QJerry commited on
Commit
1aa6c2d
·
verified ·
1 Parent(s): 1349a2c

Initial commit.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +35 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-100/README.md +202 -0
  5. checkpoint-100/adapter_config.json +35 -0
  6. checkpoint-100/adapter_model.safetensors +3 -0
  7. checkpoint-100/trainer_state.json +733 -0
  8. checkpoint-100/training_args.bin +3 -0
  9. checkpoint-120/README.md +202 -0
  10. checkpoint-120/adapter_config.json +35 -0
  11. checkpoint-120/adapter_model.safetensors +3 -0
  12. checkpoint-120/trainer_state.json +873 -0
  13. checkpoint-120/training_args.bin +3 -0
  14. checkpoint-140/README.md +202 -0
  15. checkpoint-140/adapter_config.json +35 -0
  16. checkpoint-140/adapter_model.safetensors +3 -0
  17. checkpoint-140/trainer_state.json +1013 -0
  18. checkpoint-140/training_args.bin +3 -0
  19. checkpoint-160/README.md +202 -0
  20. checkpoint-160/adapter_config.json +35 -0
  21. checkpoint-160/adapter_model.safetensors +3 -0
  22. checkpoint-160/trainer_state.json +1153 -0
  23. checkpoint-160/training_args.bin +3 -0
  24. checkpoint-180/README.md +202 -0
  25. checkpoint-180/adapter_config.json +35 -0
  26. checkpoint-180/adapter_model.safetensors +3 -0
  27. checkpoint-180/trainer_state.json +1293 -0
  28. checkpoint-180/training_args.bin +3 -0
  29. checkpoint-20/README.md +202 -0
  30. checkpoint-20/adapter_config.json +35 -0
  31. checkpoint-20/adapter_model.safetensors +3 -0
  32. checkpoint-20/trainer_state.json +173 -0
  33. checkpoint-20/training_args.bin +3 -0
  34. checkpoint-200/README.md +202 -0
  35. checkpoint-200/adapter_config.json +35 -0
  36. checkpoint-200/adapter_model.safetensors +3 -0
  37. checkpoint-200/trainer_state.json +1433 -0
  38. checkpoint-200/training_args.bin +3 -0
  39. checkpoint-40/README.md +202 -0
  40. checkpoint-40/adapter_config.json +35 -0
  41. checkpoint-40/adapter_model.safetensors +3 -0
  42. checkpoint-40/trainer_state.json +313 -0
  43. checkpoint-40/training_args.bin +3 -0
  44. checkpoint-60/README.md +202 -0
  45. checkpoint-60/adapter_config.json +35 -0
  46. checkpoint-60/adapter_model.safetensors +3 -0
  47. checkpoint-60/trainer_state.json +453 -0
  48. checkpoint-60/training_args.bin +3 -0
  49. checkpoint-80/README.md +202 -0
  50. checkpoint-80/adapter_config.json +35 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7e86b85bd4fd4ddabb7a34a8773f7f88b2b163326384dd3e5afc554e02a65ce
3
+ size 353562640
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb3e8a039de3dcbd93cc1fde0b17a0fa3892b213894cc1f8afa73e2f1e15841
3
+ size 353562640
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8533333333333334,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1,
713
+ "max_steps": 201,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 2,
716
+ "save_steps": 20,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": false
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 1.5667723770171228e+18,
730
+ "train_batch_size": 16,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-120/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f62cc54b756bcf0504e839249ec0607f04a20e6e21d0398cd30d7b6ebfe5ecdc
3
+ size 353562640
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.024,
5
+ "eval_steps": 500,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 13.563356715273038,
714
+ "learning_rate": 2e-06,
715
+ "loss": 0.6925,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 15.841269394844565,
721
+ "learning_rate": 2e-06,
722
+ "loss": 0.5944,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 14.854530419188935,
728
+ "learning_rate": 2e-06,
729
+ "loss": 0.6077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 12.791409733249388,
735
+ "learning_rate": 2e-06,
736
+ "loss": 0.543,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 14.362179553886866,
742
+ "learning_rate": 2e-06,
743
+ "loss": 0.5541,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 12.49157003340309,
749
+ "learning_rate": 2e-06,
750
+ "loss": 0.5295,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 13.208695431789076,
756
+ "learning_rate": 2e-06,
757
+ "loss": 0.4524,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 15.463267948258817,
763
+ "learning_rate": 2e-06,
764
+ "loss": 0.4159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 12.140164988871907,
770
+ "learning_rate": 2e-06,
771
+ "loss": 0.4014,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 11.905397079235023,
777
+ "learning_rate": 2e-06,
778
+ "loss": 0.3618,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 9.415569770415516,
784
+ "learning_rate": 2e-06,
785
+ "loss": 0.3057,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 8.352190984303535,
791
+ "learning_rate": 2e-06,
792
+ "loss": 0.3047,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 7.302691540894704,
798
+ "learning_rate": 2e-06,
799
+ "loss": 0.2524,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 5.9832616024269045,
805
+ "learning_rate": 2e-06,
806
+ "loss": 0.2518,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 4.358646236198701,
812
+ "learning_rate": 2e-06,
813
+ "loss": 0.2175,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 4.760656349386409,
819
+ "learning_rate": 2e-06,
820
+ "loss": 0.2447,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 3.7039196594291646,
826
+ "learning_rate": 2e-06,
827
+ "loss": 0.2033,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 3.8277716025893387,
833
+ "learning_rate": 2e-06,
834
+ "loss": 0.1974,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 5.741701523334058,
840
+ "learning_rate": 2e-06,
841
+ "loss": 0.2018,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 4.6412716809913706,
847
+ "learning_rate": 2e-06,
848
+ "loss": 0.1875,
849
+ "step": 120
850
+ }
851
+ ],
852
+ "logging_steps": 1,
853
+ "max_steps": 201,
854
+ "num_input_tokens_seen": 0,
855
+ "num_train_epochs": 2,
856
+ "save_steps": 20,
857
+ "stateful_callbacks": {
858
+ "TrainerControl": {
859
+ "args": {
860
+ "should_epoch_stop": false,
861
+ "should_evaluate": false,
862
+ "should_log": false,
863
+ "should_save": true,
864
+ "should_training_stop": false
865
+ },
866
+ "attributes": {}
867
+ }
868
+ },
869
+ "total_flos": 1.88307590710349e+18,
870
+ "train_batch_size": 16,
871
+ "trial_name": null,
872
+ "trial_params": null
873
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-140/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1549ac3d375c8ad862edbfb0d25438851905a1c51b310050806b24719ecdf8f
3
+ size 353562640
checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,1013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.1946666666666665,
5
+ "eval_steps": 500,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 13.563356715273038,
714
+ "learning_rate": 2e-06,
715
+ "loss": 0.6925,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 15.841269394844565,
721
+ "learning_rate": 2e-06,
722
+ "loss": 0.5944,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 14.854530419188935,
728
+ "learning_rate": 2e-06,
729
+ "loss": 0.6077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 12.791409733249388,
735
+ "learning_rate": 2e-06,
736
+ "loss": 0.543,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 14.362179553886866,
742
+ "learning_rate": 2e-06,
743
+ "loss": 0.5541,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 12.49157003340309,
749
+ "learning_rate": 2e-06,
750
+ "loss": 0.5295,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 13.208695431789076,
756
+ "learning_rate": 2e-06,
757
+ "loss": 0.4524,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 15.463267948258817,
763
+ "learning_rate": 2e-06,
764
+ "loss": 0.4159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 12.140164988871907,
