WelfCrozzo
commited on
Commit
·
65772b6
1
Parent(s):
b14c801
Update README.md
Browse files
README.md
CHANGED
@@ -28,9 +28,9 @@ widget:
|
|
28 |
|
29 |
# T5 for belarusian language
|
30 |
|
31 |
-
This model is based on T5-small with sequence length equal 128 tokens.
|
32 |
|
33 |
-
Supported tasks:
|
34 |
- translation BE to RU: `<extra_id_1>`
|
35 |
- translation BE to EN: `<extra_id_2>`
|
36 |
- translation RU to BE: `<extra_id_3>`
|
@@ -38,7 +38,25 @@ Supported tasks:
|
|
38 |
- translation EN to BE: `<extra_id_6>`
|
39 |
- translation EN to RU: `<extra_id_7>`
|
40 |
|
41 |
-
Metrics:
|
42 |
- [evel/BLEU](https://api.wandb.ai/links/miklgr500/31mq4s36)
|
43 |
- [evel/loss](https://api.wandb.ai/links/miklgr500/rvi2p69n)
|
44 |
-
- [train/loss](https://api.wandb.ai/links/miklgr500/z9alu3n5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# T5 for belarusian language
|
30 |
|
31 |
+
This model is based on T5-small with sequence length equal 128 tokens. Model trained from scratch on RTX 3090 24GB.
|
32 |
|
33 |
+
# Supported tasks:
|
34 |
- translation BE to RU: `<extra_id_1>`
|
35 |
- translation BE to EN: `<extra_id_2>`
|
36 |
- translation RU to BE: `<extra_id_3>`
|
|
|
38 |
- translation EN to BE: `<extra_id_6>`
|
39 |
- translation EN to RU: `<extra_id_7>`
|
40 |
|
41 |
+
# Metrics:
|
42 |
- [evel/BLEU](https://api.wandb.ai/links/miklgr500/31mq4s36)
|
43 |
- [evel/loss](https://api.wandb.ai/links/miklgr500/rvi2p69n)
|
44 |
+
- [train/loss](https://api.wandb.ai/links/miklgr500/z9alu3n5)
|
45 |
+
|
46 |
+
# How to Get Started with the Model
|
47 |
+
|
48 |
+
<details>
|
49 |
+
<summary> Click to expand </summary>
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import T5TokenizerFast, T5ForConditionalGeneration
|
53 |
+
|
54 |
+
tokenizer = T5TokenizerFast.from_pretrained("WelfCrozzo/T5-L128-belarusian")
|
55 |
+
model = T5ForConditionalGeneration.from_pretrained("WelfCrozzo/T5-L128-belarusian")
|
56 |
+
|
57 |
+
x = tokenizer.encode('<extra_id_1>да зорак праз цяжкасці', return_tensors='pt')
|
58 |
+
|
59 |
+
result = model.generate(x, return_dict_in_generate=True, output_scores=True,max_length=128)
|
60 |
+
print(tokenizer.decode(result["sequences"][0]))
|
61 |
+
```
|
62 |
+
</details>
|