4584294259548187,
648
+ "learning_rate": 0.00010461397139611717,
649
+ "loss": 0.2621,
650
+ "step": 1260
651
+ },
652
+ {
653
+ "epoch": 1.09,
654
+ "grad_norm": 0.45226892828941345,
655
+ "learning_rate": 0.00010163772389907971,
656
+ "loss": 0.244,
657
+ "step": 1280
658
+ },
659
+ {
660
+ "epoch": 1.11,
661
+ "grad_norm": 0.5343567728996277,
662
+ "learning_rate": 9.86600242789879e-05,
663
+ "loss": 0.2452,
664
+ "step": 1300
665
+ },
666
+ {
667
+ "epoch": 1.11,
668
+ "eval_loss": 0.33007845282554626,
669
+ "eval_runtime": 271.0147,
670
+ "eval_samples_per_second": 7.693,
671
+ "eval_steps_per_second": 0.963,
672
+ "step": 1300
673
+ },
674
+ {
675
+ "epoch": 1.13,
676
+ "grad_norm": 0.4986325800418854,
677
+ "learning_rate": 9.568351277713618e-05,
678
+ "loss": 0.2525,
679
+ "step": 1320
680
+ },
681
+ {
682
+ "epoch": 1.14,
683
+ "grad_norm": 0.4909712076187134,
684
+ "learning_rate": 9.271082858134854e-05,
685
+ "loss": 0.2573,
686
+ "step": 1340
687
+ },
688
+ {
689
+ "epoch": 1.15,
690
+ "eval_loss": 0.3278447985649109,
691
+ "eval_runtime": 271.052,
692
+ "eval_samples_per_second": 7.692,
693
+ "eval_steps_per_second": 0.963,
694
+ "step": 1350
695
+ },
696
+ {
697
+ "epoch": 1.16,
698
+ "grad_norm": 0.4675891697406769,
699
+ "learning_rate": 8.974460748588577e-05,
700
+ "loss": 0.2516,
701
+ "step": 1360
702
+ },
703
+ {
704
+ "epoch": 1.18,
705
+ "grad_norm": 0.5919708013534546,
706
+ "learning_rate": 8.678747955436209e-05,
707
+ "loss": 0.2459,
708
+ "step": 1380
709
+ },
710
+ {
711
+ "epoch": 1.19,
712
+ "grad_norm": 0.5164061784744263,
713
+ "learning_rate": 8.384206678774267e-05,
714
+ "loss": 0.245,
715
+ "step": 1400
716
+ },
717
+ {
718
+ "epoch": 1.19,
719
+ "eval_loss": 0.3246319591999054,
720
+ "eval_runtime": 270.8895,
721
+ "eval_samples_per_second": 7.697,
722
+ "eval_steps_per_second": 0.963,
723
+ "step": 1400
724
+ },
725
+ {
726
+ "epoch": 1.21,
727
+ "grad_norm": 0.5498049855232239,
728
+ "learning_rate": 8.091098079949022e-05,
729
+ "loss": 0.244,
730
+ "step": 1420
731
+ },
732
+ {
733
+ "epoch": 1.23,
734
+ "grad_norm": 0.40771761536598206,
735
+ "learning_rate": 7.79968204999218e-05,
736
+ "loss": 0.2446,
737
+ "step": 1440
738
+ },
739
+ {
740
+ "epoch": 1.24,
741
+ "eval_loss": 0.32402417063713074,
742
+ "eval_runtime": 270.9055,
743
+ "eval_samples_per_second": 7.696,
744
+ "eval_steps_per_second": 0.963,
745
+ "step": 1450
746
+ },
747
+ {
748
+ "epoch": 1.24,
749
+ "grad_norm": 0.4820304811000824,
750
+ "learning_rate": 7.510216979182932e-05,
751
+ "loss": 0.2485,
752
+ "step": 1460
753
+ },
754
+ {
755
+ "epoch": 1.26,
756
+ "grad_norm": 0.40890711545944214,
757
+ "learning_rate": 7.222959527940643e-05,
758
+ "loss": 0.2426,
759
+ "step": 1480
760
+ },
761
+ {
762
+ "epoch": 1.28,
763
+ "grad_norm": 0.4243795573711395,
764
+ "learning_rate": 6.93816439925141e-05,
765
+ "loss": 0.2416,
766
+ "step": 1500
767
+ },
768
+ {
769
+ "epoch": 1.28,
770
+ "eval_loss": 0.32116860151290894,
771
+ "eval_runtime": 270.8886,
772
+ "eval_samples_per_second": 7.697,
773
+ "eval_steps_per_second": 0.963,
774
+ "step": 1500
775
+ },
776
+ {
777
+ "epoch": 1.3,
778
+ "grad_norm": 0.5360056161880493,
779
+ "learning_rate": 6.656084112830165e-05,
780
+ "loss": 0.2454,
781
+ "step": 1520
782
+ },
783
+ {
784
+ "epoch": 1.31,
785
+ "grad_norm": 0.5155255198478699,
786
+ "learning_rate": 6.376968781218665e-05,
787
+ "loss": 0.2432,
788
+ "step": 1540
789
+ },
790
+ {
791
+ "epoch": 1.32,
792
+ "eval_loss": 0.32005202770233154,
793
+ "eval_runtime": 271.08,
794
+ "eval_samples_per_second": 7.691,
795
+ "eval_steps_per_second": 0.963,
796
+ "step": 1550
797
+ },
798
+ {
799
+ "epoch": 1.33,
800
+ "grad_norm": 0.564046323299408,
801
+ "learning_rate": 6.101065888017833e-05,
802
+ "loss": 0.2414,
803
+ "step": 1560
804
+ },
805
+ {
806
+ "epoch": 1.35,
807
+ "grad_norm": 0.45059406757354736,
808
+ "learning_rate": 5.828620068451111e-05,
809
+ "loss": 0.2408,
810
+ "step": 1580
811
+ },
812
+ {
813
+ "epoch": 1.36,
814
+ "grad_norm": 0.5122149586677551,
815
+ "learning_rate": 5.559872892453375e-05,
816
+ "loss": 0.242,
817
+ "step": 1600
818
+ },
819
+ {
820
+ "epoch": 1.36,
821
+ "eval_loss": 0.316841185092926,
822
+ "eval_runtime": 271.0293,
823
+ "eval_samples_per_second": 7.693,
824
+ "eval_steps_per_second": 0.963,
825
+ "step": 1600
826
+ },
827
+ {
828
+ "epoch": 1.38,
829
+ "grad_norm": 0.48864319920539856,
830
+ "learning_rate": 5.29506265047779e-05,
831
+ "loss": 0.2432,
832
+ "step": 1620
833
+ },
834
+ {
835
+ "epoch": 1.4,
836
+ "grad_norm": 0.603583812713623,
837
+ "learning_rate": 5.034424142210443e-05,
838
+ "loss": 0.231,
839
+ "step": 1640
840
+ },
841
+ {
842
+ "epoch": 1.41,
843
+ "eval_loss": 0.3156278729438782,
844
+ "eval_runtime": 271.0109,
845
+ "eval_samples_per_second": 7.693,
846
+ "eval_steps_per_second": 0.963,
847
+ "step": 1650
848
+ },
849
+ {
850
+ "epoch": 1.42,
851
+ "grad_norm": 0.5807139873504639,
852
+ "learning_rate": 4.778188468380169e-05,
853
+ "loss": 0.2425,
854
+ "step": 1660
855
+ },
856
+ {
857
+ "epoch": 1.43,
858
+ "grad_norm": 0.4968738555908203,
859
+ "learning_rate": 4.526582825848131e-05,
860
+ "loss": 0.2362,
861
+ "step": 1680
862
+ },
863
+ {
864
+ "epoch": 1.45,
865
+ "grad_norm": 0.6385018825531006,
866
+ "learning_rate": 4.2798303061588404e-05,
867
+ "loss": 0.2369,
868
+ "step": 1700
869
+ },
870
+ {
871
+ "epoch": 1.45,
872
+ "eval_loss": 0.3140126168727875,
873
+ "eval_runtime": 270.9649,
874
+ "eval_samples_per_second": 7.695,
875
+ "eval_steps_per_second": 0.963,
876
+ "step": 1700
877
+ },
878
+ {
879
+ "epoch": 1.47,
880
+ "grad_norm": 0.5020663738250732,
881
+ "learning_rate": 4.038149697731247e-05,
882
+ "loss": 0.2425,
883
+ "step": 1720
884
+ },
885
+ {
886
+ "epoch": 1.48,
887
+ "grad_norm": 0.5276768207550049,
888
+ "learning_rate": 3.801755291865307e-05,
889
+ "loss": 0.2405,
890
+ "step": 1740
891
+ },
892
+ {
893
+ "epoch": 1.49,
894
+ "eval_loss": 0.3110227882862091,
895
+ "eval_runtime": 270.8888,
896
+ "eval_samples_per_second": 7.697,
897
+ "eval_steps_per_second": 0.963,
898
+ "step": 1750
899
+ },
900
+ {
901
+ "epoch": 1.5,
902
+ "grad_norm": 0.5092354416847229,
903
+ "learning_rate": 3.570856692735976e-05,
904
+ "loss": 0.2356,
905
+ "step": 1760
906
+ },
907
+ {
908
+ "epoch": 1.52,
909
+ "grad_norm": 0.4134100079536438,
910
+ "learning_rate": 3.3456586315431874e-05,
911
+ "loss": 0.2397,
912
+ "step": 1780
913
+ },
914
+ {
915
+ "epoch": 1.53,
916
+ "grad_norm": 0.41335973143577576,
917
+ "learning_rate": 3.126360784982532e-05,
918
+ "loss": 0.2263,
919
+ "step": 1800
920
+ },
921
+ {
922
+ "epoch": 1.53,
923
+ "eval_loss": 0.309181272983551,
924
+ "eval_runtime": 270.9592,
925
+ "eval_samples_per_second": 7.695,
926
+ "eval_steps_per_second": 0.963,
927
+ "step": 1800
928
+ },
929
+ {
930
+ "epoch": 1.55,
931
+ "grad_norm": 0.6216692924499512,
932
+ "learning_rate": 2.9131575981976245e-05,
933
+ "loss": 0.2371,
934
+ "step": 1820
935
+ },
936
+ {
937
+ "epoch": 1.57,
938
+ "grad_norm": 0.6529776453971863,
939
+ "learning_rate": 2.7062381123711532e-05,
940
+ "loss": 0.2324,
941
+ "step": 1840
942
+ },
943
+ {
944
+ "epoch": 1.58,
945
+ "eval_loss": 0.3087258040904999,
946
+ "eval_runtime": 270.9376,
947
+ "eval_samples_per_second": 7.695,
948
+ "eval_steps_per_second": 0.963,
949
+ "step": 1850
950
+ },
951
+ {
952
+ "epoch": 1.59,
953
+ "grad_norm": 0.41469648480415344,
954
+ "learning_rate": 2.505785797107446e-05,
955
+ "loss": 0.2148,
956
+ "step": 1860
957
+ },
958
+ {
959
+ "epoch": 1.6,
960
+ "grad_norm": 0.5092002749443054,
961
+ "learning_rate": 2.3119783877552126e-05,
962
+ "loss": 0.2287,
963
+ "step": 1880
964
+ },
965
+ {
966
+ "epoch": 1.62,
967
+ "grad_norm": 0.6236806511878967,
968
+ "learning_rate": 2.1249877278146868e-05,
969
+ "loss": 0.2203,
970
+ "step": 1900
971
+ },
972
+ {
973
+ "epoch": 1.62,
974
+ "eval_loss": 0.30838343501091003,
975
+ "eval_runtime": 270.9479,
976
+ "eval_samples_per_second": 7.695,
977
+ "eval_steps_per_second": 0.963,
978
+ "step": 1900
979
+ },
980
+ {
981
+ "epoch": 1.64,
982
+ "grad_norm": 0.5142087936401367,
983
+ "learning_rate": 1.944979616568885e-05,
984
+ "loss": 0.2287,
985
+ "step": 1920
986
+ },
987
+ {
988
+ "epoch": 1.65,
989
+ "grad_norm": 0.5550097227096558,
990
+ "learning_rate": 1.7721136620741218e-05,
991
+ "loss": 0.223,
992
+ "step": 1940