770
+ "learning_rate": 2e-06,
771
+ "loss": 0.4014,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 11.905397079235023,
777
+ "learning_rate": 2e-06,
778
+ "loss": 0.3618,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 9.415569770415516,
784
+ "learning_rate": 2e-06,
785
+ "loss": 0.3057,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 8.352190984303535,
791
+ "learning_rate": 2e-06,
792
+ "loss": 0.3047,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 7.302691540894704,
798
+ "learning_rate": 2e-06,
799
+ "loss": 0.2524,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 5.9832616024269045,
805
+ "learning_rate": 2e-06,
806
+ "loss": 0.2518,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 4.358646236198701,
812
+ "learning_rate": 2e-06,
813
+ "loss": 0.2175,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 4.760656349386409,
819
+ "learning_rate": 2e-06,
820
+ "loss": 0.2447,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 3.7039196594291646,
826
+ "learning_rate": 2e-06,
827
+ "loss": 0.2033,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 3.8277716025893387,
833
+ "learning_rate": 2e-06,
834
+ "loss": 0.1974,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 5.741701523334058,
840
+ "learning_rate": 2e-06,
841
+ "loss": 0.2018,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 4.6412716809913706,
847
+ "learning_rate": 2e-06,
848
+ "loss": 0.1875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 6.425208050517247,
854
+ "learning_rate": 2e-06,
855
+ "loss": 0.2435,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 6.635511300825933,
861
+ "learning_rate": 2e-06,
862
+ "loss": 0.2273,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 23.988717288110806,
868
+ "learning_rate": 2e-06,
869
+ "loss": 0.1956,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 21.03839887669501,
875
+ "learning_rate": 2e-06,
876
+ "loss": 0.2077,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 15.128721173506475,
882
+ "learning_rate": 2e-06,
883
+ "loss": 0.1945,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 8.391874252322712,
889
+ "learning_rate": 2e-06,
890
+ "loss": 0.1946,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 10.540931846931757,
896
+ "learning_rate": 2e-06,
897
+ "loss": 0.1618,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 8.206233599981232,
903
+ "learning_rate": 2e-06,
904
+ "loss": 0.1827,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 6.272810243100556,
910
+ "learning_rate": 2e-06,
911
+ "loss": 0.1814,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 9.002629637670674,
917
+ "learning_rate": 2e-06,
918
+ "loss": 0.1972,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 8.389486509120731,
924
+ "learning_rate": 2e-06,
925
+ "loss": 0.1893,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 2.376071688138911,
931
+ "learning_rate": 2e-06,
932
+ "loss": 0.1823,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 6.541491787591643,
938
+ "learning_rate": 2e-06,
939
+ "loss": 0.1509,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 10.002331652608282,
945
+ "learning_rate": 2e-06,
946
+ "loss": 0.1558,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 12.229245412509105,
952
+ "learning_rate": 2e-06,
953
+ "loss": 0.1466,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 3.5907402372003747,
959
+ "learning_rate": 2e-06,
960
+ "loss": 0.169,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 3.9213952002791634,
966
+ "learning_rate": 2e-06,
967
+ "loss": 0.1652,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 2.624221504666517,
973
+ "learning_rate": 2e-06,
974
+ "loss": 0.1739,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 4.260287456216391,
980
+ "learning_rate": 2e-06,
981
+ "loss": 0.1383,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 4.1658524035506765,
987
+ "learning_rate": 2e-06,
988
+ "loss": 0.1483,
989
+ "step": 140
990
+ }
991
+ ],
992
+ "logging_steps": 1,
993
+ "max_steps": 201,
994
+ "num_input_tokens_seen": 0,
995
+ "num_train_epochs": 2,
996
+ "save_steps": 20,
997
+ "stateful_callbacks": {
998
+ "TrainerControl": {
999
+ "args": {
1000
+ "should_epoch_stop": false,
1001
+ "should_evaluate": false,
1002
+ "should_log": false,
1003
+ "should_save": true,
1004
+ "should_training_stop": false
1005
+ },
1006
+ "attributes": {}
1007
+ }
1008
+ },
1009
+ "total_flos": 2.1954078401290568e+18,
1010
+ "train_batch_size": 16,
1011
+ "trial_name": null,
1012
+ "trial_params": null
1013
+ }
checkpoint-140/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f009596ec48705041d940f72de8bd1f8acd5808375724a5b2f50ff173f7ceae2
3
+ size 353562640
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,1153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.3653333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 13.563356715273038,
714
+ "learning_rate": 2e-06,
715
+ "loss": 0.6925,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 15.841269394844565,
721
+ "learning_rate": 2e-06,
722
+ "loss": 0.5944,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 14.854530419188935,
728
+ "learning_rate": 2e-06,
729
+ "loss": 0.6077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 12.791409733249388,
735
+ "learning_rate": 2e-06,
736
+ "loss": 0.543,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 14.362179553886866,
742
+ "learning_rate": 2e-06,
743
+ "loss": 0.5541,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 12.49157003340309,
749
+ "learning_rate": 2e-06,
750
+ "loss": 0.5295,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 13.208695431789076,
756
+ "learning_rate": 2e-06,
757
+ "loss": 0.4524,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 15.463267948258817,
763
+ "learning_rate": 2e-06,
764
+ "loss": 0.4159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 12.140164988871907,
770
+ "learning_rate": 2e-06,
771
+ "loss": 0.4014,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 11.905397079235023,
777
+ "learning_rate": 2e-06,
778
+ "loss": 0.3618,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 9.415569770415516,
784
+ "learning_rate": 2e-06,
785
+ "loss": 0.3057,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 8.352190984303535,
791
+ "learning_rate": 2e-06,
792
+ "loss": 0.3047,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 7.302691540894704,
798
+ "learning_rate": 2e-06,
799
+ "loss": 0.2524,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 5.9832616024269045,
805
+ "learning_rate": 2e-06,
806
+ "loss": 0.2518,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 4.358646236198701,
812
+ "learning_rate": 2e-06,
813
+ "loss": 0.2175,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 4.760656349386409,
819
+ "learning_rate": 2e-06,
820
+ "loss": 0.2447,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 3.7039196594291646,
826
+ "learning_rate": 2e-06,
827
+ "loss": 0.2033,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 3.8277716025893387,
833
+ "learning_rate": 2e-06,
834
+ "loss": 0.1974,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 5.741701523334058,
840
+ "learning_rate": 2e-06,
841
+ "loss": 0.2018,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 4.6412716809913706,
847
+ "learning_rate": 2e-06,
848
+ "loss": 0.1875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 6.425208050517247,
854
+ "learning_rate": 2e-06,
855
+ "loss": 0.2435,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 6.635511300825933,
861
+ "learning_rate": 2e-06,
862
+ "loss": 0.2273,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 23.988717288110806,
868
+ "learning_rate": 2e-06,
869
+ "loss": 0.1956,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 21.03839887669501,
875
+ "learning_rate": 2e-06,
876
