QJerry commited on
Commit
aec27cf
·
verified ·
1 Parent(s): a712384

Upload entire folder 160 steps of 351 steps, half of 3 epochs.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-100/README.md +202 -0
  2. checkpoint-100/adapter_config.json +35 -0
  3. checkpoint-100/adapter_model.safetensors +3 -0
  4. checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-100/global_step100/mp_rank_00_model_states.pt +3 -0
  6. checkpoint-100/latest +1 -0
  7. checkpoint-100/rng_state.pth +3 -0
  8. checkpoint-100/trainer_state.json +733 -0
  9. checkpoint-100/training_args.bin +3 -0
  10. checkpoint-100/zero_to_fp32.py +592 -0
  11. checkpoint-120/README.md +202 -0
  12. checkpoint-120/adapter_config.json +35 -0
  13. checkpoint-120/adapter_model.safetensors +3 -0
  14. checkpoint-120/global_step120/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-120/global_step120/mp_rank_00_model_states.pt +3 -0
  16. checkpoint-120/latest +1 -0
  17. checkpoint-120/rng_state.pth +3 -0
  18. checkpoint-120/trainer_state.json +873 -0
  19. checkpoint-120/training_args.bin +3 -0
  20. checkpoint-120/zero_to_fp32.py +592 -0
  21. checkpoint-140/README.md +202 -0
  22. checkpoint-140/adapter_config.json +35 -0
  23. checkpoint-140/adapter_model.safetensors +3 -0
  24. checkpoint-140/global_step140/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  25. checkpoint-140/global_step140/mp_rank_00_model_states.pt +3 -0
  26. checkpoint-140/latest +1 -0
  27. checkpoint-140/rng_state.pth +3 -0
  28. checkpoint-140/trainer_state.json +1013 -0
  29. checkpoint-140/training_args.bin +3 -0
  30. checkpoint-140/zero_to_fp32.py +592 -0
  31. checkpoint-160/README.md +202 -0
  32. checkpoint-160/adapter_config.json +35 -0
  33. checkpoint-160/adapter_model.safetensors +3 -0
  34. checkpoint-160/global_step160/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  35. checkpoint-160/global_step160/mp_rank_00_model_states.pt +3 -0
  36. checkpoint-160/latest +1 -0
  37. checkpoint-160/rng_state.pth +3 -0
  38. checkpoint-160/trainer_state.json +1153 -0
  39. checkpoint-160/training_args.bin +3 -0
  40. checkpoint-160/zero_to_fp32.py +592 -0
  41. checkpoint-20/README.md +202 -0
  42. checkpoint-20/adapter_config.json +35 -0
  43. checkpoint-20/adapter_model.safetensors +3 -0
  44. checkpoint-20/global_step20/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-20/global_step20/mp_rank_00_model_states.pt +3 -0
  46. checkpoint-20/latest +1 -0
  47. checkpoint-20/rng_state.pth +3 -0
  48. checkpoint-20/trainer_state.json +173 -0
  49. checkpoint-20/training_args.bin +3 -0
  50. checkpoint-20/zero_to_fp32.py +592 -0
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baca06cc42b3510c3c3bf848f73f79b72b1baea5a4f963941e134e37b3ab777d
3
+ size 1138856856
checkpoint-100/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:808ab758e2efff532198a64b20a7f9c499ac3216290ea2598de18360f006e24c
3
+ size 528781328
checkpoint-100/global_step100/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cba7f894e1d634e3bd3acbb30c43a7817dcd9bbc30549de0142cf5b4970bdd25
3
+ size 199905337
checkpoint-100/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step100
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a2d9af3fcfc54434e74034cabf1cd700dd64663d32e5f7d97b79b71b2284409
3
+ size 14244
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8533333333333334,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1,
713
+ "max_steps": 351,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 3,
716
+ "save_steps": 20,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": false
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 1.4183197916633498e+18,
730
+ "train_batch_size": 16,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-100/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-120/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33e6839258702615da06d8aa30c9fd67b2657cce43937f62cf3927f85b0a8362
3
+ size 1138856856
checkpoint-120/global_step120/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11b436ebd244ff8f8485f00d23b9c863c009715ce5d24e64a356edf305f17b6e
3
+ size 528781328
checkpoint-120/global_step120/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c17e1cbdbbc34d79755357fd83899cf1a03c70d31c45b9c5104634809569283
3
+ size 199905337
checkpoint-120/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step120
checkpoint-120/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae17b05257a556f53e7168228629d1bb3ae5e5c9000a8d7dd9d2cc833ef3948
3
+ size 14244
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.024,
5
+ "eval_steps": 500,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ }
851
+ ],
852
+ "logging_steps": 1,
853
+ "max_steps": 351,
854
+ "num_input_tokens_seen": 0,
855
+ "num_train_epochs": 3,
856
+ "save_steps": 20,
857
+ "stateful_callbacks": {
858
+ "TrainerControl": {
859
+ "args": {
860
+ "should_epoch_stop": false,
861
+ "should_evaluate": false,
862
+ "should_log": false,
863
+ "should_save": true,
864