993
+ },
994
+ {
995
+ "epoch": 1.66,
996
+ "eval_loss": 0.30595675110816956,
997
+ "eval_runtime": 271.0761,
998
+ "eval_samples_per_second": 7.692,
999
+ "eval_steps_per_second": 0.963,
1000
+ "step": 1950
1001
+ },
1002
+ {
1003
+ "epoch": 1.67,
1004
+ "grad_norm": 0.5284961462020874,
1005
+ "learning_rate": 1.6065431396400986e-05,
1006
+ "loss": 0.2268,
1007
+ "step": 1960
1008
+ },
1009
+ {
1010
+ "epoch": 1.69,
1011
+ "grad_norm": 0.7719703912734985,
1012
+ "learning_rate": 1.4484148559250588e-05,
1013
+ "loss": 0.2406,
1014
+ "step": 1980
1015
+ },
1016
+ {
1017
+ "epoch": 1.71,
1018
+ "grad_norm": 0.5748826861381531,
1019
+ "learning_rate": 1.2978690187665133e-05,
1020
+ "loss": 0.2218,
1021
+ "step": 2000
1022
+ },
1023
+ {
1024
+ "epoch": 1.71,
1025
+ "eval_loss": 0.3054625391960144,
1026
+ "eval_runtime": 271.0494,
1027
+ "eval_samples_per_second": 7.692,
1028
+ "eval_steps_per_second": 0.963,
1029
+ "step": 2000
1030
+ }
1031
+ ],
1032
+ "logging_steps": 20,
1033
+ "max_steps": 2344,
1034
+ "num_input_tokens_seen": 0,
1035
+ "num_train_epochs": 2,
1036
+ "save_steps": 100,
1037
+ "total_flos": 1.0468728764928e+18,
1038
+ "train_batch_size": 8,
1039
+ "trial_name": null,
1040
+ "trial_params": null
1041
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb8fa2435e433c3f852730900572fbfd7369fa856e86f09819c1794580c69b1
3
+ size 5304
checkpoint-2100/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-2100/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "o_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-2100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d2a98c6cffe01d7b9c3ced36f7e083700f4e1b3f67080263883c32145fb303
3
+ size 167832240
checkpoint-2100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f1326d915ad672159e05ce97ea8f9756ea3981fa5e9e5c9ce69effbc302b202
3
+ size 335811770
checkpoint-2100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f66e49000b2ae3819165be4190c7c1b94184205b802d5ec8e8a565f2bf2555fc
3
+ size 14244
checkpoint-2100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:032d693f28a444c08d62294d238ac6a2482d941ad41baf8d5e29a1298f20c35b
3
+ size 1000
checkpoint-2100/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-2100/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2100/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-2100/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 2048,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "<unk>",
39
+ "padding": true,
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-2100/trainer_state.json ADDED
@@ -0,0 +1,1092 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.30428797006607056,
3
+ "best_model_checkpoint": "./Mistral/17-03-24-Weni-ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0_ZeroShot SFT Training with its best hyperparameters-2_max_steps-2344_batch_16_2024-03-17_ppid_9/checkpoint-2100",
4
+ "epoch": 1.7902813299232738,
5
+ "eval_steps": 50,
6
+ "global_step": 2100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 5.4808268547058105,
14
+ "learning_rate": 1.623931623931624e-05,
15
+ "loss": 1.7023,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "grad_norm": 2.232806444168091,
21
+ "learning_rate": 3.3333333333333335e-05,
22
+ "loss": 1.1297,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.04,
27
+ "eval_loss": 0.5450807809829712,
28
+ "eval_runtime": 271.242,
29
+ "eval_samples_per_second": 7.687,
30
+ "eval_steps_per_second": 0.962,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.05,
35
+ "grad_norm": 0.8864539265632629,
36
+ "learning_rate": 4.9572649572649575e-05,
37
+ "loss": 0.5849,
38
+ "step": 60
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "grad_norm": 0.8033413887023926,
43
+ "learning_rate": 6.666666666666667e-05,
44
+ "loss": 0.4593,
45
+ "step": 80
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "grad_norm": 0.6578605771064758,
50
+ "learning_rate": 8.376068376068377e-05,
51
+ "loss": 0.4425,
52
+ "step": 100
53
+ },
54
+ {
55
+ "epoch": 0.09,
56
+ "eval_loss": 0.42795854806900024,
57
+ "eval_runtime": 271.0229,
58
+ "eval_samples_per_second": 7.693,
59
+ "eval_steps_per_second": 0.963,
60
+ "step": 100
61
+ },
62
+ {
63
+ "epoch": 0.1,
64
+ "grad_norm": 0.5158710479736328,
65
+ "learning_rate": 0.00010085470085470086,
66
+ "loss": 0.4249,
67
+ "step": 120
68
+ },
69
+ {
70
+ "epoch": 0.12,
71
+ "grad_norm": 0.4536530375480652,
72
+ "learning_rate": 0.00011794871794871796,
73
+ "loss": 0.4241,
74
+ "step": 140
75
+ },
76
+ {
77
+ "epoch": 0.13,
78
+ "eval_loss": 0.4137832820415497,
79
+ "eval_runtime": 271.1041,
80
+ "eval_samples_per_second": 7.691,
81
+ "eval_steps_per_second": 0.963,
82
+ "step": 150
83
+ },
84
+ {
85
+ "epoch": 0.14,
86
+ "grad_norm": 0.3979959785938263,
87
+ "learning_rate": 0.00013504273504273505,
88
+ "loss": 0.4154,
89
+ "step": 160
90
+ },
91
+ {
92
+ "epoch": 0.15,
93
+ "grad_norm": 0.4166259467601776,
94
+ "learning_rate": 0.00015213675213675214,
95
+ "loss": 0.4107,
96
+ "step": 180
97
+ },
98
+ {
99
+ "epoch": 0.17,
100
+ "grad_norm": 0.40765708684921265,
101
+ "learning_rate": 0.00016923076923076923,
102
+ "loss": 0.4059,
103
+ "step": 200
104
+ },
105
+ {
106
+ "epoch": 0.17,
107
+ "eval_loss": 0.40599754452705383,
108
+ "eval_runtime": 271.1072,
109
+ "eval_samples_per_second": 7.691,
110
+ "eval_steps_per_second": 0.963,
111
+ "step": 200
112
+ },
113
+ {
114
+ "epoch": 0.19,
115
+ "grad_norm": 0.39934784173965454,
116
+ "learning_rate": 0.00018632478632478634,
117
+ "loss": 0.3935,
118
+ "step": 220
119
+ },
120
+ {
121
+ "epoch": 0.2,
122
+ "grad_norm": 0.39337554574012756,
123
+ "learning_rate": 0.00019999822653125876,
124
+ "loss": 0.4125,
125
+ "step": 240
126
+ },
127
+ {
128
+ "epoch": 0.21,
129
+ "eval_loss": 0.4002617597579956,
130
+ "eval_runtime": 271.1099,
131
+ "eval_samples_per_second": 7.691,
132
+ "eval_steps_per_second": 0.963,
133
+ "step": 250
134
+ },
135
+ {
136
+ "epoch": 0.22,
137
+ "grad_norm": 0.4723268449306488,
138
+ "learning_rate": 0.00019993616172996704,
139
+ "loss": 0.4074,
140
+ "step": 260
141
+ },
142
+ {
143
+ "epoch": 0.24,
144
+ "grad_norm": 0.4829658269882202,
145
+ "learning_rate": 0.00019978548638541202,
146
+ "loss": 0.3933,
147
+ "step": 280
148
+ },
149
+ {
150
+ "epoch": 0.26,
151
+ "grad_norm": 0.7815160155296326,
152
+ "learning_rate": 0.00019954633409712276,
153
+ "loss": 0.3948,
154
+ "step": 300
155
+ },
156
+ {
157
+ "epoch": 0.26,
158
+ "eval_loss": 0.3945770263671875,
159
+ "eval_runtime": 271.0451,
160
+ "eval_samples_per_second": 7.692,
161
+ "eval_steps_per_second": 0.963,
162
+ "step": 300
163
+ },
164
+ {
165
+ "epoch": 0.27,
166
+ "grad_norm": 0.4525783956050873,
167
+ "learning_rate": 0.00019921891691460983,
168
+ "loss": 0.3777,
169
+ "step": 320
170
+ },
171
+ {
172
+ "epoch": 0.29,
173
+ "grad_norm": 0.3549365699291229,
174
+ "learning_rate": 0.00019880352514934724,
175
+ "loss": 0.3979,
176
+ "step": 340
177
+ },
178
+ {
179
+ "epoch": 0.3,
180
+ "eval_loss": 0.3886016309261322,
181
+ "eval_runtime": 271.0939,
182
+ "eval_samples_per_second": 7.691,
183
+ "eval_steps_per_second": 0.963,
184
+ "step": 350
185
+ },
186
+ {
187
+ "epoch": 0.31,
188
+ "grad_norm": 0.38849011063575745,
189
+ "learning_rate": 0.00019830052711736142,
190
+ "loss": 0.3895,
191
+ "step": 360
192
+ },
193
+ {
194
+ "epoch": 0.32,
195
+ "grad_norm": 0.4513374865055084,
196
+ "learning_rate": 0.00019771036881265598,
197
+ "loss": 0.3866,
198
+ "step": 380
199
+ },
200
+ {
201
+ "epoch": 0.34,
202
+ "grad_norm": 0.4288094639778137,
203
+ "learning_rate": 0.00019703357351176151,
204
+ "loss": 0.3938,
205
+ "step": 400
206
+ },
207
+ {
208
+ "epoch": 0.34,
209
+ "eval_loss": 0.38462838530540466,
210
+ "eval_runtime": 271.1664,
211
+ "eval_samples_per_second": 7.689,
212
+ "eval_steps_per_second": 0.963,
213
+ "step": 400
214
+ },
215
+ {
216
+ "epoch": 0.36,
217
+ "grad_norm": 0.3525382876396179,
218
+ "learning_rate": 0.00019627074130976126,
219
+ "loss": 0.3891,
220
+ "step": 420
221
+ },
222
+ {
223
+ "epoch": 0.38,
224
+ "grad_norm": 0.5788955688476562,
225
+ "learning_rate": 0.0001954225485882039,
226
+ "loss": 0.3739,
227
+ "step": 440
228
+ },
229
+ {
230
+ "epoch": 0.38,
231
+ "eval_loss": 0.3804500699043274,
232
+ "eval_runtime": 271.0816,
233
+ "eval_samples_per_second": 7.691,
234
+ "eval_steps_per_second": 0.963,
235
+ "step": 450
236
+ },
237
+ {
238