+ "loss": 0.2077,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 15.128721173506475,
882
+ "learning_rate": 2e-06,
883
+ "loss": 0.1945,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 8.391874252322712,
889
+ "learning_rate": 2e-06,
890
+ "loss": 0.1946,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 10.540931846931757,
896
+ "learning_rate": 2e-06,
897
+ "loss": 0.1618,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 8.206233599981232,
903
+ "learning_rate": 2e-06,
904
+ "loss": 0.1827,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 6.272810243100556,
910
+ "learning_rate": 2e-06,
911
+ "loss": 0.1814,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 9.002629637670674,
917
+ "learning_rate": 2e-06,
918
+ "loss": 0.1972,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 8.389486509120731,
924
+ "learning_rate": 2e-06,
925
+ "loss": 0.1893,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 2.376071688138911,
931
+ "learning_rate": 2e-06,
932
+ "loss": 0.1823,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 6.541491787591643,
938
+ "learning_rate": 2e-06,
939
+ "loss": 0.1509,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 10.002331652608282,
945
+ "learning_rate": 2e-06,
946
+ "loss": 0.1558,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 12.229245412509105,
952
+ "learning_rate": 2e-06,
953
+ "loss": 0.1466,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 3.5907402372003747,
959
+ "learning_rate": 2e-06,
960
+ "loss": 0.169,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 3.9213952002791634,
966
+ "learning_rate": 2e-06,
967
+ "loss": 0.1652,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 2.624221504666517,
973
+ "learning_rate": 2e-06,
974
+ "loss": 0.1739,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 4.260287456216391,
980
+ "learning_rate": 2e-06,
981
+ "loss": 0.1383,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 4.1658524035506765,
987
+ "learning_rate": 2e-06,
988
+ "loss": 0.1483,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 2.6622973548531275,
994
+ "learning_rate": 2e-06,
995
+ "loss": 0.1137,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 1.8268136431856756,
1001
+ "learning_rate": 2e-06,
1002
+ "loss": 0.1522,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 2.159227057549406,
1008
+ "learning_rate": 2e-06,
1009
+ "loss": 0.1566,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 5.621018929477287,
1015
+ "learning_rate": 2e-06,
1016
+ "loss": 0.1571,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 3.2320886169314345,
1022
+ "learning_rate": 2e-06,
1023
+ "loss": 0.1608,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 3.480936860223943,
1029
+ "learning_rate": 2e-06,
1030
+ "loss": 0.1551,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 2.2690959782213107,
1036
+ "learning_rate": 2e-06,
1037
+ "loss": 0.1355,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 2.3703700662762834,
1043
+ "learning_rate": 2e-06,
1044
+ "loss": 0.1327,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 1.2745731181425082,
1050
+ "learning_rate": 2e-06,
1051
+ "loss": 0.1063,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 1.310936814354591,
1057
+ "learning_rate": 2e-06,
1058
+ "loss": 0.1179,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 1.4086038175488638,
1064
+ "learning_rate": 2e-06,
1065
+ "loss": 0.1074,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 2.152004651394323,
1071
+ "learning_rate": 2e-06,
1072
+ "loss": 0.134,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 2.588001729631509,
1078
+ "learning_rate": 2e-06,
1079
+ "loss": 0.1122,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 1.389336792990672,
1085
+ "learning_rate": 2e-06,
1086
+ "loss": 0.1635,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 1.8320820034780816,
1092
+ "learning_rate": 2e-06,
1093
+ "loss": 0.1361,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 3.370202929219345,
1099
+ "learning_rate": 2e-06,
1100
+ "loss": 0.1004,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 3.0170886979206637,
1106
+ "learning_rate": 2e-06,
1107
+ "loss": 0.0933,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 3.8244363257261442,
1113
+ "learning_rate": 2e-06,
1114
+ "loss": 0.0987,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 1.4117181217464534,
1120
+ "learning_rate": 2e-06,
1121
+ "loss": 0.1031,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 2.486160979904412,
1127
+ "learning_rate": 2e-06,
1128
+ "loss": 0.1053,
1129
+ "step": 160
1130
+ }
1131
+ ],
1132
+ "logging_steps": 1,
1133
+ "max_steps": 201,
1134
+ "num_input_tokens_seen": 0,
1135
+ "num_train_epochs": 2,
1136
+ "save_steps": 20,
1137
+ "stateful_callbacks": {
1138
+ "TrainerControl": {
1139
+ "args": {
1140
+ "should_epoch_stop": false,
1141
+ "should_evaluate": false,
1142
+ "should_log": false,
1143
+ "should_save": true,
1144
+ "should_training_stop": false
1145
+ },
1146
+ "attributes": {}
1147
+ }
1148
+ },
1149
+ "total_flos": 2.512320058349322e+18,
1150
+ "train_batch_size": 16,
1151
+ "trial_name": null,
1152
+ "trial_params": null
1153
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-180/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-180/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e8c47ed0cdf5a11afe030e38193bd2bc8c67106c5d2489bccfa1e24cea6def4
3
+ size 353562640
checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,1293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.536,
5
+ "eval_steps": 500,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 13.563356715273038,
714
+ "learning_rate": 2e-06,
715
+ "loss": 0.6925,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 15.841269394844565,
721
+ "learning_rate": 2e-06,
722
+ "loss": 0.5944,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 14.854530419188935,
728
+ "learning_rate": 2e-06,
729
+ "loss": 0.6077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 12.791409733249388,
735
+ "learning_rate": 2e-06,
736
+ "loss": 0.543,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 14.362179553886866,
742
+ "learning_rate": 2e-06,
743
+ "loss": 0.5541,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 12.49157003340309,
749
+ "learning_rate": 2e-06,
750
+ "loss": 0.5295,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 13.208695431789076,
756
+ "learning_rate": 2e-06,
757
+ "loss": 0.4524,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 15.463267948258817,
763
+ "learning_rate": 2e-06,
764
+ "loss": 0.4159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 12.140164988871907,
770
+ "learning_rate": 2e-06,
771
+ "loss": 0.4014,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 11.905397079235023,
777
+ "learning_rate": 2e-06,
778
+ "loss": 0.3618,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 9.415569770415516,
784
+ "learning_rate": 2e-06,
785
+ "loss": 0.3057,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 8.352190984303535,
791
+ "learning_rate": 2e-06,
792
+ "loss": 0.3047,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 7.302691540894704,
798
+ "learning_rate": 2e-06,
799
+ "loss": 0.2524,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 5.9832616024269045,
805
+ "learning_rate": 2e-06,
806
+ "loss": 0.2518,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 4.358646236198701,
812
+ "learning_rate": 2e-06,
813
+ "loss": 0.2175,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 4.760656349386409,
819
+ "learning_rate": 2e-06,
820
+ "loss": 0.2447,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 3.7039196594291646,
826
+ "learning_rate": 2e-06,
827
+ "loss": 0.2033,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 3.8277716025893387,
833
+ "learning_rate": 2e-06,
834