+ "should_training_stop": false
865
+ },
866
+ "attributes": {}
867
+ }
868
+ },
869
+ "total_flos": 1.7047845829953454e+18,
870
+ "train_batch_size": 16,
871
+ "trial_name": null,
872
+ "trial_params": null
873
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-120/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-140/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b12f85af7122bcce5f6997bec8d9a8a845cf9ab8d2c4f241d37562051e34c216
3
+ size 1138856856
checkpoint-140/global_step140/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8993927bbec291df7a8a041058bc3762b88d9ca9fcfbdccdabc686717c9c5f5d
3
+ size 528781328
checkpoint-140/global_step140/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4dca3099b75369d573830bab987eb6f984e58440ba145f2f47df24a9212b7c4
3
+ size 199905337
checkpoint-140/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step140
checkpoint-140/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb5b9188bbc87bb2ff7dba4844a90c5c236962fc66f3da23e5af9ee0eda34a1b
3
+ size 14244
checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,1013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.1946666666666665,
5
+ "eval_steps": 500,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ }
991
+ ],
992
+ "logging_steps": 1,
993
+ "max_steps": 351,
994
+ "num_input_tokens_seen": 0,
995
+ "num_train_epochs": 3,
996
+ "save_steps": 20,
997
+ "stateful_callbacks": {
998
+ "TrainerControl": {
999
+ "args": {
1000
+ "should_epoch_stop": false,
1001
+ "should_evaluate": false,
1002
+ "should_log": false,
1003
+ "should_save": true,
1004
+ "should_training_stop": false
1005
+ },
1006
+ "attributes": {}
1007
+ }
1008
+ },
1009
+ "total_flos": 1.9872207486907843e+18,
1010
+ "train_batch_size": 16,
1011
+ "trial_name": null,
1012
+ "trial_params": null
1013
+ }
checkpoint-140/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-140/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6b5a540a8357ce98d65b484037f08c6e0295863490398dfd6671ec06a2916b
3
+ size 1138856856
checkpoint-160/global_step160/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1a136bd5515088baf044edf425835b86e73f43dc41097181483574d0a3ec311
3
+ size 528781328
checkpoint-160/global_step160/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64b47cf0673bd0721e3b682a0e4fd592936923b3a1fc6966a1236c9b9f1a4ec
3
+ size 199905337
checkpoint-160/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step160
checkpoint-160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cefbcec9b3679fcdb9b96cdb9ed85fb37b575748c126094c451cc80787e18e73
3
+ size 14244
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,1153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.3653333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ }
1131
+ ],
1132
+ "logging_steps": 1,
1133
+ "max_steps": 351,
1134
+ "num_input_tokens_seen": 0,
1135
+ "num_train_epochs": 3,
1136
+ "save_steps": 20,
1137
+ "stateful_callbacks": {
1138
+ "TrainerControl": {
1139
+ "args": {
1140
+ "should_epoch_stop": false,
1141
+ "should_evaluate": false,
1142
+ "should_log": false,
1143
+ "should_save": true,
1144
+ "should_training_stop": false
1145
+ },
1146
+ "attributes": {}
1147
+ }
1148
+ },
1149
+ "total_flos": 2.273910921652863e+18,
1150
+ "train_batch_size": 16,
1151
+ "trial_name": null,
1152
+ "trial_params": null
1153
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-160/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-20/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-20/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181727761583eeba365bc29814e3196c50f90d02ae039c8a529d15c6b58813d4
3
+ size 1138856856
checkpoint-20/global_step20/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc02bac7488ab5bf8abdc7c2b5344d7b8dfb0afbb5b445938a1d48306aa2f091
3
+ size 528781328
checkpoint-20/global_step20/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ae839a372c83084c52ed7acb3f7c30fafafaf5b2d3a11194adddf87b919f14
3
+ size 199905337
checkpoint-20/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step20
checkpoint-20/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:926d305e96380bc96ae95066ad252aa5ad89a958f613cc36a658033c5409657d
3
+ size 14244
checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.17066666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ }
151
+ ],
152
+ "logging_steps": 1,
153
+ "max_steps": 351,
154
+ "num_input_tokens_seen": 0,
155
+ "num_train_epochs": 3,
156
+ "save_steps": 20,
157
+ "stateful_callbacks": {
158
+ "TrainerControl": {
159
+ "args": {
160
+ "should_epoch_stop": false,
161
+ "should_evaluate": false,
162
+ "should_log": false,
163
+ "should_save": true,
164
+ "should_training_stop": false
165
+ },
166
+ "attributes": {}
167
+ }
168
+ },
169
+ "total_flos": 2.924957640079442e+17,
170
+ "train_batch_size": 16,
171
+ "trial_name": null,
172
+ "trial_params": null
173
+ }
checkpoint-20/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-20/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)