+ "epoch": 0.39,
239
+ "grad_norm": 0.47232553362846375,
240
+ "learning_rate": 0.00019448974741537525,
241
+ "loss": 0.371,
242
+ "step": 460
243
+ },
244
+ {
245
+ "epoch": 0.41,
246
+ "grad_norm": 0.38733381032943726,
247
+ "learning_rate": 0.0001934731648794609,
248
+ "loss": 0.37,
249
+ "step": 480
250
+ },
251
+ {
252
+ "epoch": 0.43,
253
+ "grad_norm": 0.42200860381126404,
254
+ "learning_rate": 0.00019237370235519077,
255
+ "loss": 0.3726,
256
+ "step": 500
257
+ },
258
+ {
259
+ "epoch": 0.43,
260
+ "eval_loss": 0.3774518370628357,
261
+ "eval_runtime": 271.1201,
262
+ "eval_samples_per_second": 7.69,
263
+ "eval_steps_per_second": 0.963,
264
+ "step": 500
265
+ },
266
+ {
267
+ "epoch": 0.44,
268
+ "grad_norm": 0.5560094118118286,
269
+ "learning_rate": 0.00019119233470461558,
270
+ "loss": 0.3754,
271
+ "step": 520
272
+ },
273
+ {
274
+ "epoch": 0.46,
275
+ "grad_norm": 0.3813556134700775,
276
+ "learning_rate": 0.00018993010941272478,
277
+ "loss": 0.363,
278
+ "step": 540
279
+ },
280
+ {
281
+ "epoch": 0.47,
282
+ "eval_loss": 0.37297067046165466,
283
+ "eval_runtime": 271.0879,
284
+ "eval_samples_per_second": 7.691,
285
+ "eval_steps_per_second": 0.963,
286
+ "step": 550
287
+ },
288
+ {
289
+ "epoch": 0.48,
290
+ "grad_norm": 0.5384305715560913,
291
+ "learning_rate": 0.0001885881456586713,
292
+ "loss": 0.3656,
293
+ "step": 560
294
+ },
295
+ {
296
+ "epoch": 0.49,
297
+ "grad_norm": 0.4100024700164795,
298
+ "learning_rate": 0.0001871676333234274,
299
+ "loss": 0.3668,
300
+ "step": 580
301
+ },
302
+ {
303
+ "epoch": 0.51,
304
+ "grad_norm": 0.4203307628631592,
305
+ "learning_rate": 0.0001856698319347513,
306
+ "loss": 0.3718,
307
+ "step": 600
308
+ },
309
+ {
310
+ "epoch": 0.51,
311
+ "eval_loss": 0.3698495626449585,
312
+ "eval_runtime": 271.0857,
313
+ "eval_samples_per_second": 7.691,
314
+ "eval_steps_per_second": 0.963,
315
+ "step": 600
316
+ },
317
+ {
318
+ "epoch": 0.53,
319
+ "grad_norm": 0.5422376990318298,
320
+ "learning_rate": 0.0001840960695503995,
321
+ "loss": 0.3813,
322
+ "step": 620
323
+ },
324
+ {
325
+ "epoch": 0.55,
326
+ "grad_norm": 0.41980084776878357,
327
+ "learning_rate": 0.00018244774158057624,
328
+ "loss": 0.3711,
329
+ "step": 640
330
+ },
331
+ {
332
+ "epoch": 0.55,
333
+ "eval_loss": 0.3666984438896179,
334
+ "eval_runtime": 271.059,
335
+ "eval_samples_per_second": 7.692,
336
+ "eval_steps_per_second": 0.963,
337
+ "step": 650
338
+ },
339
+ {
340
+ "epoch": 0.56,
341
+ "grad_norm": 0.49988237023353577,
342
+ "learning_rate": 0.00018072630955066288,
343
+ "loss": 0.3669,
344
+ "step": 660
345
+ },
346
+ {
347
+ "epoch": 0.58,
348
+ "grad_norm": 0.4338107407093048,
349
+ "learning_rate": 0.00017893329980532498,
350
+ "loss": 0.3709,
351
+ "step": 680
352
+ },
353
+ {
354
+ "epoch": 0.6,
355
+ "grad_norm": 0.46425387263298035,
356
+ "learning_rate": 0.0001770703021551463,
357
+ "loss": 0.3665,
358
+ "step": 700
359
+ },
360
+ {
361
+ "epoch": 0.6,
362
+ "eval_loss": 0.36363786458969116,
363
+ "eval_runtime": 271.1155,
364
+ "eval_samples_per_second": 7.69,
365
+ "eval_steps_per_second": 0.963,
366
+ "step": 700
367
+ },
368
+ {
369
+ "epoch": 0.61,
370
+ "grad_norm": 0.5348316431045532,
371
+ "learning_rate": 0.00017513896846698882,
372
+ "loss": 0.3574,
373
+ "step": 720
374
+ },
375
+ {
376
+ "epoch": 0.63,
377
+ "grad_norm": 0.4046632945537567,
378
+ "learning_rate": 0.00017314101119932974,
379
+ "loss": 0.3625,
380
+ "step": 740
381
+ },
382
+ {
383
+ "epoch": 0.64,
384
+ "eval_loss": 0.3617616891860962,
385
+ "eval_runtime": 271.137,
386
+ "eval_samples_per_second": 7.69,
387
+ "eval_steps_per_second": 0.963,
388
+ "step": 750
389
+ },
390
+ {
391
+ "epoch": 0.65,
392
+ "grad_norm": 0.44371724128723145,
393
+ "learning_rate": 0.00017107820188387327,
394
+ "loss": 0.3752,
395
+ "step": 760
396
+ },
397
+ {
398
+ "epoch": 0.66,
399
+ "grad_norm": 0.4216190576553345,
400
+ "learning_rate": 0.00016895236955478412,
401
+ "loss": 0.3606,
402
+ "step": 780
403
+ },
404
+ {
405
+ "epoch": 0.68,
406
+ "grad_norm": 0.5870906114578247,
407
+ "learning_rate": 0.00016676539912693501,
408
+ "loss": 0.3756,
409
+ "step": 800
410
+ },
411
+ {
412
+ "epoch": 0.68,
413
+ "eval_loss": 0.3583546280860901,
414
+ "eval_runtime": 271.1679,
415
+ "eval_samples_per_second": 7.689,
416
+ "eval_steps_per_second": 0.963,
417
+ "step": 800
418
+ },
419
+ {
420
+ "epoch": 0.7,
421
+ "grad_norm": 0.4018837511539459,
422
+ "learning_rate": 0.00016451922972460643,
423
+ "loss": 0.358,
424
+ "step": 820
425
+ },
426
+ {
427
+ "epoch": 0.72,
428
+ "grad_norm": 0.4688343107700348,
429
+ "learning_rate": 0.00016221585296212054,
430
+ "loss": 0.3493,
431
+ "step": 840
432
+ },
433
+ {
434
+ "epoch": 0.72,
435
+ "eval_loss": 0.35402199625968933,
436
+ "eval_runtime": 271.1165,
437
+ "eval_samples_per_second": 7.69,
438
+ "eval_steps_per_second": 0.963,
439
+ "step": 850
440
+ },
441
+ {
442
+ "epoch": 0.73,
443
+ "grad_norm": 0.4941730797290802,
444
+ "learning_rate": 0.00015985731117793353,
445
+ "loss": 0.3502,
446
+ "step": 860
447
+ },
448
+ {
449
+ "epoch": 0.75,
450
+ "grad_norm": 0.4220365583896637,
451
+ "learning_rate": 0.00015744569562375235,
452
+ "loss": 0.3478,
453
+ "step": 880
454
+ },
455
+ {
456
+ "epoch": 0.77,
457
+ "grad_norm": 0.4305894374847412,
458
+ "learning_rate": 0.00015498314461028157,
459
+ "loss": 0.3585,
460
+ "step": 900
461
+ },
462
+ {
463
+ "epoch": 0.77,
464
+ "eval_loss": 0.3510061800479889,
465
+ "eval_runtime": 271.1908,
466
+ "eval_samples_per_second": 7.688,
467
+ "eval_steps_per_second": 0.962,
468
+ "step": 900
469
+ },
470
+ {
471
+ "epoch": 0.78,
472
+ "grad_norm": 0.45022985339164734,
473
+ "learning_rate": 0.00015247184161124415,
474
+ "loss": 0.3558,
475
+ "step": 920
476
+ },
477
+ {
478
+ "epoch": 0.8,
479
+ "grad_norm": 0.4498714506626129,
480
+ "learning_rate": 0.00014991401332735781,
481
+ "loss": 0.3466,
482
+ "step": 940
483
+ },
484
+ {
485
+ "epoch": 0.81,
486
+ "eval_loss": 0.34707528352737427,
487
+ "eval_runtime": 271.0841,
488
+ "eval_samples_per_second": 7.691,
489
+ "eval_steps_per_second": 0.963,
490
+ "step": 950
491
+ },
492
+ {
493
+ "epoch": 0.82,
494
+ "grad_norm": 0.49369582533836365,
495
+ "learning_rate": 0.00014731192771198282,
496
+ "loss": 0.3463,
497
+ "step": 960
498
+ },
499
+ {
500
+ "epoch": 0.84,
501
+ "grad_norm": 0.36855530738830566,
502
+ "learning_rate": 0.00014466789196019257,
503
+ "loss": 0.3428,
504
+ "step": 980
505
+ },
506
+ {
507
+ "epoch": 0.85,
508
+ "grad_norm": 0.501837968826294,
509
+ "learning_rate": 0.00014198425046304942,
510
+ "loss": 0.3483,
511
+ "step": 1000
512
+ },
513
+ {
514
+ "epoch": 0.85,
515
+ "eval_loss": 0.34373167157173157,
516
+ "eval_runtime": 271.0714,
517
+ "eval_samples_per_second": 7.692,
518
+ "eval_steps_per_second": 0.963,
519
+ "step": 1000
520
+ },
521
+ {
522
+ "epoch": 0.87,
523
+ "grad_norm": 0.35614344477653503,
524
+ "learning_rate": 0.00013926338272890026,
525
+ "loss": 0.3322,
526
+ "step": 1020
527
+ },
528
+ {
529
+ "epoch": 0.89,
530
+ "grad_norm": 0.5366308689117432,
531
+ "learning_rate": 0.00013650770127353416,
532
+ "loss": 0.343,
533
+ "step": 1040
534
+ },
535
+ {
536
+ "epoch": 0.9,
537
+ "eval_loss": 0.3401084542274475,
538
+ "eval_runtime": 271.1104,
539
+ "eval_samples_per_second": 7.691,
540
+ "eval_steps_per_second": 0.963,
541
+ "step": 1050
542
+ },
543
+ {
544
+ "epoch": 0.9,
545
+ "grad_norm": 0.46004125475883484,
546
+ "learning_rate": 0.00013371964948107344,
547
+ "loss": 0.3417,
548
+ "step": 1060
549
+ },
550
+ {
551
+ "epoch": 0.92,
552
+ "grad_norm": 0.5817845463752747,
553
+ "learning_rate": 0.00013090169943749476,
554
+ "loss": 0.332,
555
+ "step": 1080
556
+ },
557
+ {
558
+ "epoch": 0.94,
559
+ "grad_norm": 0.9298326969146729,
560
+ "learning_rate": 0.00012805634973870103,
561
+ "loss": 0.3373,
562
+ "step": 1100
563
+ },
564
+ {
565
+ "epoch": 0.94,
566
+ "eval_loss": 0.3367879390716553,
567
+ "eval_runtime": 271.219,
568
+ "eval_samples_per_second": 7.688,
569
+ "eval_steps_per_second": 0.962,
570
+ "step": 1100
571
+ },
572
+ {
573
+ "epoch": 0.95,
574
+ "grad_norm": 0.5731242299079895,
575
+ "learning_rate": 0.00012518612327508773,
576
+ "loss": 0.3443,
577
+ "step": 1120
578
+ },
579
+ {
580
+ "epoch": 0.97,
581
+ "grad_norm": 0.6886520981788635,
582
+ "learning_rate": 0.00012229356499456783,
583
+ "loss": 0.3388,