+ "loss": 0.1974,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 5.741701523334058,
840
+ "learning_rate": 2e-06,
841
+ "loss": 0.2018,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 4.6412716809913706,
847
+ "learning_rate": 2e-06,
848
+ "loss": 0.1875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 6.425208050517247,
854
+ "learning_rate": 2e-06,
855
+ "loss": 0.2435,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 6.635511300825933,
861
+ "learning_rate": 2e-06,
862
+ "loss": 0.2273,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 23.988717288110806,
868
+ "learning_rate": 2e-06,
869
+ "loss": 0.1956,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 21.03839887669501,
875
+ "learning_rate": 2e-06,
876
+ "loss": 0.2077,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 15.128721173506475,
882
+ "learning_rate": 2e-06,
883
+ "loss": 0.1945,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 8.391874252322712,
889
+ "learning_rate": 2e-06,
890
+ "loss": 0.1946,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 10.540931846931757,
896
+ "learning_rate": 2e-06,
897
+ "loss": 0.1618,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 8.206233599981232,
903
+ "learning_rate": 2e-06,
904
+ "loss": 0.1827,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 6.272810243100556,
910
+ "learning_rate": 2e-06,
911
+ "loss": 0.1814,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 9.002629637670674,
917
+ "learning_rate": 2e-06,
918
+ "loss": 0.1972,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 8.389486509120731,
924
+ "learning_rate": 2e-06,
925
+ "loss": 0.1893,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 2.376071688138911,
931
+ "learning_rate": 2e-06,
932
+ "loss": 0.1823,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 6.541491787591643,
938
+ "learning_rate": 2e-06,
939
+ "loss": 0.1509,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 10.002331652608282,
945
+ "learning_rate": 2e-06,
946
+ "loss": 0.1558,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 12.229245412509105,
952
+ "learning_rate": 2e-06,
953
+ "loss": 0.1466,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 3.5907402372003747,
959
+ "learning_rate": 2e-06,
960
+ "loss": 0.169,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 3.9213952002791634,
966
+ "learning_rate": 2e-06,
967
+ "loss": 0.1652,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 2.624221504666517,
973
+ "learning_rate": 2e-06,
974
+ "loss": 0.1739,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 4.260287456216391,
980
+ "learning_rate": 2e-06,
981
+ "loss": 0.1383,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 4.1658524035506765,
987
+ "learning_rate": 2e-06,
988
+ "loss": 0.1483,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 2.6622973548531275,
994
+ "learning_rate": 2e-06,
995
+ "loss": 0.1137,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 1.8268136431856756,
1001
+ "learning_rate": 2e-06,
1002
+ "loss": 0.1522,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 2.159227057549406,
1008
+ "learning_rate": 2e-06,
1009
+ "loss": 0.1566,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 5.621018929477287,
1015
+ "learning_rate": 2e-06,
1016
+ "loss": 0.1571,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 3.2320886169314345,
1022
+ "learning_rate": 2e-06,
1023
+ "loss": 0.1608,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 3.480936860223943,
1029
+ "learning_rate": 2e-06,
1030
+ "loss": 0.1551,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 2.2690959782213107,
1036
+ "learning_rate": 2e-06,
1037
+ "loss": 0.1355,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 2.3703700662762834,
1043
+ "learning_rate": 2e-06,
1044
+ "loss": 0.1327,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 1.2745731181425082,
1050
+ "learning_rate": 2e-06,
1051
+ "loss": 0.1063,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 1.310936814354591,
1057
+ "learning_rate": 2e-06,
1058
+ "loss": 0.1179,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 1.4086038175488638,
1064
+ "learning_rate": 2e-06,
1065
+ "loss": 0.1074,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 2.152004651394323,
1071
+ "learning_rate": 2e-06,
1072
+ "loss": 0.134,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 2.588001729631509,
1078
+ "learning_rate": 2e-06,
1079
+ "loss": 0.1122,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 1.389336792990672,
1085
+ "learning_rate": 2e-06,
1086
+ "loss": 0.1635,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 1.8320820034780816,
1092
+ "learning_rate": 2e-06,
1093
+ "loss": 0.1361,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 3.370202929219345,
1099
+ "learning_rate": 2e-06,
1100
+ "loss": 0.1004,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 3.0170886979206637,
1106
+ "learning_rate": 2e-06,
1107
+ "loss": 0.0933,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 3.8244363257261442,
1113
+ "learning_rate": 2e-06,
1114
+ "loss": 0.0987,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 1.4117181217464534,
1120
+ "learning_rate": 2e-06,
1121
+ "loss": 0.1031,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 2.486160979904412,
1127
+ "learning_rate": 2e-06,
1128
+ "loss": 0.1053,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 1.8895272464973183,
1134
+ "learning_rate": 2e-06,
1135
+ "loss": 0.0957,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 2.39025307548428,
1141
+ "learning_rate": 2e-06,
1142
+ "loss": 0.1261,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 1.1201850850579902,
1148
+ "learning_rate": 2e-06,
1149
+ "loss": 0.1155,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 2.9250890017279447,
1155
+ "learning_rate": 2e-06,
1156
+ "loss": 0.1118,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 1.0675125252661144,
1162
+ "learning_rate": 2e-06,
1163
+ "loss": 0.1114,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 1.5729321695873222,
1169
+ "learning_rate": 2e-06,
1170
+ "loss": 0.0863,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.4475031725808317,
1176
+ "learning_rate": 2e-06,
1177
+ "loss": 0.1012,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.8158056431812921,
1183
+ "learning_rate": 2e-06,
1184
+ "loss": 0.1051,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.7485981396518739,
1190
+ "learning_rate": 2e-06,
1191
+ "loss": 0.1008,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.7816796075268913,
1197
+ "learning_rate": 2e-06,
1198
+ "loss": 0.1111,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 1.1242243424012062,
1204
+ "learning_rate": 2e-06,
1205
+ "loss": 0.099,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.47101002102515854,
1211
+ "learning_rate": 2e-06,
1212
+ "loss": 0.1022,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 1.2793247365465568,
1218
+ "learning_rate": 2e-06,
1219
+ "loss": 0.0574,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.8702420574287141,
1225
+ "learning_rate": 2e-06,
1226
+ "loss": 0.0894,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.28382422642192057,
1232
+ "learning_rate": 2e-06,
1233
+ "loss": 0.092,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.39455360878012,
1239
+ "learning_rate": 2e-06,
1240
+ "loss": 0.1031,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.5331804319590009,
1246
+ "learning_rate": 2e-06,
1247
+ "loss": 0.0851,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.4073631368632165,
1253
+ "learning_rate": 2e-06,
1254
+ "loss": 0.0813,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.8514734974117434,
1260
+ "learning_rate": 2e-06,
1261
+ "loss": 0.1076,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.28586907323674177,
1267
+ "learning_rate": 2e-06,
1268
+ "loss": 0.1013,
1269
+ "step": 180
1270