584
+ "step": 1140
585
+ },
586
+ {
587
+ "epoch": 0.98,
588
+ "eval_loss": 0.3337441086769104,
589
+ "eval_runtime": 271.0416,
590
+ "eval_samples_per_second": 7.693,
591
+ "eval_steps_per_second": 0.963,
592
+ "step": 1150
593
+ },
594
+ {
595
+ "epoch": 0.99,
596
+ "grad_norm": 0.5007095336914062,
597
+ "learning_rate": 0.00011938123964603922,
598
+ "loss": 0.3375,
599
+ "step": 1160
600
+ },
601
+ {
602
+ "epoch": 1.01,
603
+ "grad_norm": 0.49403801560401917,
604
+ "learning_rate": 0.00011645172950529504,
605
+ "loss": 0.3091,
606
+ "step": 1180
607
+ },
608
+ {
609
+ "epoch": 1.02,
610
+ "grad_norm": 0.36014652252197266,
611
+ "learning_rate": 0.00011350763208539337,
612
+ "loss": 0.256,
613
+ "step": 1200
614
+ },
615
+ {
616
+ "epoch": 1.02,
617
+ "eval_loss": 0.33549007773399353,
618
+ "eval_runtime": 271.1529,
619
+ "eval_samples_per_second": 7.689,
620
+ "eval_steps_per_second": 0.963,
621
+ "step": 1200
622
+ },
623
+ {
624
+ "epoch": 1.04,
625
+ "grad_norm": 0.4871821403503418,
626
+ "learning_rate": 0.0001105515578335165,
627
+ "loss": 0.2534,
628
+ "step": 1220
629
+ },
630
+ {
631
+ "epoch": 1.06,
632
+ "grad_norm": 0.4773302376270294,
633
+ "learning_rate": 0.00010758612781636189,
634
+ "loss": 0.2485,
635
+ "step": 1240
636
+ },
637
+ {
638
+ "epoch": 1.07,
639
+ "eval_loss": 0.3336337208747864,
640
+ "eval_runtime": 270.9871,
641
+ "eval_samples_per_second": 7.694,
642
+ "eval_steps_per_second": 0.963,
643
+ "step": 1250
644
+ },
645
+ {
646
+ "epoch": 1.07,
647
+ "grad_norm": 0.4584294259548187,
648
+ "learning_rate": 0.00010461397139611717,
649
+ "loss": 0.2621,
650
+ "step": 1260
651
+ },
652
+ {
653
+ "epoch": 1.09,
654
+ "grad_norm": 0.45226892828941345,
655
+ "learning_rate": 0.00010163772389907971,
656
+ "loss": 0.244,
657
+ "step": 1280
658
+ },
659
+ {
660
+ "epoch": 1.11,
661
+ "grad_norm": 0.5343567728996277,
662
+ "learning_rate": 9.86600242789879e-05,
663
+ "loss": 0.2452,
664
+ "step": 1300
665
+ },
666
+ {
667
+ "epoch": 1.11,
668
+ "eval_loss": 0.33007845282554626,
669
+ "eval_runtime": 271.0147,
670
+ "eval_samples_per_second": 7.693,
671
+ "eval_steps_per_second": 0.963,
672
+ "step": 1300
673
+ },
674
+ {
675
+ "epoch": 1.13,
676
+ "grad_norm": 0.4986325800418854,
677
+ "learning_rate": 9.568351277713618e-05,
678
+ "loss": 0.2525,
679
+ "step": 1320
680
+ },
681
+ {
682
+ "epoch": 1.14,
683
+ "grad_norm": 0.4909712076187134,
684
+ "learning_rate": 9.271082858134854e-05,
685
+ "loss": 0.2573,
686
+ "step": 1340
687
+ },
688
+ {
689
+ "epoch": 1.15,
690
+ "eval_loss": 0.3278447985649109,
691
+ "eval_runtime": 271.052,
692
+ "eval_samples_per_second": 7.692,
693
+ "eval_steps_per_second": 0.963,
694
+ "step": 1350
695
+ },
696
+ {
697
+ "epoch": 1.16,
698
+ "grad_norm": 0.4675891697406769,
699
+ "learning_rate": 8.974460748588577e-05,
700
+ "loss": 0.2516,
701
+ "step": 1360
702
+ },
703
+ {
704
+ "epoch": 1.18,
705
+ "grad_norm": 0.5919708013534546,
706
+ "learning_rate": 8.678747955436209e-05,
707
+ "loss": 0.2459,
708
+ "step": 1380
709
+ },
710
+ {
711
+ "epoch": 1.19,
712
+ "grad_norm": 0.5164061784744263,
713
+ "learning_rate": 8.384206678774267e-05,
714
+ "loss": 0.245,
715
+ "step": 1400
716
+ },
717
+ {
718
+ "epoch": 1.19,
719
+ "eval_loss": 0.3246319591999054,
720
+ "eval_runtime": 270.8895,
721
+ "eval_samples_per_second": 7.697,
722
+ "eval_steps_per_second": 0.963,
723
+ "step": 1400
724
+ },
725
+ {
726
+ "epoch": 1.21,
727
+ "grad_norm": 0.5498049855232239,
728
+ "learning_rate": 8.091098079949022e-05,
729
+ "loss": 0.244,
730
+ "step": 1420
731
+ },
732
+ {
733
+ "epoch": 1.23,
734
+ "grad_norm": 0.40771761536598206,
735
+ "learning_rate": 7.79968204999218e-05,
736
+ "loss": 0.2446,
737
+ "step": 1440
738
+ },
739
+ {
740
+ "epoch": 1.24,
741
+ "eval_loss": 0.32402417063713074,
742
+ "eval_runtime": 270.9055,
743
+ "eval_samples_per_second": 7.696,
744
+ "eval_steps_per_second": 0.963,
745
+ "step": 1450
746
+ },
747
+ {
748
+ "epoch": 1.24,
749
+ "grad_norm": 0.4820304811000824,
750
+ "learning_rate": 7.510216979182932e-05,
751
+ "loss": 0.2485,
752
+ "step": 1460
753
+ },
754
+ {
755
+ "epoch": 1.26,
756
+ "grad_norm": 0.40890711545944214,
757
+ "learning_rate": 7.222959527940643e-05,
758
+ "loss": 0.2426,
759
+ "step": 1480
760
+ },
761
+ {
762
+ "epoch": 1.28,
763
+ "grad_norm": 0.4243795573711395,
764
+ "learning_rate": 6.93816439925141e-05,
765
+ "loss": 0.2416,
766
+ "step": 1500
767
+ },
768
+ {
769
+ "epoch": 1.28,
770
+ "eval_loss": 0.32116860151290894,
771
+ "eval_runtime": 270.8886,
772
+ "eval_samples_per_second": 7.697,
773
+ "eval_steps_per_second": 0.963,
774
+ "step": 1500
775
+ },
776
+ {
777
+ "epoch": 1.3,
778
+ "grad_norm": 0.5360056161880493,
779
+ "learning_rate": 6.656084112830165e-05,
780
+ "loss": 0.2454,
781
+ "step": 1520
782
+ },
783
+ {
784
+ "epoch": 1.31,
785
+ "grad_norm": 0.5155255198478699,
786
+ "learning_rate": 6.376968781218665e-05,
787
+ "loss": 0.2432,
788
+ "step": 1540
789
+ },
790
+ {
791
+ "epoch": 1.32,
792
+ "eval_loss": 0.32005202770233154,
793
+ "eval_runtime": 271.08,
794
+ "eval_samples_per_second": 7.691,
795
+ "eval_steps_per_second": 0.963,
796
+ "step": 1550
797
+ },
798
+ {
799
+ "epoch": 1.33,
800
+ "grad_norm": 0.564046323299408,
801
+ "learning_rate": 6.101065888017833e-05,
802
+ "loss": 0.2414,
803
+ "step": 1560
804
+ },
805
+ {
806
+ "epoch": 1.35,
807
+ "grad_norm": 0.45059406757354736,
808
+ "learning_rate": 5.828620068451111e-05,
809
+ "loss": 0.2408,
810
+ "step": 1580
811
+ },
812
+ {
813
+ "epoch": 1.36,
814
+ "grad_norm": 0.5122149586677551,
815
+ "learning_rate": 5.559872892453375e-05,
816
+ "loss": 0.242,
817
+ "step": 1600
818
+ },
819
+ {
820
+ "epoch": 1.36,
821
+ "eval_loss": 0.316841185092926,
822
+ "eval_runtime": 271.0293,
823
+ "eval_samples_per_second": 7.693,
824
+ "eval_steps_per_second": 0.963,
825
+ "step": 1600
826
+ },
827
+ {
828
+ "epoch": 1.38,
829
+ "grad_norm": 0.48864319920539856,
830
+ "learning_rate": 5.29506265047779e-05,
831
+ "loss": 0.2432,
832
+ "step": 1620
833
+ },
834
+ {
835
+ "epoch": 1.4,
836
+ "grad_norm": 0.603583812713623,
837
+ "learning_rate": 5.034424142210443e-05,
838
+ "loss": 0.231,
839
+ "step": 1640
840
+ },
841
+ {
842
+ "epoch": 1.41,
843
+ "eval_loss": 0.3156278729438782,
844
+ "eval_runtime": 271.0109,
845
+ "eval_samples_per_second": 7.693,
846
+ "eval_steps_per_second": 0.963,
847
+ "step": 1650
848
+ },
849
+ {
850
+ "epoch": 1.42,
851
+ "grad_norm": 0.5807139873504639,
852
+ "learning_rate": 4.778188468380169e-05,
853
+ "loss": 0.2425,
854
+ "step": 1660
855
+ },
856
+ {
857
+ "epoch": 1.43,
858
+ "grad_norm": 0.4968738555908203,
859
+ "learning_rate": 4.526582825848131e-05,
860
+ "loss": 0.2362,
861
+ "step": 1680
862
+ },
863
+ {
864
+ "epoch": 1.45,
865
+ "grad_norm": 0.6385018825531006,
866
+ "learning_rate": 4.2798303061588404e-05,
867
+ "loss": 0.2369,
868
+ "step": 1700
869
+ },
870
+ {
871
+ "epoch": 1.45,
872
+ "eval_loss": 0.3140126168727875,
873
+ "eval_runtime": 270.9649,
874
+ "eval_samples_per_second": 7.695,
875
+ "eval_steps_per_second": 0.963,
876
+ "step": 1700
877
+ },
878
+ {
879
+ "epoch": 1.47,
880
+ "grad_norm": 0.5020663738250732,
881
+ "learning_rate": 4.038149697731247e-05,
882
+ "loss": 0.2425,
883
+ "step": 1720
884
+ },
885
+ {
886
+ "epoch": 1.48,
887
+ "grad_norm": 0.5276768207550049,
888
+ "learning_rate": 3.801755291865307e-05,
889
+ "loss": 0.2405,
890
+ "step": 1740
891
+ },
892
+ {
893
+ "epoch": 1.49,
894
+ "eval_loss": 0.3110227882862091,
895
+ "eval_runtime": 270.8888,
896
+ "eval_samples_per_second": 7.697,
897
+ "eval_steps_per_second": 0.963,
898
+ "step": 1750
899
+ },
900
+ {
901
+ "epoch": 1.5,
902
+ "grad_norm": 0.5092354416847229,
903
+ "learning_rate": 3.570856692735976e-05,
904
+ "loss": 0.2356,
905
+ "step": 1760
906
+ },
907
+ {
908
+ "epoch": 1.52,
909
+ "grad_norm": 0.4134100079536438,
910
+ "learning_rate": 3.3456586315431874e-05,
911
+ "loss": 0.2397,
912
+ "step": 1780
913
+ },
914
+ {
915
+ "epoch": 1.53,
916
+ "grad_norm": 0.41335973143577576,
917
+ "learning_rate": 3.126360784982532e-05,
918
+ "loss": 0.2263,
919
+ "step": 1800
920
+ },
921
+ {
922
+ "epoch": 1.53,
923
+ "eval_loss": 0.309181272983551,
924
+ "eval_runtime": 270.9592,
925
+ "eval_samples_per_second": 7.695,
926
+ "eval_steps_per_second": 0.963,
927
+ "step": 1800
928
+ },
929
+ {
930
+ "epoch": 1.55,
931
+ "grad_norm": 0.6216692924499512,
932
+ "learning_rate": 2.9131575981976245e-05,
933
+ "loss": 0.2371,
934
+ "step": 1820
935
+ },
936
+ {
937
+ "epoch": 1.57,
938
+ "grad_norm": 0.6529776453971863,
939
+ "learning_rate": 2.7062381123711532e-05,
940
+ "loss": 0.2324,
941
+ "step": 1840
942
+ },
943
+ {
944
+ "epoch": 1.58,
945
+ "eval_loss": 0.3087258040904999,
946
+ "eval_runtime": 270.9376,
947
+ "eval_samples_per_second": 7.695,
948
+ "eval_steps_per_second": 0.963,
949
+ "step": 1850
950
+ },
951
+ {
952
+ "epoch": 1.59,
953
+ "grad_norm": 0.41469648480415344,
954
+ "learning_rate": 2.505785797107446e-05,
955
+ "loss": 0.2148,
956
+ "step": 1860
957
+ },
958
+ {
959
+ "epoch": 1.6,
960
+ "grad_norm": 0.5092002749443054,
961
+ "learning_rate": 2.3119783877552126e-05,
962
+ "loss": 0.2287,
963
+ "step": 1880
964
+ },
965
+ {
966
+ "epoch": 1.62,
967
+ "grad_norm": 0.6236806511878967,
968
+ "learning_rate": 2.1249877278146868e-05,
969
+ "loss": 0.2203,
970
+ "step": 1900
971
+ },
972
+ {
973
+ "epoch": 1.62,
974
+ "eval_loss": 0.30838343501091003,
975
+ "eval_runtime": 270.9479,
976
+ "eval_samples_per_second": 7.695,
977
+ "eval_steps_per_second": 0.963,
978
+ "step": 1900
979
+ },
980
+ {
981
+ "epoch": 1.64,
982
+ "grad_norm": 0.5142087936401367,
983
+ "learning_rate": 1.944979616568885e-05,
984
+ "loss": 0.2287,
985
+ "step": 1920
986
+ },
987
+ {
988
+ "epoch": 1.65,
989
+ "grad_norm": 0.5550097227096558,
990
+ "learning_rate": 1.7721136620741218e-05,
991
+ "loss": 0.223,
992
+ "step": 1940
993
+ },
994
+ {
995
+ "epoch": 1.66,
996
+ "eval_loss": 0.30595675110816956,
997
+ "eval_runtime": 271.0761,
998
+ "eval_samples_per_second": 7.692,
999
+ "eval_steps_per_second": 0.963,
1000
+ "step": 1950
1001
+ },
1002
+ {
1003
+ "epoch": 1.67,
1004
+ "grad_norm": 0.5284961462020874,
1005
+ "learning_rate": 1.6065431396400986e-05,
1006
+ "loss": 0.2268,
1007
+ "step": 1960
1008
+ },
1009
+ {
1010
+ "epoch": 1.69,
1011
+ "grad_norm": 0.7719703912734985,
1012
+ "learning_rate": 1.4484148559250588e-05,
1013
+ "loss": 0.2406,
1014
+ "step": 1980
1015
+ },
1016
+ {
1017
+ "epoch": 1.71,
1018
+ "grad_norm": 0.5748826861381531,
1019
+ "learning_rate": 1.2978690187665133e-05,
1020
+ "loss": 0.2218,
1021
+ "step": 2000
1022
+ },
1023
+ {
1024
+ "epoch": 1.71,
1025
+ "eval_loss": 0.3054625391960144,
1026
+ "eval_runtime": 271.0494,
1027
+ "eval_samples_per_second": 7.692,
1028
+ "eval_steps_per_second": 0.963,
1029
+ "step": 2000
1030
+ },
1031
+ {
1032
+ "epoch": 1.72,
1033
+ "grad_norm": 0.4736625850200653,
1034
+ "learning_rate": 1.1550391128629501e-05,
1035
+ "loss": 0.2362,
1036
+ "step": 2020
1037
+ },
1038
+ {
1039
+ "epoch": 1.74,
1040
+ "grad_norm": 0.6235111951828003,
1041
+ "learning_rate": 1.0200517814167632e-05,
1042
+ "loss": 0.2278,
1043
+ "step": 2040
1044
+ },
1045
+ {
1046
+ "epoch": 1.75,
1047
+ "eval_loss": 0.30488070845603943,
1048
+ "eval_runtime": 271.0127,
1049
+ "eval_samples_per_second": 7.693,
1050
+ "eval_steps_per_second": 0.963,
1051
+ "step": 2050
1052
+ },
1053
+ {
1054
+ "epoch": 1.76,
1055
+ "grad_norm": 0.5903782248497009,
1056
+ "learning_rate": 8.930267138433335e-06,
1057
+ "loss": 0.2315,
1058
+ "step": 2060
1059
+ },
1060
+ {
1061
+ "epoch": 1.77,
1062
+ "grad_norm": 0.5188658833503723,
1063
+ "learning_rate": 7.740765396458482e-06,
1064
+ "loss": 0.2366,
1065
+ "step": 2080
1066
+ },
1067
+ {
1068
+ "epoch": 1.79,
1069
+ "grad_norm": 0.6277506351470947,
1070
+ "learning_rate": 6.633067285499228e-06,
1071
+ "loss": 0.2229,
1072
+ "step": 2100
1073
+ },
1074
+ {
1075
+ "epoch": 1.79,
1076
+ "eval_loss": 0.30428797006607056,
1077
+ "eval_runtime": 270.9982,
1078
+ "eval_samples_per_second": 7.694,
1079
+ "eval_steps_per_second": 0.963,
1080
+ "step": 2100
1081
+ }
1082
+ ],
1083
+ "logging_steps": 20,
1084
+ "max_steps": 2344,
1085
+ "num_input_tokens_seen": 0,
1086
+ "num_train_epochs": 2,
1087
+ "save_steps": 100,
1088
+ "total_flos": 1.0981367848058388e+18,
1089
+ "train_batch_size": 8,
1090
+ "trial_name": null,
1091
+ "trial_params": null
1092
+ }
checkpoint-2100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb8fa2435e433c3f852730900572fbfd7369fa856e86f09819c1794580c69b1
3
+ size 5304
checkpoint-2200/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-2200/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "o_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-2200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4ad92e9ae3b0eeafe9d0230e966d9fce792991762cd787a82256e4f49a09d7
3
+ size 167832240
checkpoint-2200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d84feef2d73def152d0ec4100000a303759a70cc11455f9321654031473bca4
3
+ size 335811770
checkpoint-2200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2278405dac5f8ee5e09787f112eea08a7138f539a0b478f25a005e71cff69ac3
3
+ size 14244
checkpoint-2200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f3f5b9be1b795388c3991be2e976674998cc79d3c95b6eafce7af4657cb508a
3
+ size 1000
checkpoint-2200/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-2200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2200/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-2200/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 2048,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "<unk>",
39
+ "padding": true,
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-2200/trainer_state.json ADDED
@@ -0,0 +1,1143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.3037714958190918,
3
+ "best_model_checkpoint": "./Mistral/17-03-24-Weni-ZeroShot-3.3.35-Mistral-7b-Multilanguage-3.3.0_ZeroShot SFT Training with its best hyperparameters-2_max_steps-2344_batch_16_2024-03-17_ppid_9/checkpoint-2200",
4
+ "epoch": 1.875532821824382,
5
+ "eval_steps": 50,
6
+ "global_step": 2200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 5.4808268547058105,
14
+ "learning_rate": 1.623931623931624e-05,
15
+ "loss": 1.7023,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "grad_norm": 2.232806444168091,
21
+ "learning_rate": 3.3333333333333335e-05,
22
+ "loss": 1.1297,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.04,
27
+ "eval_loss": 0.5450807809829712,
28
+ "eval_runtime": 271.242,
29
+ "eval_samples_per_second": 7.687,
30
+ "eval_steps_per_second": 0.962,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.05,
35
+ "grad_norm": 0.8864539265632629,
36
+ "learning_rate": 4.9572649572649575e-05,
37
+ "loss": 0.5849,
38
+ "step": 60
39
+ },
40
+ {
41
+ "epoch": 0.07,
42
+ "grad_norm": 0.8033413887023926,
43
+ "learning_rate": 6.666666666666667e-05,
44
+ "loss": 0.4593,
45
+ "step": 80
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "grad_norm": 0.6578605771064758,
50
+ "learning_rate": 8.376068376068377e-05,
51
+ "loss": 0.4425,
52
+ "step": 100
53
+ },
54
+ {
55
+ "epoch": 0.09,
56
+ "eval_loss": 0.42795854806900024,
57
+ "eval_runtime": 271.0229,
58
+ "eval_samples_per_second": 7.693,
59
+ "eval_steps_per_second": 0.963,
60
+ "step": 100
61
+ },
62
+ {
63
+ "epoch": 0.1,
64
+ "grad_norm": 0.5158710479736328,
65
+ "learning_rate": 0.00010085470085470086,
66
+ "loss": 0.4249,
67
+ "step": 120
68
+ },
69
+ {
70
+ "epoch": 0.12,
71
+ "grad_norm": 0.4536530375480652,
72
+ "learning_rate": 0.00011794871794871796,
73
+ "loss": 0.4241,
74
+ "step": 140
75
+ },
76
+ {
77
+ "epoch": 0.13,
78
+ "eval_loss": 0.4137832820415497,
79
+ "eval_runtime": 271.1041,
80
+ "eval_samples_per_second": 7.691,
81
+ "eval_steps_per_second": 0.963,
82
+ "step": 150
83
+ },
84
+ {
85
+ "epoch": 0.14,
86
+ "grad_norm": 0.3979959785938263,
87
+ "learning_rate": 0.00013504273504273505,
88
+ "loss": 0.4154,
89
+ "step": 160
90
+ },
91
+ {
92
+ "epoch": 0.15,
93
+ "grad_norm": 0.4166259467601776,
94
+ "learning_rate": 0.00015213675213675214,
95
+ "loss": 0.4107,
96
+ "step": 180
97
+ },
98
+ {
99
+ "epoch": 0.17,
100
+ "grad_norm": 0.40765708684921265,
101
+ "learning_rate": 0.00016923076923076923,
102
+ "loss": 0.4059,
103
+ "step": 200
104
+ },
105
+ {
106
+ "epoch": 0.17,
107
+ "eval_loss": 0.40599754452705383,
108
+ "eval_runtime": 271.1072,
109
+ "eval_samples_per_second": 7.691,
110
+ "eval_steps_per_second": 0.963,
111
+ "step": 200
112
+ },
113
+ {
114
+ "epoch": 0.19,
115
+ "grad_norm": 0.39934784173965454,
116
+ "learning_rate": 0.00018632478632478634,
117
+ "loss": 0.3935,
118
+ "step": 220
119
+ },
120
+ {
121
+ "epoch": 0.2,
122