+ }
1271
+ ],
1272
+ "logging_steps": 1,
1273
+ "max_steps": 201,
1274
+ "num_input_tokens_seen": 0,
1275
+ "num_train_epochs": 2,
1276
+ "save_steps": 20,
1277
+ "stateful_callbacks": {
1278
+ "TrainerControl": {
1279
+ "args": {
1280
+ "should_epoch_stop": false,
1281
+ "should_evaluate": false,
1282
+ "should_log": false,
1283
+ "should_save": true,
1284
+ "should_training_stop": false
1285
+ },
1286
+ "attributes": {}
1287
+ }
1288
+ },
1289
+ "total_flos": 2.834094922578002e+18,
1290
+ "train_batch_size": 16,
1291
+ "trial_name": null,
1292
+ "trial_params": null
1293
+ }
checkpoint-180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-20/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-20/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7545c313618ae1ac3a8e20bd631625e89b28abbae41f55fa5a9d60351f9b66a
3
+ size 353562640
checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.17066666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ }
151
+ ],
152
+ "logging_steps": 1,
153
+ "max_steps": 201,
154
+ "num_input_tokens_seen": 0,
155
+ "num_train_epochs": 2,
156
+ "save_steps": 20,
157
+ "stateful_callbacks": {
158
+ "TrainerControl": {
159
+ "args": {
160
+ "should_epoch_stop": false,
161
+ "should_evaluate": false,
162
+ "should_log": false,
163
+ "should_save": true,
164
+ "should_training_stop": false
165
+ },
166
+ "attributes": {}
167
+ }
168
+ },
169
+ "total_flos": 3.227827051482317e+17,
170
+ "train_batch_size": 16,
171
+ "trial_name": null,
172
+ "trial_params": null
173
+ }
checkpoint-20/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98fd618514a8c4d6ab5d51244da318835f6c4a51a260f3fba29ddb4c34dc3482
3
+ size 353562640
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.7066666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 14.084920820041408,
434
+ "learning_rate": 1.7853298350107666e-06,
435
+ "loss": 1.9893,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 14.495022149491797,
441
+ "learning_rate": 1.7923916894982536e-06,
442
+ "loss": 1.9802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 15.49634090425538,
448
+ "learning_rate": 1.7993405494535814e-06,
449
+ "loss": 1.8676,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 16.434037108501176,
455
+ "learning_rate": 1.8061799739838866e-06,
456
+ "loss": 1.9443,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 17.17498656692979,
462
+ "learning_rate": 1.8129133566428552e-06,
463
+ "loss": 1.9935,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 18.914832117241684,
469
+ "learning_rate": 1.8195439355418683e-06,
470
+ "loss": 1.8664,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 18.78089008208585,
476
+ "learning_rate": 1.826074802700826e-06,
477
+ "loss": 1.7597,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 18.908370877942197,
483
+ "learning_rate": 1.8325089127062361e-06,
484
+ "loss": 1.5813,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 22.558658346768986,
490
+ "learning_rate": 1.8388490907372552e-06,
491
+ "loss": 1.598,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 25.269744707032434,
497
+ "learning_rate": 1.8450980400142566e-06,
498
+ "loss": 1.642,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 29.404854136304497,
504
+ "learning_rate": 1.851258348719075e-06,
505
+ "loss": 1.5158,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 28.123079361503738,
511
+ "learning_rate": 1.857332496431268e-06,
512
+ "loss": 1.316,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 33.051693280540675,
518
+ "learning_rate": 1.8633228601204554e-06,
519
+ "loss": 1.329,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 34.63716787552787,
525
+ "learning_rate": 1.8692317197309759e-06,
526
+ "loss": 1.2845,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 39.96989376051133,
532
+ "learning_rate": 1.8750612633916996e-06,
533
+ "loss": 1.3346,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 33.72574540792705,
539
+ "learning_rate": 1.880813592280791e-06,
540
+ "loss": 1.1742,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 26.56407853765471,
546
+ "learning_rate": 1.8864907251724815e-06,
547
+ "loss": 1.0382,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 17.783020253212666,
553
+ "learning_rate": 1.89209460269048e-06,
554
+ "loss": 1.0619,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 12.089890448213527,
560
+ "learning_rate": 1.897627091290441e-06,
561
+ "loss": 1.0258,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 20.871344149138956,
567
+ "learning_rate": 1.903089986991943e-06,
568
+ "loss": 1.1339,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 33.37131665653342,
574
+ "learning_rate": 1.9084850188786494e-06,
575
+ "loss": 1.1282,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 10.57984322098236,
581
+ "learning_rate": 1.9138138523837166e-06,
582
+ "loss": 0.9893,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 85.446420757762,
588
+ "learning_rate": 1.919078092376074e-06,
589
+ "loss": 0.9865,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 107.5638346082223,
595
+ "learning_rate": 1.9242792860618812e-06,
596
+ "loss": 1.027,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 101.08530683443811,
602
+ "learning_rate": 1.9294189257142923e-06,
603
+ "loss": 1.0515,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 49.462738500814936,
609
+ "learning_rate": 1.934498451243567e-06,
610
+ "loss": 1.0222,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 18.272590764371305,
616
+ "learning_rate": 1.939519252618618e-06,
617
+ "loss": 0.9933,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 25.55179138472976,
623
+ "learning_rate": 1.9444826721501684e-06,
624
+ "loss": 0.8641,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 25.348564922936834,
630
+ "learning_rate": 1.949390006644912e-06,
631
+ "loss": 0.9519,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 11.011938725520993,
637
+ "learning_rate": 1.9542425094393244e-06,
638
+ "loss": 0.8895,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 19.925323690467913,
644
+ "learning_rate": 1.9590413923210933e-06,
645
+ "loss": 0.8825,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 24.37047609260986,
651
+ "learning_rate": 1.963787827345555e-06,
652
+ "loss": 0.8658,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 22.06573030419392,
658
+ "learning_rate": 1.968482948553935e-06,
659
+ "loss": 0.9117,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 12.409310297339818,
665
+ "learning_rate": 1.9731278535996984e-06,
666
+ "loss": 0.8574,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 16.67272340712659,
672
+ "learning_rate": 1.9777236052888472e-06,
673
+ "loss": 0.7485,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 18.424007742054844,
679
+ "learning_rate": 1.982271233039568e-06,
680
+ "loss": 0.8916,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 13.372669052507455,
686
+ "learning_rate": 1.9867717342662444e-06,
687
+ "loss": 0.823,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 20.67631223635667,
693
+ "learning_rate": 1.9912260756924947e-06,
694
+ "loss": 0.8447,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 22.08691438633688,
700
+ "learning_rate": 1.9956351945975495e-06,
701
+ "loss": 0.7767,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 12.061092630617507,
707
+ "learning_rate": 1.9999999999999995e-06,
708
+ "loss": 0.7029,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 13.563356715273038,
714
+ "learning_rate": 2e-06,
715
+ "loss": 0.6925,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 15.841269394844565,
721
+ "learning_rate": 2e-06,
722
+ "loss": 0.5944,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 14.854530419188935,
728
+ "learning_rate": 2e-06,
729