+ "grad_norm": 0.39337554574012756,
123
+ "learning_rate": 0.00019999822653125876,
124
+ "loss": 0.4125,
125
+ "step": 240
126
+ },
127
+ {
128
+ "epoch": 0.21,
129
+ "eval_loss": 0.4002617597579956,
130
+ "eval_runtime": 271.1099,
131
+ "eval_samples_per_second": 7.691,
132
+ "eval_steps_per_second": 0.963,
133
+ "step": 250
134
+ },
135
+ {
136
+ "epoch": 0.22,
137
+ "grad_norm": 0.4723268449306488,
138
+ "learning_rate": 0.00019993616172996704,
139
+ "loss": 0.4074,
140
+ "step": 260
141
+ },
142
+ {
143
+ "epoch": 0.24,
144
+ "grad_norm": 0.4829658269882202,
145
+ "learning_rate": 0.00019978548638541202,
146
+ "loss": 0.3933,
147
+ "step": 280
148
+ },
149
+ {
150
+ "epoch": 0.26,
151
+ "grad_norm": 0.7815160155296326,
152
+ "learning_rate": 0.00019954633409712276,
153
+ "loss": 0.3948,
154
+ "step": 300
155
+ },
156
+ {
157
+ "epoch": 0.26,
158
+ "eval_loss": 0.3945770263671875,
159
+ "eval_runtime": 271.0451,
160
+ "eval_samples_per_second": 7.692,
161
+ "eval_steps_per_second": 0.963,
162
+ "step": 300
163
+ },
164
+ {
165
+ "epoch": 0.27,
166
+ "grad_norm": 0.4525783956050873,
167
+ "learning_rate": 0.00019921891691460983,
168
+ "loss": 0.3777,
169
+ "step": 320
170
+ },
171
+ {
172
+ "epoch": 0.29,
173
+ "grad_norm": 0.3549365699291229,
174
+ "learning_rate": 0.00019880352514934724,
175
+ "loss": 0.3979,
176
+ "step": 340
177
+ },
178
+ {
179
+ "epoch": 0.3,
180
+ "eval_loss": 0.3886016309261322,
181
+ "eval_runtime": 271.0939,
182
+ "eval_samples_per_second": 7.691,
183
+ "eval_steps_per_second": 0.963,
184
+ "step": 350
185
+ },
186
+ {
187
+ "epoch": 0.31,
188
+ "grad_norm": 0.38849011063575745,
189
+ "learning_rate": 0.00019830052711736142,
190
+ "loss": 0.3895,
191
+ "step": 360
192
+ },
193
+ {
194
+ "epoch": 0.32,
195
+ "grad_norm": 0.4513374865055084,
196
+ "learning_rate": 0.00019771036881265598,
197
+ "loss": 0.3866,
198
+ "step": 380
199
+ },
200
+ {
201
+ "epoch": 0.34,
202
+ "grad_norm": 0.4288094639778137,
203
+ "learning_rate": 0.00019703357351176151,
204
+ "loss": 0.3938,
205
+ "step": 400
206
+ },
207
+ {
208
+ "epoch": 0.34,
209
+ "eval_loss": 0.38462838530540466,
210
+ "eval_runtime": 271.1664,
211
+ "eval_samples_per_second": 7.689,
212
+ "eval_steps_per_second": 0.963,
213
+ "step": 400
214
+ },
215
+ {
216
+ "epoch": 0.36,
217
+ "grad_norm": 0.3525382876396179,
218
+ "learning_rate": 0.00019627074130976126,
219
+ "loss": 0.3891,
220
+ "step": 420
221
+ },
222
+ {
223
+ "epoch": 0.38,
224
+ "grad_norm": 0.5788955688476562,
225
+ "learning_rate": 0.0001954225485882039,
226
+ "loss": 0.3739,
227
+ "step": 440
228
+ },
229
+ {
230
+ "epoch": 0.38,
231
+ "eval_loss": 0.3804500699043274,
232
+ "eval_runtime": 271.0816,
233
+ "eval_samples_per_second": 7.691,
234
+ "eval_steps_per_second": 0.963,
235
+ "step": 450
236
+ },
237
+ {
238
+ "epoch": 0.39,
239
+ "grad_norm": 0.47232553362846375,
240
+ "learning_rate": 0.00019448974741537525,
241
+ "loss": 0.371,
242
+ "step": 460
243
+ },
244
+ {
245
+ "epoch": 0.41,
246
+ "grad_norm": 0.38733381032943726,
247
+ "learning_rate": 0.0001934731648794609,
248
+ "loss": 0.37,
249
+ "step": 480
250
+ },
251
+ {
252
+ "epoch": 0.43,
253
+ "grad_norm": 0.42200860381126404,
254
+ "learning_rate": 0.00019237370235519077,
255
+ "loss": 0.3726,
256
+ "step": 500
257
+ },
258
+ {
259
+ "epoch": 0.43,
260
+ "eval_loss": 0.3774518370628357,
261
+ "eval_runtime": 271.1201,
262
+ "eval_samples_per_second": 7.69,
263
+ "eval_steps_per_second": 0.963,
264
+ "step": 500
265
+ },
266
+ {
267
+ "epoch": 0.44,
268
+ "grad_norm": 0.5560094118118286,
269
+ "learning_rate": 0.00019119233470461558,
270
+ "loss": 0.3754,
271
+ "step": 520
272
+ },
273
+ {
274
+ "epoch": 0.46,
275
+ "grad_norm": 0.3813556134700775,
276
+ "learning_rate": 0.00018993010941272478,
277
+ "loss": 0.363,
278
+ "step": 540
279
+ },
280
+ {
281
+ "epoch": 0.47,
282
+ "eval_loss": 0.37297067046165466,
283
+ "eval_runtime": 271.0879,
284
+ "eval_samples_per_second": 7.691,
285
+ "eval_steps_per_second": 0.963,
286
+ "step": 550
287
+ },
288
+ {
289
+ "epoch": 0.48,
290
+ "grad_norm": 0.5384305715560913,
291
+ "learning_rate": 0.0001885881456586713,
292
+ "loss": 0.3656,
293
+ "step": 560
294
+ },
295
+ {
296
+ "epoch": 0.49,
297
+ "grad_norm": 0.4100024700164795,
298
+ "learning_rate": 0.0001871676333234274,
299
+ "loss": 0.3668,
300
+ "step": 580
301
+ },
302
+ {
303
+ "epoch": 0.51,
304
+ "grad_norm": 0.4203307628631592,
305
+ "learning_rate": 0.0001856698319347513,
306
+ "loss": 0.3718,
307
+ "step": 600
308
+ },
309
+ {
310
+ "epoch": 0.51,
311
+ "eval_loss": 0.3698495626449585,
312
+ "eval_runtime": 271.0857,
313
+ "eval_samples_per_second": 7.691,
314
+ "eval_steps_per_second": 0.963,
315
+ "step": 600
316
+ },
317
+ {
318
+ "epoch": 0.53,
319
+ "grad_norm": 0.5422376990318298,
320
+ "learning_rate": 0.0001840960695503995,
321
+ "loss": 0.3813,
322
+ "step": 620
323
+ },
324
+ {
325
+ "epoch": 0.55,
326
+ "grad_norm": 0.41980084776878357,
327
+ "learning_rate": 0.00018244774158057624,
328
+ "loss": 0.3711,
329
+ "step": 640
330
+ },
331
+ {
332
+ "epoch": 0.55,
333
+ "eval_loss": 0.3666984438896179,
334
+ "eval_runtime": 271.059,
335
+ "eval_samples_per_second": 7.692,
336
+ "eval_steps_per_second": 0.963,
337
+ "step": 650
338
+ },
339
+ {
340
+ "epoch": 0.56,
341
+ "grad_norm": 0.49988237023353577,
342
+ "learning_rate": 0.00018072630955066288,
343
+ "loss": 0.3669,
344
+ "step": 660
345
+ },
346
+ {
347
+ "epoch": 0.58,
348
+ "grad_norm": 0.4338107407093048,
349
+ "learning_rate": 0.00017893329980532498,
350
+ "loss": 0.3709,
351
+ "step": 680
352
+ },
353
+ {
354
+ "epoch": 0.6,
355
+ "grad_norm": 0.46425387263298035,
356
+ "learning_rate": 0.0001770703021551463,
357
+ "loss": 0.3665,
358
+ "step": 700
359
+ },
360
+ {
361
+ "epoch": 0.6,
362
+ "eval_loss": 0.36363786458969116,
363
+ "eval_runtime": 271.1155,
364
+ "eval_samples_per_second": 7.69,
365
+ "eval_steps_per_second": 0.963,
366
+ "step": 700
367
+ },
368
+ {
369
+ "epoch": 0.61,
370
+ "grad_norm": 0.5348316431045532,
371
+ "learning_rate": 0.00017513896846698882,
372
+ "loss": 0.3574,
373
+ "step": 720
374
+ },
375
+ {
376
+ "epoch": 0.63,
377
+ "grad_norm": 0.4046632945537567,
378
+ "learning_rate": 0.00017314101119932974,
379
+ "loss": 0.3625,
380
+ "step": 740
381
+ },
382
+ {
383
+ "epoch": 0.64,
384
+ "eval_loss": 0.3617616891860962,
385
+ "eval_runtime": 271.137,
386
+ "eval_samples_per_second": 7.69,
387
+ "eval_steps_per_second": 0.963,
388
+ "step": 750
389
+ },
390
+ {
391
+ "epoch": 0.65,
392
+ "grad_norm": 0.44371724128723145,
393
+ "learning_rate": 0.00017107820188387327,
394
+ "loss": 0.3752,
395
+ "step": 760
396
+ },
397
+ {
398
+ "epoch": 0.66,
399
+ "grad_norm": 0.4216190576553345,
400
+ "learning_rate": 0.00016895236955478412,
401
+ "loss": 0.3606,
402
+ "step": 780
403
+ },
404
+ {
405
+ "epoch": 0.68,
406
+ "grad_norm": 0.5870906114578247,
407
+ "learning_rate": 0.00016676539912693501,
408
+ "loss": 0.3756,
409
+ "step": 800
410
+ },
411
+ {
412
+ "epoch": 0.68,
413
+ "eval_loss": 0.3583546280860901,
414
+ "eval_runtime": 271.1679,
415
+ "eval_samples_per_second": 7.689,
416
+ "eval_steps_per_second": 0.963,
417
+ "step": 800
418
+ },
419
+ {
420
+ "epoch": 0.7,
421
+ "grad_norm": 0.4018837511539459,
422
+ "learning_rate": 0.00016451922972460643,
423
+ "loss": 0.358,
424
+ "step": 820
425
+ },
426
+ {
427
+ "epoch": 0.72,
428
+ "grad_norm": 0.4688343107700348,
429
+ "learning_rate": 0.00016221585296212054,
430
+ "loss": 0.3493,
431
+ "step": 840
432
+ },
433
+ {
434
+ "epoch": 0.72,
435
+ "eval_loss": 0.35402199625968933,
436
+ "eval_runtime": 271.1165,
437
+ "eval_samples_per_second": 7.69,
438
+ "eval_steps_per_second": 0.963,
439
+ "step": 850
440
+ },
441
+ {
442
+ "epoch": 0.73,
443
+ "grad_norm": 0.4941730797290802,
444
+ "learning_rate": 0.00015985731117793353,
445
+ "loss": 0.3502,
446
+ "step": 860
447
+ },
448
+ {
449
+ "epoch": 0.75,
450
+ "grad_norm": 0.4220365583896637,
451
+ "learning_rate": 0.00015744569562375235,
452
+ "loss": 0.3478,
453
+ "step": 880
454
+ },
455
+ {
456
+ "epoch": 0.77,
457
+ "grad_norm": 0.4305894374847412,
458
+ "learning_rate": 0.00015498314461028157,
459
+ "loss": 0.3585,
460
+ "step": 900
461
+ },
462
+ {
463
+ "epoch": 0.77,
464
+ "eval_loss": 0.3510061800479889,
465
+ "eval_runtime": 271.1908,
466
+ "eval_samples_per_second": 7.688,
467
+ "eval_steps_per_second": 0.962,
468
+ "step": 900
469
+ },
470
+ {
471
+ "epoch": 0.78,
472
+ "grad_norm": 0.45022985339164734,
473
+ "learning_rate": 0.00015247184161124415,
474
+ "loss": 0.3558,
475
+ "step": 920
476
+ },
477
+ {
478
+ "epoch": 0.8,
479
+ "grad_norm": 0.4498714506626129,
480
+ "learning_rate": 0.00014991401332735781,
481
+ "loss": 0.3466,
482
+ "step": 940
483
+ },
484
+ {
485
+ "epoch": 0.81,
486
+ "eval_loss": 0.34707528352737427,
487
+ "eval_runtime": 271.0841,
488
+ "eval_samples_per_second": 7.691,
489
+ "eval_steps_per_second": 0.963,
490
+ "step": 950
491
+ },
492
+ {
493
+ "epoch": 0.82,
494
+ "grad_norm": 0.49369582533836365,
495
+ "learning_rate": 0.00014731192771198282,
496
+ "loss": 0.3463,
497
+ "step": 960
498
+ },
499
+ {
500
+ "epoch": 0.84,
501
+ "grad_norm": 0.36855530738830566,
502
+ "learning_rate": 0.00014466789196019257,
503
+ "loss": 0.3428,
504
+ "step": 980
505
+ },
506
+ {
507
+ "epoch": 0.85,
508
+ "grad_norm": 0.501837968826294,
509
+ "learning_rate": 0.00014198425046304942,
510
+ "loss": 0.3483,
511
+ "step": 1000
512
+ },
513
+ {
514
+ "epoch": 0.85,
515
+ "eval_loss": 0.34373167157173157,
516
+ "eval_runtime": 271.0714,
517
+ "eval_samples_per_second": 7.692,
518
+ "eval_steps_per_second": 0.963,
519
+ "step": 1000
520
+ },
521
+ {
522
+ "epoch": 0.87,
523
+ "grad_norm": 0.35614344477653503,
524
+ "learning_rate": 0.00013926338272890026,
525
+ "loss": 0.3322,
526
+ "step": 1020
527
+ },
528
+ {
529
+ "epoch": 0.89,
530
+ "grad_norm": 0.5366308689117432,
531
+ "learning_rate": 0.00013650770127353416,
532
+ "loss": 0.343,
533
+ "step": 1040
534
+ },
535
+ {
536
+ "epoch": 0.9,
537
+ "eval_loss": 0.3401084542274475,
538
+ "eval_runtime": 271.1104,
539
+ "eval_samples_per_second": 7.691,
540
+ "eval_steps_per_second": 0.963,
541
+ "step": 1050
542
+ },
543
+ {
544
+ "epoch": 0.9,
545
+ "grad_norm": 0.46004125475883484,
546
+ "learning_rate": 0.00013371964948107344,
547
+ "loss": 0.3417,
548
+ "step": 1060
549
+ },
550
+ {
551
+ "epoch": 0.92,
552
+ "grad_norm": 0.5817845463752747,
553
+ "learning_rate": 0.00013090169943749476,
554
+ "loss": 0.332,
555
+ "step": 1080
556
+ },
557
+ {
558
+ "epoch": 0.94,
559
+ "grad_norm": 0.9298326969146729,
560
+ "learning_rate": 0.00012805634973870103,
561
+ "loss": 0.3373,
562
+ "step": 1100
563
+ },
564
+ {
565
+ "epoch": 0.94,
566
+ "eval_loss": 0.3367879390716553,
567
+ "eval_runtime": 271.219,
568
+ "eval_samples_per_second": 7.688,
569
+ "eval_steps_per_second": 0.962,
570
+ "step": 1100
571
+ },
572
+ {
573
+ "epoch": 0.95,
574
+ "grad_norm": 0.5731242299079895,
575
+ "learning_rate": 0.00012518612327508773,
576
+ "loss": 0.3443,
577
+ "step": 1120
578
+ },
579
+ {
580
+ "epoch": 0.97,
581
+ "grad_norm": 0.6886520981788635,
582
+ "learning_rate": 0.00012229356499456783,
583
+ "loss": 0.3388,
584
+ "step": 1140
585
+ },
586
+ {
587
+ "epoch": 0.98,
588
+ "eval_loss": 0.3337441086769104,
589
+ "eval_runtime": 271.0416,
590
+ "eval_samples_per_second": 7.693,
591
+ "eval_steps_per_second": 0.963,
592
+ "step": 1150
593
+ },
594
+ {
595
+ "epoch": 0.99,
596
+ "grad_norm": 0.5007095336914062,
597
+ "learning_rate": 0.00011938123964603922,
598
+ "loss": 0.3375,
599
+ "step": 1160
600
+ },
601
+ {
602
+ "epoch": 1.01,
603
+ "grad_norm": 0.49403801560401917,
604
+ "learning_rate": 0.00011645172950529504,
605
+ "loss": 0.3091,
606
+ "step": 1180
607
+ },
608
+ {
609
+ "epoch": 1.02,
610
+ "grad_norm": 0.36014652252197266,
611
+ "learning_rate": 0.00011350763208539337,
612
+ "loss": 0.256,
613
+ "step": 1200
614
+ },
615
+ {
616
+ "epoch": 1.02,
617
+ "eval_loss": 0.33549007773399353,
618
+ "eval_runtime": 271.1529,
619
+ "eval_samples_per_second": 7.689,
620
+ "eval_steps_per_second": 0.963,
621
+ "step": 1200
622
+ },
623
+ {
624
+ "epoch": 1.04,
625
+ "grad_norm": 0.4871821403503418,
626
+ "learning_rate": 0.0001105515578335165,
627
+ "loss": 0.2534,
628
+ "step": 1220
629
+ },
630
+ {
631
+ "epoch": 1.06,
632
+ "grad_norm": 0.4773302376270294,
633
+ "learning_rate": 0.00010758612781636189,
634
+ "loss": 0.2485,
635
+ "step": 1240
636
+ },
637
+ {
638
+ "epoch": 1.07,
639
+ "eval_loss": 0.3336337208747864,
640
+ "eval_runtime": 270.9871,
641
+ "eval_samples_per_second": 7.694,
642
+ "eval_steps_per_second": 0.963,
643
+ "step": 1250
644
+ },
645
+ {
646
+ "epoch": 1.07,
647
+ "grad_norm": 0.4584294259548187,
648
+ "learning_rate": 0.00010461397139611717,
649
+ "loss": 0.2621,
650
+ "step": 1260
651
+ },
652
+ {
653
+ "epoch": 1.09,
654
+ "grad_norm": 0.45226892828941345,
655
+ "learning_rate": 0.00010163772389907971,
656
+ "loss": 0.244,
657
+ "step": 1280
658
+ },
659
+ {
660
+ "epoch": 1.11,
661
+ "grad_norm": 0.5343567728996277,
662
+ "learning_rate": 9.86600242789879e-05,
663
+ "loss": 0.2452,
664
+ "step": 1300
665
+ },
666
+ {
667
+ "epoch": 1.11,
668
+ "eval_loss": 0.33007845282554626,
669
+ "eval_runtime": 271.0147,
670
+ "eval_samples_per_second": 7.693,
671
+ "eval_steps_per_second": 0.963,
672
+ "step": 1300
673
+ },
674
+ {
675
+ "epoch": 1.13,
676
+ "grad_norm": 0.4986325800418854,
677
+ "learning_rate": 9.568351277713618e-05,
678
+ "loss": 0.2525,
679
+ "step": 1320
680
+ },
681
+ {
682
+ "epoch": 1.14,
683
+ "grad_norm": 0.4909712076187134,
684
+ "learning_rate": 9.271082858134854e-05,
685
+ "loss": 0.2573,
686
+ "step": 1340
687
+ },
688
+ {
689
+ "epoch": 1.15,
690
+ "eval_loss": 0.3278447985649109,
691
+ "eval_runtime": 271.052,
692
+ "eval_samples_per_second": 7.692,
693
+ "eval_steps_per_second": 0.963,
694
+ "step": 1350
695
+ },
696
+ {
697
+ "epoch": 1.16,
698
+ "grad_norm": 0.4675891697406769,
699
+ "learning_rate": 8.974460748588577e-05,
700
+ "loss": 0.2516,
701
+ "step": 1360
702
+ },
703
+ {
704
+ "epoch": 1.18,
705
+ "grad_norm": 0.5919708013534546,
706
+ "learning_rate": 8.678747955436209e-05,
707
+ "loss": 0.2459,
708
+ "step": 1380
709
+ },
710
+ {
711
+ "epoch": 1.19,
712
+ "grad_norm": 0.5164061784744263,
713
+ "learning_rate": 8.384206678774267e-05,
714
+ "loss": 0.245,
715
+ "step": 1400
716
+ },
717
+ {
718
+ "epoch": 1.19,
719
+ "eval_loss": 0.3246319591999054,
720
+ "eval_runtime": 270.8895,
721
+ "eval_samples_per_second": 7.697,
722
+ "eval_steps_per_second": 0.963,
723
+ "step": 1400
724
+ },
725
+ {
726
+ "epoch": 1.21,
727
+ "grad_norm": 0.5498049855232239,
728
+ "learning_rate": 8.091098079949022e-05,
729
+ "loss": 0.244,
730
+ "step": 1420
731
+ },
732
+ {
733
+ "epoch": 1.23,
734
+ "grad_norm": 0.40771761536598206,
735
+ "learning_rate": 7.79968204999218e-05,
736
+ "loss": 0.2446,
737
+ "step": 1440
738
+ },
739
+ {
740
+ "epoch": 1.24,
741
+ "eval_loss": 0.32402417063713074,
742
+ "eval_runtime": 270.9055,
743
+ "eval_samples_per_second": 7.696,
744
+ "eval_steps_per_second": 0.963,
745
+ "step": 1450
746
+ },
747
+ {
748
+ "epoch": 1.24,
749
+ "grad_norm": 0.4820304811000824,
750
+ "learning_rate": 7.510216979182932e-05,
751
+ "loss": 0.2485,
752
+ "step": 1460
753
+ },
754
+ {
755
+ "epoch": 1.26,
756
+ "grad_norm": 0.40890711545944214,
757
+ "learning_rate": 7.222959527940643e-05,
758
+ "loss": 0.2426,
759
+ "step": 1480
760
+ },
761
+ {
762
+ "epoch": 1.28,
763
+ "grad_norm": 0.4243795573711395,
764
+ "learning_rate": 6.93816439925141e-05,
765
+ "loss": 0.2416,
766
+ "step": 1500
767
+ },
768
+ {
769
+ "epoch": 1.28,
770
+ "eval_loss": 0.32116860151290894,
771
+ "eval_runtime": 270.8886,
772
+ "eval_samples_per_second": 7.697,
773
+ "eval_steps_per_second": 0.963,
774
+ "step": 1500
775
+ },
776
+ {
777
+ "epoch": 1.3,
778
+ "grad_norm": 0.5360056161880493,
779
+ "learning_rate": 6.656084112830165e-05,
780
+ "loss": 0.2454,
781
+ "step": 1520
782
+ },
783
+ {
784
+ "epoch": 1.31,
785
+ "grad_norm": 0.5155255198478699,
786
+ "learning_rate": 6.376968781218665e-05,
787
+ "loss": 0.2432,
788
+ "step": 1540
789
+ },
790
+ {
791
+ "epoch": 1.32,
792
+ "eval_loss": 0.32005202770233154,
793
+ "eval_runtime": 271.08,
794
+ "eval_samples_per_second": 7.691,
795
+ "eval_steps_per_second": 0.963,
796
+ "step": 1550
797
+ },
798
+ {
799
+ "epoch": 1.33,
800
+ "grad_norm": 0.564046323299408,
801
+ "learning_rate": 6.101065888017833e-05,
802
+ "loss": 0.2414,
803
+ "step": 1560
804
+ },
805
+ {
806
+ "epoch": 1.35,
807
+ "grad_norm": 0.45059406757354736,
808
+ "learning_rate": 5.828620068451111e-05,
809
+ "loss": 0.2408,
810
+ "step": 1580
811
+ },
812
+ {
813
+ "epoch": 1.36,
814
+ "grad_norm": 0.5122149586677551,