+ "loss": 0.6077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 12.791409733249388,
735
+ "learning_rate": 2e-06,
736
+ "loss": 0.543,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 14.362179553886866,
742
+ "learning_rate": 2e-06,
743
+ "loss": 0.5541,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 12.49157003340309,
749
+ "learning_rate": 2e-06,
750
+ "loss": 0.5295,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 13.208695431789076,
756
+ "learning_rate": 2e-06,
757
+ "loss": 0.4524,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 15.463267948258817,
763
+ "learning_rate": 2e-06,
764
+ "loss": 0.4159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 12.140164988871907,
770
+ "learning_rate": 2e-06,
771
+ "loss": 0.4014,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 11.905397079235023,
777
+ "learning_rate": 2e-06,
778
+ "loss": 0.3618,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 9.415569770415516,
784
+ "learning_rate": 2e-06,
785
+ "loss": 0.3057,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 8.352190984303535,
791
+ "learning_rate": 2e-06,
792
+ "loss": 0.3047,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 7.302691540894704,
798
+ "learning_rate": 2e-06,
799
+ "loss": 0.2524,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 5.9832616024269045,
805
+ "learning_rate": 2e-06,
806
+ "loss": 0.2518,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 4.358646236198701,
812
+ "learning_rate": 2e-06,
813
+ "loss": 0.2175,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 4.760656349386409,
819
+ "learning_rate": 2e-06,
820
+ "loss": 0.2447,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 3.7039196594291646,
826
+ "learning_rate": 2e-06,
827
+ "loss": 0.2033,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 3.8277716025893387,
833
+ "learning_rate": 2e-06,
834
+ "loss": 0.1974,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 5.741701523334058,
840
+ "learning_rate": 2e-06,
841
+ "loss": 0.2018,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 4.6412716809913706,
847
+ "learning_rate": 2e-06,
848
+ "loss": 0.1875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 6.425208050517247,
854
+ "learning_rate": 2e-06,
855
+ "loss": 0.2435,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 6.635511300825933,
861
+ "learning_rate": 2e-06,
862
+ "loss": 0.2273,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 23.988717288110806,
868
+ "learning_rate": 2e-06,
869
+ "loss": 0.1956,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 21.03839887669501,
875
+ "learning_rate": 2e-06,
876
+ "loss": 0.2077,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 15.128721173506475,
882
+ "learning_rate": 2e-06,
883
+ "loss": 0.1945,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 8.391874252322712,
889
+ "learning_rate": 2e-06,
890
+ "loss": 0.1946,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 10.540931846931757,
896
+ "learning_rate": 2e-06,
897
+ "loss": 0.1618,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 8.206233599981232,
903
+ "learning_rate": 2e-06,
904
+ "loss": 0.1827,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 6.272810243100556,
910
+ "learning_rate": 2e-06,
911
+ "loss": 0.1814,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 9.002629637670674,
917
+ "learning_rate": 2e-06,
918
+ "loss": 0.1972,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 8.389486509120731,
924
+ "learning_rate": 2e-06,
925
+ "loss": 0.1893,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 2.376071688138911,
931
+ "learning_rate": 2e-06,
932
+ "loss": 0.1823,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 6.541491787591643,
938
+ "learning_rate": 2e-06,
939
+ "loss": 0.1509,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 10.002331652608282,
945
+ "learning_rate": 2e-06,
946
+ "loss": 0.1558,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 12.229245412509105,
952
+ "learning_rate": 2e-06,
953
+ "loss": 0.1466,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 3.5907402372003747,
959
+ "learning_rate": 2e-06,
960
+ "loss": 0.169,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 3.9213952002791634,
966
+ "learning_rate": 2e-06,
967
+ "loss": 0.1652,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 2.624221504666517,
973
+ "learning_rate": 2e-06,
974
+ "loss": 0.1739,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 4.260287456216391,
980
+ "learning_rate": 2e-06,
981
+ "loss": 0.1383,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 4.1658524035506765,
987
+ "learning_rate": 2e-06,
988
+ "loss": 0.1483,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 2.6622973548531275,
994
+ "learning_rate": 2e-06,
995
+ "loss": 0.1137,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 1.8268136431856756,
1001
+ "learning_rate": 2e-06,
1002
+ "loss": 0.1522,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 2.159227057549406,
1008
+ "learning_rate": 2e-06,
1009
+ "loss": 0.1566,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 5.621018929477287,
1015
+ "learning_rate": 2e-06,
1016
+ "loss": 0.1571,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 3.2320886169314345,
1022
+ "learning_rate": 2e-06,
1023
+ "loss": 0.1608,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 3.480936860223943,
1029
+ "learning_rate": 2e-06,
1030
+ "loss": 0.1551,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 2.2690959782213107,
1036
+ "learning_rate": 2e-06,
1037
+ "loss": 0.1355,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 2.3703700662762834,
1043
+ "learning_rate": 2e-06,
1044
+ "loss": 0.1327,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 1.2745731181425082,
1050
+ "learning_rate": 2e-06,
1051
+ "loss": 0.1063,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 1.310936814354591,
1057
+ "learning_rate": 2e-06,
1058
+ "loss": 0.1179,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 1.4086038175488638,
1064
+ "learning_rate": 2e-06,
1065
+ "loss": 0.1074,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 2.152004651394323,
1071
+ "learning_rate": 2e-06,
1072
+ "loss": 0.134,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 2.588001729631509,
1078
+ "learning_rate": 2e-06,
1079
+ "loss": 0.1122,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 1.389336792990672,
1085
+ "learning_rate": 2e-06,
1086
+ "loss": 0.1635,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 1.8320820034780816,
1092
+ "learning_rate": 2e-06,
1093
+ "loss": 0.1361,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 3.370202929219345,
1099
+ "learning_rate": 2e-06,
1100
+ "loss": 0.1004,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 3.0170886979206637,
1106
+ "learning_rate": 2e-06,
1107
+ "loss": 0.0933,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 3.8244363257261442,
1113
+ "learning_rate": 2e-06,
1114
+ "loss": 0.0987,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 1.4117181217464534,
1120
+ "learning_rate": 2e-06,
1121
+ "loss": 0.1031,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 2.486160979904412,
1127
+ "learning_rate": 2e-06,
1128
+ "loss": 0.1053,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 1.8895272464973183,
1134
+ "learning_rate": 2e-06,
1135
+ "loss": 0.0957,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 2.39025307548428,
1141
+ "learning_rate": 2e-06,
1142
+ "loss": 0.1261,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 1.1201850850579902,
1148
+ "learning_rate": 2e-06,
1149
+ "loss": 0.1155,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 2.9250890017279447,
1155
+ "learning_rate": 2e-06,
1156
+ "loss": 0.1118,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 1.0675125252661144,
1162
+ "learning_rate": 2e-06,
1163
+ "loss": 0.1114,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 1.5729321695873222,