815
+ "learning_rate": 5.559872892453375e-05,
816
+ "loss": 0.242,
817
+ "step": 1600
818
+ },
819
+ {
820
+ "epoch": 1.36,
821
+ "eval_loss": 0.316841185092926,
822
+ "eval_runtime": 271.0293,
823
+ "eval_samples_per_second": 7.693,
824
+ "eval_steps_per_second": 0.963,
825
+ "step": 1600
826
+ },
827
+ {
828
+ "epoch": 1.38,
829
+ "grad_norm": 0.48864319920539856,
830
+ "learning_rate": 5.29506265047779e-05,
831
+ "loss": 0.2432,
832
+ "step": 1620
833
+ },
834
+ {
835
+ "epoch": 1.4,
836
+ "grad_norm": 0.603583812713623,
837
+ "learning_rate": 5.034424142210443e-05,
838
+ "loss": 0.231,
839
+ "step": 1640
840
+ },
841
+ {
842
+ "epoch": 1.41,
843
+ "eval_loss": 0.3156278729438782,
844
+ "eval_runtime": 271.0109,
845
+ "eval_samples_per_second": 7.693,
846
+ "eval_steps_per_second": 0.963,
847
+ "step": 1650
848
+ },
849
+ {
850
+ "epoch": 1.42,
851
+ "grad_norm": 0.5807139873504639,
852
+ "learning_rate": 4.778188468380169e-05,
853
+ "loss": 0.2425,
854
+ "step": 1660
855
+ },
856
+ {
857
+ "epoch": 1.43,
858
+ "grad_norm": 0.4968738555908203,
859
+ "learning_rate": 4.526582825848131e-05,
860
+ "loss": 0.2362,
861
+ "step": 1680
862
+ },
863
+ {
864
+ "epoch": 1.45,
865
+ "grad_norm": 0.6385018825531006,
866
+ "learning_rate": 4.2798303061588404e-05,
867
+ "loss": 0.2369,
868
+ "step": 1700
869
+ },
870
+ {
871
+ "epoch": 1.45,
872
+ "eval_loss": 0.3140126168727875,
873
+ "eval_runtime": 270.9649,
874
+ "eval_samples_per_second": 7.695,
875
+ "eval_steps_per_second": 0.963,
876
+ "step": 1700
877
+ },
878
+ {
879
+ "epoch": 1.47,
880
+ "grad_norm": 0.5020663738250732,
881
+ "learning_rate": 4.038149697731247e-05,
882
+ "loss": 0.2425,
883
+ "step": 1720
884
+ },
885
+ {
886
+ "epoch": 1.48,
887
+ "grad_norm": 0.5276768207550049,
888
+ "learning_rate": 3.801755291865307e-05,
889
+ "loss": 0.2405,
890
+ "step": 1740
891
+ },
892
+ {
893
+ "epoch": 1.49,
894
+ "eval_loss": 0.3110227882862091,
895
+ "eval_runtime": 270.8888,
896
+ "eval_samples_per_second": 7.697,
897
+ "eval_steps_per_second": 0.963,
898
+ "step": 1750
899
+ },
900
+ {
901
+ "epoch": 1.5,
902
+ "grad_norm": 0.5092354416847229,
903
+ "learning_rate": 3.570856692735976e-05,
904
+ "loss": 0.2356,
905
+ "step": 1760
906
+ },
907
+ {
908
+ "epoch": 1.52,
909
+ "grad_norm": 0.4134100079536438,
910
+ "learning_rate": 3.3456586315431874e-05,
911
+ "loss": 0.2397,
912
+ "step": 1780
913
+ },
914
+ {
915
+ "epoch": 1.53,
916
+ "grad_norm": 0.41335973143577576,
917
+ "learning_rate": 3.126360784982532e-05,
918
+ "loss": 0.2263,
919
+ "step": 1800
920
+ },
921
+ {
922
+ "epoch": 1.53,
923
+ "eval_loss": 0.309181272983551,
924
+ "eval_runtime": 270.9592,
925
+ "eval_samples_per_second": 7.695,
926
+ "eval_steps_per_second": 0.963,
927
+ "step": 1800
928
+ },
929
+ {
930
+ "epoch": 1.55,
931
+ "grad_norm": 0.6216692924499512,
932
+ "learning_rate": 2.9131575981976245e-05,
933
+ "loss": 0.2371,
934
+ "step": 1820
935
+ },
936
+ {
937
+ "epoch": 1.57,
938
+ "grad_norm": 0.6529776453971863,
939
+ "learning_rate": 2.7062381123711532e-05,
940
+ "loss": 0.2324,
941
+ "step": 1840
942
+ },
943
+ {
944
+ "epoch": 1.58,
945
+ "eval_loss": 0.3087258040904999,
946
+ "eval_runtime": 270.9376,
947
+ "eval_samples_per_second": 7.695,
948
+ "eval_steps_per_second": 0.963,
949
+ "step": 1850
950
+ },
951
+ {
952
+ "epoch": 1.59,
953
+ "grad_norm": 0.41469648480415344,
954
+ "learning_rate": 2.505785797107446e-05,
955
+ "loss": 0.2148,
956
+ "step": 1860
957
+ },
958
+ {
959
+ "epoch": 1.6,
960
+ "grad_norm": 0.5092002749443054,
961
+ "learning_rate": 2.3119783877552126e-05,
962
+ "loss": 0.2287,
963
+ "step": 1880
964
+ },
965
+ {
966
+ "epoch": 1.62,
967
+ "grad_norm": 0.6236806511878967,
968
+ "learning_rate": 2.1249877278146868e-05,
969
+ "loss": 0.2203,
970
+ "step": 1900
971
+ },
972
+ {
973
+ "epoch": 1.62,
974
+ "eval_loss": 0.30838343501091003,
975
+ "eval_runtime": 270.9479,
976
+ "eval_samples_per_second": 7.695,
977
+ "eval_steps_per_second": 0.963,
978
+ "step": 1900
979
+ },
980
+ {
981
+ "epoch": 1.64,
982
+ "grad_norm": 0.5142087936401367,
983
+ "learning_rate": 1.944979616568885e-05,
984
+ "loss": 0.2287,
985
+ "step": 1920
986
+ },
987
+ {
988
+ "epoch": 1.65,
989
+ "grad_norm": 0.5550097227096558,
990
+ "learning_rate": 1.7721136620741218e-05,
991
+ "loss": 0.223,
992
+ "step": 1940
993
+ },
994
+ {
995
+ "epoch": 1.66,
996
+ "eval_loss": 0.30595675110816956,
997
+ "eval_runtime": 271.0761,
998
+ "eval_samples_per_second": 7.692,
999
+ "eval_steps_per_second": 0.963,
1000
+ "step": 1950
1001
+ },
1002
+ {
1003
+ "epoch": 1.67,
1004
+ "grad_norm": 0.5284961462020874,
1005
+ "learning_rate": 1.6065431396400986e-05,
1006
+ "loss": 0.2268,
1007
+ "step": 1960
1008
+ },
1009
+ {
1010
+ "epoch": 1.69,
1011
+ "grad_norm": 0.7719703912734985,
1012
+ "learning_rate": 1.4484148559250588e-05,
1013
+ "loss": 0.2406,
1014
+ "step": 1980
1015
+ },
1016
+ {
1017
+ "epoch": 1.71,
1018
+ "grad_norm": 0.5748826861381531,
1019
+ "learning_rate": 1.2978690187665133e-05,
1020
+ "loss": 0.2218,
1021
+ "step": 2000
1022
+ },
1023
+ {
1024
+ "epoch": 1.71,
1025
+ "eval_loss": 0.3054625391960144,
1026
+ "eval_runtime": 271.0494,
1027
+ "eval_samples_per_second": 7.692,
1028
+ "eval_steps_per_second": 0.963,
1029
+ "step": 2000
1030
+ },
1031
+ {
1032
+ "epoch": 1.72,
1033
+ "grad_norm": 0.4736625850200653,
1034
+ "learning_rate": 1.1550391128629501e-05,
1035
+ "loss": 0.2362,
1036
+ "step": 2020
1037
+ },
1038
+ {
1039
+ "epoch": 1.74,
1040
+ "grad_norm": 0.6235111951828003,
1041
+ "learning_rate": 1.0200517814167632e-05,
1042
+ "loss": 0.2278,
1043
+ "step": 2040
1044
+ },
1045
+ {
1046
+ "epoch": 1.75,
1047
+ "eval_loss": 0.30488070845603943,
1048
+ "eval_runtime": 271.0127,
1049
+ "eval_samples_per_second": 7.693,
1050
+ "eval_steps_per_second": 0.963,
1051
+ "step": 2050
1052
+ },
1053
+ {
1054
+ "epoch": 1.76,
1055
+ "grad_norm": 0.5903782248497009,
1056
+ "learning_rate": 8.930267138433335e-06,
1057
+ "loss": 0.2315,
1058
+ "step": 2060
1059
+ },
1060
+ {
1061
+ "epoch": 1.77,
1062
+ "grad_norm": 0.5188658833503723,
1063
+ "learning_rate": 7.740765396458482e-06,
1064
+ "loss": 0.2366,
1065
+ "step": 2080
1066
+ },
1067
+ {
1068
+ "epoch": 1.79,
1069
+ "grad_norm": 0.6277506351470947,
1070
+ "learning_rate": 6.633067285499228e-06,
1071
+ "loss": 0.2229,
1072
+ "step": 2100
1073
+ },
1074
+ {
1075
+ "epoch": 1.79,
1076
+ "eval_loss": 0.30428797006607056,
1077
+ "eval_runtime": 270.9982,
1078
+ "eval_samples_per_second": 7.694,
1079
+ "eval_steps_per_second": 0.963,
1080
+ "step": 2100
1081
+ },
1082
+ {
1083
+ "epoch": 1.81,
1084
+ "grad_norm": 0.5176372528076172,
1085
+ "learning_rate": 5.6081549698661305e-06,
1086
+ "loss": 0.2277,
1087
+ "step": 2120
1088
+ },
1089
+ {
1090
+ "epoch": 1.82,
1091
+ "grad_norm": 0.5887135863304138,
1092
+ "learning_rate": 4.666937210067012e-06,
1093
+ "loss": 0.2189,
1094
+ "step": 2140
1095
+ },
1096
+ {
1097
+ "epoch": 1.83,
1098
+ "eval_loss": 0.3041435480117798,
1099
+ "eval_runtime": 270.8969,
1100
+ "eval_samples_per_second": 7.697,
1101
+ "eval_steps_per_second": 0.963,
1102
+ "step": 2150
1103
+ },
1104
+ {
1105
+ "epoch": 1.84,
1106
+ "grad_norm": 0.5156753063201904,
1107
+ "learning_rate": 3.8102485570350123e-06,
1108
+ "loss": 0.2281,
1109
+ "step": 2160
1110
+ },
1111
+ {
1112
+ "epoch": 1.86,
1113
+ "grad_norm": 0.5229103565216064,
1114
+ "learning_rate": 3.0388486121560313e-06,
1115
+ "loss": 0.2238,
1116
+ "step": 2180
1117
+ },
1118
+ {
1119
+ "epoch": 1.88,
1120
+ "grad_norm": 0.6205452084541321,
1121
+ "learning_rate": 2.3534213537518832e-06,
1122
+ "loss": 0.23,
1123
+ "step": 2200
1124
+ },
1125
+ {
1126
+ "epoch": 1.88,
1127
+ "eval_loss": 0.3037714958190918,
1128
+ "eval_runtime": 270.8992,
1129
+ "eval_samples_per_second": 7.697,
1130
+ "eval_steps_per_second": 0.963,
1131
+ "step": 2200
1132
+ }
1133
+ ],
1134
+ "logging_steps": 20,
1135
+ "max_steps": 2344,
1136
+ "num_input_tokens_seen": 0,
1137
+ "num_train_epochs": 2,
1138
+ "save_steps": 100,
1139
+ "total_flos": 1.1501065692171633e+18,
1140
+ "train_batch_size": 8,
1141
+ "trial_name": null,
1142
+ "trial_params": null
1143
+ }
checkpoint-2200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb8fa2435e433c3f852730900572fbfd7369fa856e86f09819c1794580c69b1
3
+ size 5304
checkpoint-2300/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2