1169
+ "learning_rate": 2e-06,
1170
+ "loss": 0.0863,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.4475031725808317,
1176
+ "learning_rate": 2e-06,
1177
+ "loss": 0.1012,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.8158056431812921,
1183
+ "learning_rate": 2e-06,
1184
+ "loss": 0.1051,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.7485981396518739,
1190
+ "learning_rate": 2e-06,
1191
+ "loss": 0.1008,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.7816796075268913,
1197
+ "learning_rate": 2e-06,
1198
+ "loss": 0.1111,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 1.1242243424012062,
1204
+ "learning_rate": 2e-06,
1205
+ "loss": 0.099,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.47101002102515854,
1211
+ "learning_rate": 2e-06,
1212
+ "loss": 0.1022,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 1.2793247365465568,
1218
+ "learning_rate": 2e-06,
1219
+ "loss": 0.0574,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.8702420574287141,
1225
+ "learning_rate": 2e-06,
1226
+ "loss": 0.0894,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.28382422642192057,
1232
+ "learning_rate": 2e-06,
1233
+ "loss": 0.092,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.39455360878012,
1239
+ "learning_rate": 2e-06,
1240
+ "loss": 0.1031,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.5331804319590009,
1246
+ "learning_rate": 2e-06,
1247
+ "loss": 0.0851,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.4073631368632165,
1253
+ "learning_rate": 2e-06,
1254
+ "loss": 0.0813,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.8514734974117434,
1260
+ "learning_rate": 2e-06,
1261
+ "loss": 0.1076,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.28586907323674177,
1267
+ "learning_rate": 2e-06,
1268
+ "loss": 0.1013,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.3787621686258494,
1274
+ "learning_rate": 2e-06,
1275
+ "loss": 0.0981,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.3489634658189311,
1281
+ "learning_rate": 2e-06,
1282
+ "loss": 0.1008,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.6467831892014061,
1288
+ "learning_rate": 2e-06,
1289
+ "loss": 0.081,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.22665718993777426,
1295
+ "learning_rate": 2e-06,
1296
+ "loss": 0.0711,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.25143762830104677,
1302
+ "learning_rate": 2e-06,
1303
+ "loss": 0.08,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.23617567709822399,
1309
+ "learning_rate": 2e-06,
1310
+ "loss": 0.095,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.24719932263840536,
1316
+ "learning_rate": 2e-06,
1317
+ "loss": 0.0878,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.2871553942071573,
1323
+ "learning_rate": 2e-06,
1324
+ "loss": 0.0801,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.4558493501137857,
1330
+ "learning_rate": 2e-06,
1331
+ "loss": 0.0778,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.2922446903826556,
1337
+ "learning_rate": 2e-06,
1338
+ "loss": 0.0791,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.1778189594087765,
1344
+ "learning_rate": 2e-06,
1345
+ "loss": 0.0798,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.3027405276750027,
1351
+ "learning_rate": 2e-06,
1352
+ "loss": 0.0865,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.3158116699810283,
1358
+ "learning_rate": 2e-06,
1359
+ "loss": 0.085,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.2055051898190747,
1365
+ "learning_rate": 2e-06,
1366
+ "loss": 0.1027,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.3078971678574147,
1372
+ "learning_rate": 2e-06,
1373
+ "loss": 0.0908,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.37910835539103654,
1379
+ "learning_rate": 2e-06,
1380
+ "loss": 0.1194,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.3369019547650329,
1386
+ "learning_rate": 2e-06,
1387
+ "loss": 0.1236,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.18860600034279623,
1393
+ "learning_rate": 2e-06,
1394
+ "loss": 0.1094,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.16216346688530353,
1400
+ "learning_rate": 2e-06,
1401
+ "loss": 0.0906,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.19192382355970816,
1407
+ "learning_rate": 2e-06,
1408
+ "loss": 0.0743,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 201,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 2,
1416
+ "save_steps": 20,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": false
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 3.157253422332248e+18,
1430
+ "train_batch_size": 16,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-40/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-40/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-40/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2630177caf4e3e1fdfaba74efbc5bda93efb8ad362a3eb2c8289c13e5b1d1c68
3
+ size 353562640
checkpoint-40/trainer_state.json ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3413333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ }
291
+ ],
292
+ "logging_steps": 1,
293
+ "max_steps": 201,
294
+ "num_input_tokens_seen": 0,
295
+ "num_train_epochs": 2,
296
+ "save_steps": 20,
297
+ "stateful_callbacks": {
298
+ "TrainerControl": {
299
+ "args": {
300
+ "should_epoch_stop": false,
301
+ "should_evaluate": false,
302
+ "should_log": false,
303
+ "should_save": true,
304
+ "should_training_stop": false
305
+ },
306
+ "attributes": {}
307
+ }
308
+ },
309
+ "total_flos": 6.308393837039452e+17,
310
+ "train_batch_size": 16,
311
+ "trial_name": null,
312
+ "trial_params": null
313
+ }
checkpoint-40/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-60/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-60/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-60/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e342aefe4362bf670079b4ac87a64d8876cd43627e058bdfbea4b0afe598ad5e
3
+ size 353562640
checkpoint-60/trainer_state.json ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.512,
5
+ "eval_steps": 500,
6
+ "global_step": 60,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 250.03163081148352,
14
+ "learning_rate": 0.0,
15
+ "loss": 9.7972,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 248.51781720582932,
21
+ "learning_rate": 3.010299956639811e-07,
22
+ "loss": 9.6851,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 242.7004728698525,
28
+ "learning_rate": 4.771212547196623e-07,
29
+ "loss": 9.7332,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 244.87426620614914,
35
+ "learning_rate": 6.020599913279622e-07,
36
+ "loss": 9.6243,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 243.51473421797294,
42
+ "learning_rate": 6.989700043360186e-07,
43
+ "loss": 9.6145,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 237.0939456470789,
49
+ "learning_rate": 7.781512503836435e-07,
50
+ "loss": 9.5558,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 246.42426416396174,
56
+ "learning_rate": 8.450980400142567e-07,
57
+ "loss": 9.5691,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 234.25935480253506,
63
+ "learning_rate": 9.030899869919433e-07,
64
+ "loss": 9.4209,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 239.2983885236171,
70
+ "learning_rate": 9.542425094393247e-07,
71
+ "loss": 9.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 236.6105466399374,
77
+ "learning_rate": 9.999999999999997e-07,
78
+ "loss": 9.5095,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 231.46864663491684,
84
+ "learning_rate": 1.0413926851582248e-06,
85
+ "loss": 9.1118,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 231.50741585044312,
91
+ "learning_rate": 1.0791812460476246e-06,
92
+ "loss": 9.0775,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 232.88580221859812,
98
+ "learning_rate": 1.1139433523068364e-06,
99
+ "loss": 8.7966,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 227.17208510290166,
105
+ "learning_rate": 1.1461280356782378e-06,
106
+ "loss": 8.6432,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 222.61277865106936,
112
+ "learning_rate": 1.176091259055681e-06,
113
+ "loss": 8.6176,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 216.5108794899231,
119
+ "learning_rate": 1.2041199826559244e-06,
120
+ "loss": 8.1218,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 219.20955299667028,
126
+ "learning_rate": 1.230448921378274e-06,
127
+ "loss": 8.0343,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 199.72085988949678,
133
+ "learning_rate": 1.2552725051033058e-06,
134
+ "loss": 7.964,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 200.24268479147997,
140
+ "learning_rate": 1.2787536009528286e-06,
141
+ "loss": 7.647,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 186.85104361496084,
147
+ "learning_rate": 1.301029995663981e-06,
148
+ "loss": 7.3774,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 182.71120056663193,
154
+ "learning_rate": 1.322219294733919e-06,
155
+ "loss": 7.1637,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 182.76003520668846,
161
+ "learning_rate": 1.3424226808222062e-06,
162
+ "loss": 7.012,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 168.48191088919606,
168
+ "learning_rate": 1.3617278360175927e-06,
169
+ "loss": 6.6768,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 156.229917459413,
175
+ "learning_rate": 1.3802112417116059e-06,
176
+ "loss": 6.7099,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 154.37179905588326,
182
+ "learning_rate": 1.3979400086720373e-06,
183
+ "loss": 6.4922,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 143.71528792851163,
189
+ "learning_rate": 1.4149733479708177e-06,
190
+ "loss": 6.1601,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 146.34965888668822,
196
+ "learning_rate": 1.431363764158987e-06,
197
+ "loss": 5.8541,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 121.92596290244133,
203
+ "learning_rate": 1.4471580313422189e-06,
204
+ "loss": 5.4416,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 120.75132633847133,
210
+ "learning_rate": 1.4623979978989559e-06,
211
+ "loss": 5.1664,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 127.72268390687302,
217
+ "learning_rate": 1.477121254719662e-06,
218
+ "loss": 4.9839,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 101.32005196251875,
224
+ "learning_rate": 1.4913616938342723e-06,
225
+ "loss": 5.1121,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 90.5009306970445,
231
+ "learning_rate": 1.5051499783199057e-06,
232
+ "loss": 4.3866,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 84.35234360166734,
238
+ "learning_rate": 1.5185139398778872e-06,
239
+ "loss": 4.4437,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 75.2060158778455,
245
+ "learning_rate": 1.5314789170422548e-06,
246
+ "loss": 4.3798,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 73.14821012527409,
252
+ "learning_rate": 1.544068044350275e-06,
253
+ "loss": 4.1696,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 65.68340407068212,
259
+ "learning_rate": 1.556302500767287e-06,
260
+ "loss": 3.8687,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 63.72172703320077,
266
+ "learning_rate": 1.5682017240669948e-06,
267
+ "loss": 3.9212,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 55.96549796875415,
273
+ "learning_rate": 1.57978359661681e-06,
274
+ "loss": 3.7807,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 50.34103179735071,
280
+ "learning_rate": 1.5910646070264987e-06,
281
+ "loss": 3.6901,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 53.230164751324274,
287
+ "learning_rate": 1.602059991327962e-06,
288
+ "loss": 3.6057,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 42.48618083004681,
294
+ "learning_rate": 1.6127838567197353e-06,
295
+ "loss": 3.5198,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 39.512047584209995,
301
+ "learning_rate": 1.6232492903979003e-06,
302
+ "loss": 3.4435,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 37.88712129419359,
308
+ "learning_rate": 1.633468455579586e-06,
309
+ "loss": 3.2061,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 35.24892126286012,
315
+ "learning_rate": 1.643452676486187e-06,
316
+ "loss": 3.2579,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 33.04491165858123,
322
+ "learning_rate": 1.6532125137753431e-06,
323
+ "loss": 2.8525,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 31.165406009520897,
329
+ "learning_rate": 1.6627578316815738e-06,
330
+ "loss": 3.1049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 28.391582735290466,
336
+ "learning_rate": 1.672097857935717e-06,
337
+ "loss": 2.6253,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 25.829470766134442,
343
+ "learning_rate": 1.6812412373755868e-06,
344
+ "loss": 2.9859,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 24.083581978153447,
350
+ "learning_rate": 1.6901960800285134e-06,
351
+ "loss": 2.6692,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 22.867521136957954,
357
+ "learning_rate": 1.6989700043360184e-06,
358
+ "loss": 2.8821,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 19.900767003905905,
364
+ "learning_rate": 1.707570176097936e-06,
365
+ "loss": 2.4392,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 18.380866742540494,
371
+ "learning_rate": 1.716003343634799e-06,
372
+ "loss": 2.6001,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 18.893434932402364,
378
+ "learning_rate": 1.7242758696007888e-06,
379
+ "loss": 2.4671,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 17.676419618997368,
385
+ "learning_rate": 1.7323937598229684e-06,
386
+ "loss": 2.6264,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 16.505413670063586,
392
+ "learning_rate": 1.7403626894942437e-06,
393
+ "loss": 2.5316,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 16.56193892770173,
399
+ "learning_rate": 1.7481880270062002e-06,
400
+ "loss": 2.4163,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 14.824844560242497,
406
+ "learning_rate": 1.7558748556724912e-06,
407
+ "loss": 2.2749,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 16.122860315584806,
413
+ "learning_rate": 1.7634279935629368e-06,
414
+ "loss": 2.3755,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 14.99798519590293,
420
+ "learning_rate": 1.7708520116421439e-06,
421
+ "loss": 2.2518,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 14.833498207347544,
427
+ "learning_rate": 1.7781512503836432e-06,
428
+ "loss": 2.2296,
429
+ "step": 60
430
+ }
431
+ ],
432
+ "logging_steps": 1,
433
+ "max_steps": 201,
434
+ "num_input_tokens_seen": 0,
435
+ "num_train_epochs": 2,
436
+ "save_steps": 20,
437
+ "stateful_callbacks": {
438
+ "TrainerControl": {
439
+ "args": {
440
+ "should_epoch_stop": false,
441
+ "should_evaluate": false,
442
+ "should_log": false,
443
+ "should_save": true,
444
+ "should_training_stop": false
445
+ },
446
+ "attributes": {}
447
+ }
448
+ },
449
+ "total_flos": 9.368370968138875e+17,
450
+ "train_batch_size": 16,
451
+ "trial_name": null,
452
+ "trial_params": null
453
+ }
checkpoint-60/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c6d1ee3e42c776d697d1638e2504df8ccee33d99629ecefbef2fbb06988e3
3
+ size 6840
checkpoint-80/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Mistral-7B-v0.3
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-80/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "v_proj",
26
+ "lm_head",
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }