QJerry commited on
Commit
aa16d29
·
verified ·
1 Parent(s): 6de3c90

Upload 220 to 300 steps of 351 steps.

Browse files
Files changed (50) hide show
  1. checkpoint-220/README.md +202 -0
  2. checkpoint-220/adapter_config.json +35 -0
  3. checkpoint-220/adapter_model.safetensors +3 -0
  4. checkpoint-220/global_step220/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-220/global_step220/mp_rank_00_model_states.pt +3 -0
  6. checkpoint-220/latest +1 -0
  7. checkpoint-220/rng_state.pth +3 -0
  8. checkpoint-220/trainer_state.json +1573 -0
  9. checkpoint-220/training_args.bin +3 -0
  10. checkpoint-220/zero_to_fp32.py +592 -0
  11. checkpoint-240/README.md +202 -0
  12. checkpoint-240/adapter_config.json +35 -0
  13. checkpoint-240/adapter_model.safetensors +3 -0
  14. checkpoint-240/global_step240/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-240/global_step240/mp_rank_00_model_states.pt +3 -0
  16. checkpoint-240/latest +1 -0
  17. checkpoint-240/rng_state.pth +3 -0
  18. checkpoint-240/trainer_state.json +1713 -0
  19. checkpoint-240/training_args.bin +3 -0
  20. checkpoint-240/zero_to_fp32.py +592 -0
  21. checkpoint-260/README.md +202 -0
  22. checkpoint-260/adapter_config.json +35 -0
  23. checkpoint-260/adapter_model.safetensors +3 -0
  24. checkpoint-260/global_step260/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  25. checkpoint-260/global_step260/mp_rank_00_model_states.pt +3 -0
  26. checkpoint-260/latest +1 -0
  27. checkpoint-260/rng_state.pth +3 -0
  28. checkpoint-260/trainer_state.json +1853 -0
  29. checkpoint-260/training_args.bin +3 -0
  30. checkpoint-260/zero_to_fp32.py +592 -0
  31. checkpoint-280/README.md +202 -0
  32. checkpoint-280/adapter_config.json +35 -0
  33. checkpoint-280/adapter_model.safetensors +3 -0
  34. checkpoint-280/global_step280/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  35. checkpoint-280/global_step280/mp_rank_00_model_states.pt +3 -0
  36. checkpoint-280/latest +1 -0
  37. checkpoint-280/rng_state.pth +3 -0
  38. checkpoint-280/trainer_state.json +1993 -0
  39. checkpoint-280/training_args.bin +3 -0
  40. checkpoint-280/zero_to_fp32.py +592 -0
  41. checkpoint-300/README.md +202 -0
  42. checkpoint-300/adapter_config.json +35 -0
  43. checkpoint-300/adapter_model.safetensors +3 -0
  44. checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-300/global_step300/mp_rank_00_model_states.pt +3 -0
  46. checkpoint-300/latest +1 -0
  47. checkpoint-300/rng_state.pth +3 -0
  48. checkpoint-300/trainer_state.json +2133 -0
  49. checkpoint-300/training_args.bin +3 -0
  50. checkpoint-300/zero_to_fp32.py +592 -0
checkpoint-220/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-220/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-220/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c413d5a5e805e1f58ba270fcdc8af63e5253b13148b768003336b65d47375fb3
3
+ size 1138856856
checkpoint-220/global_step220/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56eb33ef90047b90033906762ef15e399b1c33901bd6b6892da3e1a287cca3a2
3
+ size 528781328
checkpoint-220/global_step220/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aa299524e2641ee382b7d61759463ce8bcfecc5cbe9ed4ecd043623206da055
3
+ size 199905337
checkpoint-220/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step220
checkpoint-220/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c48894345a22525b1e69a19e3f3dc55a1aeef79df93012160905d737bdd2a920
3
+ size 14244
checkpoint-220/trainer_state.json ADDED
@@ -0,0 +1,1573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.8773333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 220,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.0544902702048936,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0906,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.06057617032526,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.1206,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.07288058025189605,
1148
+ "learning_rate": 2e-05,
1149
+ "loss": 0.1175,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.05639043792084219,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 0.1031,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.0586469408837505,
1162
+ "learning_rate": 2e-05,
1163
+ "loss": 0.1143,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.059243429040783904,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.0838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0621476448363388,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.1032,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.06083867682720169,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1119,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.09583165335305677,
1190
+ "learning_rate": 2e-05,
1191
+ "loss": 0.1028,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.06411638581314043,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 0.1181,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.05632977234908945,
1204
+ "learning_rate": 2e-05,
1205
+ "loss": 0.1055,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.05666068971337413,
1211
+ "learning_rate": 2e-05,
1212
+ "loss": 0.1116,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.04502062723807536,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 0.0588,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.05916500176868301,
1225
+ "learning_rate": 2e-05,
1226
+ "loss": 0.0949,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.056484273808864845,
1232
+ "learning_rate": 2e-05,
1233
+ "loss": 0.0948,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.06652084448571674,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 0.1086,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.05400238078068516,
1246
+ "learning_rate": 2e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.04979579743346662,
1253
+ "learning_rate": 2e-05,
1254
+ "loss": 0.0879,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.06876105414733971,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 0.1162,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.05633262015499721,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 0.1142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.0599508967519892,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.1073,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.058912170976454126,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 0.1102,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.05361414988566254,
1288
+ "learning_rate": 2e-05,
1289
+ "loss": 0.0885,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.04517277847384077,
1295
+ "learning_rate": 2e-05,
1296
+ "loss": 0.0763,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.05551553662051771,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 0.0877,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.05814223969236194,
1309
+ "learning_rate": 2e-05,
1310
+ "loss": 0.1044,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.05710054166191597,
1316
+ "learning_rate": 2e-05,
1317
+ "loss": 0.0962,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.054744343932104075,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 0.0873,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.051145521687090995,
1330
+ "learning_rate": 2e-05,
1331
+ "loss": 0.0855,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.05414658860737789,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 0.0872,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.05084744595533029,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 0.0891,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.0567070082820597,
1351
+ "learning_rate": 2e-05,
1352
+ "loss": 0.0965,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.0494785311411315,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.0941,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.062341158530385396,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 0.1154,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.059888336716275685,
1372
+ "learning_rate": 2e-05,
1373
+ "loss": 0.1037,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.07346562318829057,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.1329,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.0792360016934733,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.1392,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.0800342963229883,
1393
+ "learning_rate": 2e-05,
1394
+ "loss": 0.1199,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.06848045933195548,
1400
+ "learning_rate": 2e-05,
1401
+ "loss": 0.0998,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.05743199019316764,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 0.0811,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.07170531168284446,
1414
+ "learning_rate": 2e-05,
1415
+ "loss": 0.1079,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.05772905481368506,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 0.0844,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.07504946014098464,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 0.1257,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.06450179819785838,
1435
+ "learning_rate": 2e-05,
1436
+ "loss": 0.1104,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.06595445965110332,
1442
+ "learning_rate": 2e-05,
1443
+ "loss": 0.093,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.07203558121131749,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 0.1117,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.05954646782409283,
1456
+ "learning_rate": 2e-05,
1457
+ "loss": 0.0729,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.06624894584410884,
1463
+ "learning_rate": 2e-05,
1464
+ "loss": 0.0998,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.06888562028256219,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.061224088077794406,
1477
+ "learning_rate": 2e-05,
1478
+ "loss": 0.1112,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.06857358883856608,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.1293,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.06177352416779139,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 0.0884,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.08324567429925228,
1498
+ "learning_rate": 2e-05,
1499
+ "loss": 0.1127,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.06771677297787752,
1505
+ "learning_rate": 2e-05,
1506
+ "loss": 0.089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.07055754809472485,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 0.1206,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.05856797724392531,
1519
+ "learning_rate": 2e-05,
1520
+ "loss": 0.0893,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.07555286129801597,
1526
+ "learning_rate": 2e-05,
1527
+ "loss": 0.0913,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.09242462538643775,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 0.1241,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.06550805537088374,
1540
+ "learning_rate": 2e-05,
1541
+ "loss": 0.0819,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.06016048263236861,
1547
+ "learning_rate": 2e-05,
1548
+ "loss": 0.0955,
1549
+ "step": 220
1550
+ }
1551
+ ],
1552
+ "logging_steps": 1,
1553
+ "max_steps": 351,
1554
+ "num_input_tokens_seen": 0,
1555
+ "num_train_epochs": 3,
1556
+ "save_steps": 20,
1557
+ "stateful_callbacks": {
1558
+ "TrainerControl": {
1559
+ "args": {
1560
+ "should_epoch_stop": false,
1561
+ "should_evaluate": false,
1562
+ "should_log": false,
1563
+ "should_save": true,
1564
+ "should_training_stop": false
1565
+ },
1566
+ "attributes": {}
1567
+ }
1568
+ },
1569
+ "total_flos": 3.1374063827523994e+18,
1570
+ "train_batch_size": 16,
1571
+ "trial_name": null,
1572
+ "trial_params": null
1573
+ }
checkpoint-220/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-220/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-240/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-240/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-240/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2b0102ec16154b1882251190f7984562a5f9255aaed7799bf80b27e06299967
3
+ size 1138856856
checkpoint-240/global_step240/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d2d9813bc8f9fdb7e61aa7c515b974f9e3a321c0c00c461ae2223c64ea368ac
3
+ size 528781328
checkpoint-240/global_step240/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b92dc14f0a23e1d44580987f2a390d1ffcd884ae2bbee1358798e9f91fbece65
3
+ size 199905337
checkpoint-240/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step240
checkpoint-240/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:520b20ae855dee764163de1cce297ae24a311e9fc58dab9dc56d3069fcb4f3dc
3
+ size 14244
checkpoint-240/trainer_state.json ADDED
@@ -0,0 +1,1713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.048,
5
+ "eval_steps": 500,
6
+ "global_step": 240,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.0544902702048936,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0906,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.06057617032526,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.1206,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.07288058025189605,
1148
+ "learning_rate": 2e-05,
1149
+ "loss": 0.1175,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.05639043792084219,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 0.1031,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.0586469408837505,
1162
+ "learning_rate": 2e-05,
1163
+ "loss": 0.1143,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.059243429040783904,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.0838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0621476448363388,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.1032,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.06083867682720169,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1119,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.09583165335305677,
1190
+ "learning_rate": 2e-05,
1191
+ "loss": 0.1028,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.06411638581314043,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 0.1181,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.05632977234908945,
1204
+ "learning_rate": 2e-05,
1205
+ "loss": 0.1055,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.05666068971337413,
1211
+ "learning_rate": 2e-05,
1212
+ "loss": 0.1116,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.04502062723807536,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 0.0588,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.05916500176868301,
1225
+ "learning_rate": 2e-05,
1226
+ "loss": 0.0949,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.056484273808864845,
1232
+ "learning_rate": 2e-05,
1233
+ "loss": 0.0948,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.06652084448571674,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 0.1086,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.05400238078068516,
1246
+ "learning_rate": 2e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.04979579743346662,
1253
+ "learning_rate": 2e-05,
1254
+ "loss": 0.0879,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.06876105414733971,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 0.1162,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.05633262015499721,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 0.1142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.0599508967519892,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.1073,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.058912170976454126,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 0.1102,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.05361414988566254,
1288
+ "learning_rate": 2e-05,
1289
+ "loss": 0.0885,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.04517277847384077,
1295
+ "learning_rate": 2e-05,
1296
+ "loss": 0.0763,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.05551553662051771,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 0.0877,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.05814223969236194,
1309
+ "learning_rate": 2e-05,
1310
+ "loss": 0.1044,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.05710054166191597,
1316
+ "learning_rate": 2e-05,
1317
+ "loss": 0.0962,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.054744343932104075,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 0.0873,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.051145521687090995,
1330
+ "learning_rate": 2e-05,
1331
+ "loss": 0.0855,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.05414658860737789,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 0.0872,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.05084744595533029,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 0.0891,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.0567070082820597,
1351
+ "learning_rate": 2e-05,
1352
+ "loss": 0.0965,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.0494785311411315,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.0941,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.062341158530385396,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 0.1154,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.059888336716275685,
1372
+ "learning_rate": 2e-05,
1373
+ "loss": 0.1037,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.07346562318829057,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.1329,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.0792360016934733,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.1392,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.0800342963229883,
1393
+ "learning_rate": 2e-05,
1394
+ "loss": 0.1199,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.06848045933195548,
1400
+ "learning_rate": 2e-05,
1401
+ "loss": 0.0998,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.05743199019316764,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 0.0811,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.07170531168284446,
1414
+ "learning_rate": 2e-05,
1415
+ "loss": 0.1079,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.05772905481368506,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 0.0844,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.07504946014098464,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 0.1257,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.06450179819785838,
1435
+ "learning_rate": 2e-05,
1436
+ "loss": 0.1104,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.06595445965110332,
1442
+ "learning_rate": 2e-05,
1443
+ "loss": 0.093,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.07203558121131749,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 0.1117,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.05954646782409283,
1456
+ "learning_rate": 2e-05,
1457
+ "loss": 0.0729,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.06624894584410884,
1463
+ "learning_rate": 2e-05,
1464
+ "loss": 0.0998,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.06888562028256219,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.061224088077794406,
1477
+ "learning_rate": 2e-05,
1478
+ "loss": 0.1112,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.06857358883856608,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.1293,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.06177352416779139,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 0.0884,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.08324567429925228,
1498
+ "learning_rate": 2e-05,
1499
+ "loss": 0.1127,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.06771677297787752,
1505
+ "learning_rate": 2e-05,
1506
+ "loss": 0.089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.07055754809472485,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 0.1206,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.05856797724392531,
1519
+ "learning_rate": 2e-05,
1520
+ "loss": 0.0893,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.07555286129801597,
1526
+ "learning_rate": 2e-05,
1527
+ "loss": 0.0913,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.09242462538643775,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 0.1241,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.06550805537088374,
1540
+ "learning_rate": 2e-05,
1541
+ "loss": 0.0819,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.06016048263236861,
1547
+ "learning_rate": 2e-05,
1548
+ "loss": 0.0955,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8858666666666668,
1553
+ "grad_norm": 0.06856661106001445,
1554
+ "learning_rate": 2e-05,
1555
+ "loss": 0.1132,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8944,
1560
+ "grad_norm": 0.06383306455000529,
1561
+ "learning_rate": 2e-05,
1562
+ "loss": 0.1086,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9029333333333334,
1567
+ "grad_norm": 0.07240472757239624,
1568
+ "learning_rate": 2e-05,
1569
+ "loss": 0.0863,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9114666666666666,
1574
+ "grad_norm": 0.07845654471077741,
1575
+ "learning_rate": 2e-05,
1576
+ "loss": 0.1284,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.92,
1581
+ "grad_norm": 0.07192185833649212,
1582
+ "learning_rate": 2e-05,
1583
+ "loss": 0.1101,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9285333333333332,
1588
+ "grad_norm": 0.06390598005596872,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.0917,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9370666666666667,
1595
+ "grad_norm": 0.06306138712432224,
1596
+ "learning_rate": 2e-05,
1597
+ "loss": 0.0936,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9456,
1602
+ "grad_norm": 0.06771381941296478,
1603
+ "learning_rate": 2e-05,
1604
+ "loss": 0.0936,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9541333333333335,
1609
+ "grad_norm": 0.05899006803461524,
1610
+ "learning_rate": 2e-05,
1611
+ "loss": 0.0782,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.9626666666666668,
1616
+ "grad_norm": 0.07426956281950735,
1617
+ "learning_rate": 2e-05,
1618
+ "loss": 0.1095,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9712,
1623
+ "grad_norm": 0.06567534902293475,
1624
+ "learning_rate": 2e-05,
1625
+ "loss": 0.0956,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.9797333333333333,
1630
+ "grad_norm": 0.07430395142282198,
1631
+ "learning_rate": 2e-05,
1632
+ "loss": 0.0957,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9882666666666666,
1637
+ "grad_norm": 0.05834447367264806,
1638
+ "learning_rate": 2e-05,
1639
+ "loss": 0.0767,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.9968,
1644
+ "grad_norm": 0.07137090413877054,
1645
+ "learning_rate": 2e-05,
1646
+ "loss": 0.0821,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.005333333333333,
1651
+ "grad_norm": 0.07797914240805551,
1652
+ "learning_rate": 2e-05,
1653
+ "loss": 0.1175,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.0138666666666665,
1658
+ "grad_norm": 0.09335648879374187,
1659
+ "learning_rate": 2e-05,
1660
+ "loss": 0.1632,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0224,
1665
+ "grad_norm": 0.08280719749100944,
1666
+ "learning_rate": 2e-05,
1667
+ "loss": 0.115,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.0309333333333335,
1672
+ "grad_norm": 0.08956213539053312,
1673
+ "learning_rate": 2e-05,
1674
+ "loss": 0.109,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0394666666666668,
1679
+ "grad_norm": 0.08849786687188893,
1680
+ "learning_rate": 2e-05,
1681
+ "loss": 0.1234,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.048,
1686
+ "grad_norm": 0.16956065138312856,
1687
+ "learning_rate": 2e-05,
1688
+ "loss": 0.1055,
1689
+ "step": 240
1690
+ }
1691
+ ],
1692
+ "logging_steps": 1,
1693
+ "max_steps": 351,
1694
+ "num_input_tokens_seen": 0,
1695
+ "num_train_epochs": 3,
1696
+ "save_steps": 20,
1697
+ "stateful_callbacks": {
1698
+ "TrainerControl": {
1699
+ "args": {
1700
+ "should_epoch_stop": false,
1701
+ "should_evaluate": false,
1702
+ "should_log": false,
1703
+ "should_save": true,
1704
+ "should_training_stop": false
1705
+ },
1706
+ "attributes": {}
1707
+ }
1708
+ },
1709
+ "total_flos": 3.4262663119891333e+18,
1710
+ "train_batch_size": 16,
1711
+ "trial_name": null,
1712
+ "trial_params": null
1713
+ }
checkpoint-240/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-240/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-260/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-260/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-260/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eec3bb4f61fc37676975013d46cc5e10f8d9a4b327e7ac49c4d0638301be3de0
3
+ size 1138856856
checkpoint-260/global_step260/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b0e33a2082f3838f1e171c77e1243d6f245ca1af4e631b50d6a771d4657e80
3
+ size 528781328
checkpoint-260/global_step260/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2feae52818e8eefd4438e8c94312d2a2181070edb069f9c232d0ad7481fe86c6
3
+ size 199905337
checkpoint-260/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step260
checkpoint-260/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df5336a6bdf866da6f2d48b2de7a869897f2fbda5c5e2f70f21996192cb79dbd
3
+ size 14244
checkpoint-260/trainer_state.json ADDED
@@ -0,0 +1,1853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.2186666666666666,
5
+ "eval_steps": 500,
6
+ "global_step": 260,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.0544902702048936,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0906,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.06057617032526,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.1206,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.07288058025189605,
1148
+ "learning_rate": 2e-05,
1149
+ "loss": 0.1175,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.05639043792084219,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 0.1031,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.0586469408837505,
1162
+ "learning_rate": 2e-05,
1163
+ "loss": 0.1143,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.059243429040783904,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.0838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0621476448363388,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.1032,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.06083867682720169,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1119,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.09583165335305677,
1190
+ "learning_rate": 2e-05,
1191
+ "loss": 0.1028,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.06411638581314043,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 0.1181,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.05632977234908945,
1204
+ "learning_rate": 2e-05,
1205
+ "loss": 0.1055,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.05666068971337413,
1211
+ "learning_rate": 2e-05,
1212
+ "loss": 0.1116,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.04502062723807536,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 0.0588,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.05916500176868301,
1225
+ "learning_rate": 2e-05,
1226
+ "loss": 0.0949,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.056484273808864845,
1232
+ "learning_rate": 2e-05,
1233
+ "loss": 0.0948,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.06652084448571674,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 0.1086,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.05400238078068516,
1246
+ "learning_rate": 2e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.04979579743346662,
1253
+ "learning_rate": 2e-05,
1254
+ "loss": 0.0879,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.06876105414733971,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 0.1162,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.05633262015499721,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 0.1142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.0599508967519892,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.1073,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.058912170976454126,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 0.1102,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.05361414988566254,
1288
+ "learning_rate": 2e-05,
1289
+ "loss": 0.0885,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.04517277847384077,
1295
+ "learning_rate": 2e-05,
1296
+ "loss": 0.0763,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.05551553662051771,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 0.0877,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.05814223969236194,
1309
+ "learning_rate": 2e-05,
1310
+ "loss": 0.1044,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.05710054166191597,
1316
+ "learning_rate": 2e-05,
1317
+ "loss": 0.0962,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.054744343932104075,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 0.0873,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.051145521687090995,
1330
+ "learning_rate": 2e-05,
1331
+ "loss": 0.0855,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.05414658860737789,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 0.0872,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.05084744595533029,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 0.0891,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.0567070082820597,
1351
+ "learning_rate": 2e-05,
1352
+ "loss": 0.0965,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.0494785311411315,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.0941,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.062341158530385396,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 0.1154,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.059888336716275685,
1372
+ "learning_rate": 2e-05,
1373
+ "loss": 0.1037,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.07346562318829057,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.1329,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.0792360016934733,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.1392,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.0800342963229883,
1393
+ "learning_rate": 2e-05,
1394
+ "loss": 0.1199,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.06848045933195548,
1400
+ "learning_rate": 2e-05,
1401
+ "loss": 0.0998,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.05743199019316764,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 0.0811,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.07170531168284446,
1414
+ "learning_rate": 2e-05,
1415
+ "loss": 0.1079,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.05772905481368506,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 0.0844,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.07504946014098464,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 0.1257,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.06450179819785838,
1435
+ "learning_rate": 2e-05,
1436
+ "loss": 0.1104,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.06595445965110332,
1442
+ "learning_rate": 2e-05,
1443
+ "loss": 0.093,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.07203558121131749,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 0.1117,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.05954646782409283,
1456
+ "learning_rate": 2e-05,
1457
+ "loss": 0.0729,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.06624894584410884,
1463
+ "learning_rate": 2e-05,
1464
+ "loss": 0.0998,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.06888562028256219,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.061224088077794406,
1477
+ "learning_rate": 2e-05,
1478
+ "loss": 0.1112,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.06857358883856608,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.1293,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.06177352416779139,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 0.0884,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.08324567429925228,
1498
+ "learning_rate": 2e-05,
1499
+ "loss": 0.1127,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.06771677297787752,
1505
+ "learning_rate": 2e-05,
1506
+ "loss": 0.089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.07055754809472485,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 0.1206,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.05856797724392531,
1519
+ "learning_rate": 2e-05,
1520
+ "loss": 0.0893,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.07555286129801597,
1526
+ "learning_rate": 2e-05,
1527
+ "loss": 0.0913,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.09242462538643775,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 0.1241,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.06550805537088374,
1540
+ "learning_rate": 2e-05,
1541
+ "loss": 0.0819,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.06016048263236861,
1547
+ "learning_rate": 2e-05,
1548
+ "loss": 0.0955,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8858666666666668,
1553
+ "grad_norm": 0.06856661106001445,
1554
+ "learning_rate": 2e-05,
1555
+ "loss": 0.1132,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8944,
1560
+ "grad_norm": 0.06383306455000529,
1561
+ "learning_rate": 2e-05,
1562
+ "loss": 0.1086,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9029333333333334,
1567
+ "grad_norm": 0.07240472757239624,
1568
+ "learning_rate": 2e-05,
1569
+ "loss": 0.0863,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9114666666666666,
1574
+ "grad_norm": 0.07845654471077741,
1575
+ "learning_rate": 2e-05,
1576
+ "loss": 0.1284,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.92,
1581
+ "grad_norm": 0.07192185833649212,
1582
+ "learning_rate": 2e-05,
1583
+ "loss": 0.1101,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9285333333333332,
1588
+ "grad_norm": 0.06390598005596872,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.0917,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9370666666666667,
1595
+ "grad_norm": 0.06306138712432224,
1596
+ "learning_rate": 2e-05,
1597
+ "loss": 0.0936,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9456,
1602
+ "grad_norm": 0.06771381941296478,
1603
+ "learning_rate": 2e-05,
1604
+ "loss": 0.0936,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9541333333333335,
1609
+ "grad_norm": 0.05899006803461524,
1610
+ "learning_rate": 2e-05,
1611
+ "loss": 0.0782,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.9626666666666668,
1616
+ "grad_norm": 0.07426956281950735,
1617
+ "learning_rate": 2e-05,
1618
+ "loss": 0.1095,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9712,
1623
+ "grad_norm": 0.06567534902293475,
1624
+ "learning_rate": 2e-05,
1625
+ "loss": 0.0956,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.9797333333333333,
1630
+ "grad_norm": 0.07430395142282198,
1631
+ "learning_rate": 2e-05,
1632
+ "loss": 0.0957,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9882666666666666,
1637
+ "grad_norm": 0.05834447367264806,
1638
+ "learning_rate": 2e-05,
1639
+ "loss": 0.0767,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.9968,
1644
+ "grad_norm": 0.07137090413877054,
1645
+ "learning_rate": 2e-05,
1646
+ "loss": 0.0821,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.005333333333333,
1651
+ "grad_norm": 0.07797914240805551,
1652
+ "learning_rate": 2e-05,
1653
+ "loss": 0.1175,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.0138666666666665,
1658
+ "grad_norm": 0.09335648879374187,
1659
+ "learning_rate": 2e-05,
1660
+ "loss": 0.1632,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0224,
1665
+ "grad_norm": 0.08280719749100944,
1666
+ "learning_rate": 2e-05,
1667
+ "loss": 0.115,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.0309333333333335,
1672
+ "grad_norm": 0.08956213539053312,
1673
+ "learning_rate": 2e-05,
1674
+ "loss": 0.109,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0394666666666668,
1679
+ "grad_norm": 0.08849786687188893,
1680
+ "learning_rate": 2e-05,
1681
+ "loss": 0.1234,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.048,
1686
+ "grad_norm": 0.16956065138312856,
1687
+ "learning_rate": 2e-05,
1688
+ "loss": 0.1055,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 2.0565333333333333,
1693
+ "grad_norm": 0.07377723133015779,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.1068,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 2.0650666666666666,
1700
+ "grad_norm": 0.08839651322303756,
1701
+ "learning_rate": 2e-05,
1702
+ "loss": 0.0965,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 2.0736,
1707
+ "grad_norm": 0.10641135540308218,
1708
+ "learning_rate": 2e-05,
1709
+ "loss": 0.0887,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 2.082133333333333,
1714
+ "grad_norm": 0.09370442613891326,
1715
+ "learning_rate": 2e-05,
1716
+ "loss": 0.0931,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 2.0906666666666665,
1721
+ "grad_norm": 0.08988093042206098,
1722
+ "learning_rate": 2e-05,
1723
+ "loss": 0.1201,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 2.0992,
1728
+ "grad_norm": 0.07167309696967938,
1729
+ "learning_rate": 2e-05,
1730
+ "loss": 0.0747,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 2.1077333333333335,
1735
+ "grad_norm": 0.08822161286881192,
1736
+ "learning_rate": 2e-05,
1737
+ "loss": 0.1044,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 2.1162666666666667,
1742
+ "grad_norm": 0.08439713613775747,
1743
+ "learning_rate": 2e-05,
1744
+ "loss": 0.1063,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 2.1248,
1749
+ "grad_norm": 0.0942232139678121,
1750
+ "learning_rate": 2e-05,
1751
+ "loss": 0.0865,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.1333333333333333,
1756
+ "grad_norm": 0.1066306844906037,
1757
+ "learning_rate": 2e-05,
1758
+ "loss": 0.1198,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.1418666666666666,
1763
+ "grad_norm": 0.10435492421714423,
1764
+ "learning_rate": 2e-05,
1765
+ "loss": 0.0968,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 2.1504,
1770
+ "grad_norm": 0.10513719348492025,
1771
+ "learning_rate": 2e-05,
1772
+ "loss": 0.1045,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 2.158933333333333,
1777
+ "grad_norm": 0.12580299248756027,
1778
+ "learning_rate": 2e-05,
1779
+ "loss": 0.0941,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 2.167466666666667,
1784
+ "grad_norm": 0.10265943183351584,
1785
+ "learning_rate": 2e-05,
1786
+ "loss": 0.0892,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 2.176,
1791
+ "grad_norm": 0.09473119803029131,
1792
+ "learning_rate": 2e-05,
1793
+ "loss": 0.0721,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 2.1845333333333334,
1798
+ "grad_norm": 0.13420988295622846,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.1034,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 2.1930666666666667,
1805
+ "grad_norm": 0.11474592330595303,
1806
+ "learning_rate": 2e-05,
1807
+ "loss": 0.1095,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 2.2016,
1812
+ "grad_norm": 0.12382914500613644,
1813
+ "learning_rate": 2e-05,
1814
+ "loss": 0.0947,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 2.2101333333333333,
1819
+ "grad_norm": 0.12984065755657193,
1820
+ "learning_rate": 2e-05,
1821
+ "loss": 0.0888,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 2.2186666666666666,
1826
+ "grad_norm": 0.14210964340218168,
1827
+ "learning_rate": 2e-05,
1828
+ "loss": 0.105,
1829
+ "step": 260
1830
+ }
1831
+ ],
1832
+ "logging_steps": 1,
1833
+ "max_steps": 351,
1834
+ "num_input_tokens_seen": 0,
1835
+ "num_train_epochs": 3,
1836
+ "save_steps": 20,
1837
+ "stateful_callbacks": {
1838
+ "TrainerControl": {
1839
+ "args": {
1840
+ "should_epoch_stop": false,
1841
+ "should_evaluate": false,
1842
+ "should_log": false,
1843
+ "should_save": true,
1844
+ "should_training_stop": false
1845
+ },
1846
+ "attributes": {}
1847
+ }
1848
+ },
1849
+ "total_flos": 3.714350084800905e+18,
1850
+ "train_batch_size": 16,
1851
+ "trial_name": null,
1852
+ "trial_params": null
1853
+ }
checkpoint-260/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-260/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-280/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-280/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-280/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8296cd05ef57432e2f5d4dc15e109f03b45f45fe3dd67cd03570bae08eef72
3
+ size 1138856856
checkpoint-280/global_step280/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c03dca38a1e33b28a991ecf7289c7ae7d13049de38fe7cf6054a3b590895c68b
3
+ size 528781328
checkpoint-280/global_step280/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1abf0ef27009f0ab6ba0a4bad28969109ddce84672932573daa1fa147a5a1d
3
+ size 199905337
checkpoint-280/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step280
checkpoint-280/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ff2e7999b56e8e1e58923b2da20098ae572204c232fe0dde3aa400cf65d3cab
3
+ size 14244
checkpoint-280/trainer_state.json ADDED
@@ -0,0 +1,1993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.389333333333333,
5
+ "eval_steps": 500,
6
+ "global_step": 280,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.0544902702048936,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0906,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.06057617032526,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.1206,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.07288058025189605,
1148
+ "learning_rate": 2e-05,
1149
+ "loss": 0.1175,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.05639043792084219,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 0.1031,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.0586469408837505,
1162
+ "learning_rate": 2e-05,
1163
+ "loss": 0.1143,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.059243429040783904,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.0838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0621476448363388,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.1032,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.06083867682720169,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1119,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.09583165335305677,
1190
+ "learning_rate": 2e-05,
1191
+ "loss": 0.1028,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.06411638581314043,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 0.1181,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.05632977234908945,
1204
+ "learning_rate": 2e-05,
1205
+ "loss": 0.1055,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.05666068971337413,
1211
+ "learning_rate": 2e-05,
1212
+ "loss": 0.1116,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.04502062723807536,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 0.0588,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.05916500176868301,
1225
+ "learning_rate": 2e-05,
1226
+ "loss": 0.0949,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.056484273808864845,
1232
+ "learning_rate": 2e-05,
1233
+ "loss": 0.0948,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.06652084448571674,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 0.1086,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.05400238078068516,
1246
+ "learning_rate": 2e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.04979579743346662,
1253
+ "learning_rate": 2e-05,
1254
+ "loss": 0.0879,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.06876105414733971,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 0.1162,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.05633262015499721,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 0.1142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.0599508967519892,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.1073,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.058912170976454126,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 0.1102,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.05361414988566254,
1288
+ "learning_rate": 2e-05,
1289
+ "loss": 0.0885,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.04517277847384077,
1295
+ "learning_rate": 2e-05,
1296
+ "loss": 0.0763,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.05551553662051771,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 0.0877,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.05814223969236194,
1309
+ "learning_rate": 2e-05,
1310
+ "loss": 0.1044,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.05710054166191597,
1316
+ "learning_rate": 2e-05,
1317
+ "loss": 0.0962,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.054744343932104075,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 0.0873,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.051145521687090995,
1330
+ "learning_rate": 2e-05,
1331
+ "loss": 0.0855,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.05414658860737789,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 0.0872,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.05084744595533029,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 0.0891,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.0567070082820597,
1351
+ "learning_rate": 2e-05,
1352
+ "loss": 0.0965,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.0494785311411315,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.0941,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.062341158530385396,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 0.1154,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.059888336716275685,
1372
+ "learning_rate": 2e-05,
1373
+ "loss": 0.1037,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.07346562318829057,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.1329,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.0792360016934733,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.1392,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.0800342963229883,
1393
+ "learning_rate": 2e-05,
1394
+ "loss": 0.1199,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.06848045933195548,
1400
+ "learning_rate": 2e-05,
1401
+ "loss": 0.0998,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.05743199019316764,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 0.0811,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.07170531168284446,
1414
+ "learning_rate": 2e-05,
1415
+ "loss": 0.1079,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.05772905481368506,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 0.0844,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.07504946014098464,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 0.1257,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.06450179819785838,
1435
+ "learning_rate": 2e-05,
1436
+ "loss": 0.1104,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.06595445965110332,
1442
+ "learning_rate": 2e-05,
1443
+ "loss": 0.093,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.07203558121131749,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 0.1117,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.05954646782409283,
1456
+ "learning_rate": 2e-05,
1457
+ "loss": 0.0729,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.06624894584410884,
1463
+ "learning_rate": 2e-05,
1464
+ "loss": 0.0998,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.06888562028256219,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.061224088077794406,
1477
+ "learning_rate": 2e-05,
1478
+ "loss": 0.1112,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.06857358883856608,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.1293,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.06177352416779139,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 0.0884,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.08324567429925228,
1498
+ "learning_rate": 2e-05,
1499
+ "loss": 0.1127,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.06771677297787752,
1505
+ "learning_rate": 2e-05,
1506
+ "loss": 0.089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.07055754809472485,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 0.1206,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.05856797724392531,
1519
+ "learning_rate": 2e-05,
1520
+ "loss": 0.0893,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.07555286129801597,
1526
+ "learning_rate": 2e-05,
1527
+ "loss": 0.0913,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.09242462538643775,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 0.1241,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.06550805537088374,
1540
+ "learning_rate": 2e-05,
1541
+ "loss": 0.0819,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.06016048263236861,
1547
+ "learning_rate": 2e-05,
1548
+ "loss": 0.0955,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8858666666666668,
1553
+ "grad_norm": 0.06856661106001445,
1554
+ "learning_rate": 2e-05,
1555
+ "loss": 0.1132,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8944,
1560
+ "grad_norm": 0.06383306455000529,
1561
+ "learning_rate": 2e-05,
1562
+ "loss": 0.1086,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9029333333333334,
1567
+ "grad_norm": 0.07240472757239624,
1568
+ "learning_rate": 2e-05,
1569
+ "loss": 0.0863,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9114666666666666,
1574
+ "grad_norm": 0.07845654471077741,
1575
+ "learning_rate": 2e-05,
1576
+ "loss": 0.1284,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.92,
1581
+ "grad_norm": 0.07192185833649212,
1582
+ "learning_rate": 2e-05,
1583
+ "loss": 0.1101,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9285333333333332,
1588
+ "grad_norm": 0.06390598005596872,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.0917,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9370666666666667,
1595
+ "grad_norm": 0.06306138712432224,
1596
+ "learning_rate": 2e-05,
1597
+ "loss": 0.0936,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9456,
1602
+ "grad_norm": 0.06771381941296478,
1603
+ "learning_rate": 2e-05,
1604
+ "loss": 0.0936,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9541333333333335,
1609
+ "grad_norm": 0.05899006803461524,
1610
+ "learning_rate": 2e-05,
1611
+ "loss": 0.0782,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.9626666666666668,
1616
+ "grad_norm": 0.07426956281950735,
1617
+ "learning_rate": 2e-05,
1618
+ "loss": 0.1095,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9712,
1623
+ "grad_norm": 0.06567534902293475,
1624
+ "learning_rate": 2e-05,
1625
+ "loss": 0.0956,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.9797333333333333,
1630
+ "grad_norm": 0.07430395142282198,
1631
+ "learning_rate": 2e-05,
1632
+ "loss": 0.0957,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9882666666666666,
1637
+ "grad_norm": 0.05834447367264806,
1638
+ "learning_rate": 2e-05,
1639
+ "loss": 0.0767,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.9968,
1644
+ "grad_norm": 0.07137090413877054,
1645
+ "learning_rate": 2e-05,
1646
+ "loss": 0.0821,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.005333333333333,
1651
+ "grad_norm": 0.07797914240805551,
1652
+ "learning_rate": 2e-05,
1653
+ "loss": 0.1175,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.0138666666666665,
1658
+ "grad_norm": 0.09335648879374187,
1659
+ "learning_rate": 2e-05,
1660
+ "loss": 0.1632,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0224,
1665
+ "grad_norm": 0.08280719749100944,
1666
+ "learning_rate": 2e-05,
1667
+ "loss": 0.115,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.0309333333333335,
1672
+ "grad_norm": 0.08956213539053312,
1673
+ "learning_rate": 2e-05,
1674
+ "loss": 0.109,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0394666666666668,
1679
+ "grad_norm": 0.08849786687188893,
1680
+ "learning_rate": 2e-05,
1681
+ "loss": 0.1234,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.048,
1686
+ "grad_norm": 0.16956065138312856,
1687
+ "learning_rate": 2e-05,
1688
+ "loss": 0.1055,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 2.0565333333333333,
1693
+ "grad_norm": 0.07377723133015779,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.1068,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 2.0650666666666666,
1700
+ "grad_norm": 0.08839651322303756,
1701
+ "learning_rate": 2e-05,
1702
+ "loss": 0.0965,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 2.0736,
1707
+ "grad_norm": 0.10641135540308218,
1708
+ "learning_rate": 2e-05,
1709
+ "loss": 0.0887,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 2.082133333333333,
1714
+ "grad_norm": 0.09370442613891326,
1715
+ "learning_rate": 2e-05,
1716
+ "loss": 0.0931,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 2.0906666666666665,
1721
+ "grad_norm": 0.08988093042206098,
1722
+ "learning_rate": 2e-05,
1723
+ "loss": 0.1201,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 2.0992,
1728
+ "grad_norm": 0.07167309696967938,
1729
+ "learning_rate": 2e-05,
1730
+ "loss": 0.0747,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 2.1077333333333335,
1735
+ "grad_norm": 0.08822161286881192,
1736
+ "learning_rate": 2e-05,
1737
+ "loss": 0.1044,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 2.1162666666666667,
1742
+ "grad_norm": 0.08439713613775747,
1743
+ "learning_rate": 2e-05,
1744
+ "loss": 0.1063,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 2.1248,
1749
+ "grad_norm": 0.0942232139678121,
1750
+ "learning_rate": 2e-05,
1751
+ "loss": 0.0865,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.1333333333333333,
1756
+ "grad_norm": 0.1066306844906037,
1757
+ "learning_rate": 2e-05,
1758
+ "loss": 0.1198,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.1418666666666666,
1763
+ "grad_norm": 0.10435492421714423,
1764
+ "learning_rate": 2e-05,
1765
+ "loss": 0.0968,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 2.1504,
1770
+ "grad_norm": 0.10513719348492025,
1771
+ "learning_rate": 2e-05,
1772
+ "loss": 0.1045,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 2.158933333333333,
1777
+ "grad_norm": 0.12580299248756027,
1778
+ "learning_rate": 2e-05,
1779
+ "loss": 0.0941,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 2.167466666666667,
1784
+ "grad_norm": 0.10265943183351584,
1785
+ "learning_rate": 2e-05,
1786
+ "loss": 0.0892,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 2.176,
1791
+ "grad_norm": 0.09473119803029131,
1792
+ "learning_rate": 2e-05,
1793
+ "loss": 0.0721,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 2.1845333333333334,
1798
+ "grad_norm": 0.13420988295622846,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.1034,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 2.1930666666666667,
1805
+ "grad_norm": 0.11474592330595303,
1806
+ "learning_rate": 2e-05,
1807
+ "loss": 0.1095,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 2.2016,
1812
+ "grad_norm": 0.12382914500613644,
1813
+ "learning_rate": 2e-05,
1814
+ "loss": 0.0947,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 2.2101333333333333,
1819
+ "grad_norm": 0.12984065755657193,
1820
+ "learning_rate": 2e-05,
1821
+ "loss": 0.0888,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 2.2186666666666666,
1826
+ "grad_norm": 0.14210964340218168,
1827
+ "learning_rate": 2e-05,
1828
+ "loss": 0.105,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 2.2272,
1833
+ "grad_norm": 0.13862185852250883,
1834
+ "learning_rate": 2e-05,
1835
+ "loss": 0.0876,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 2.235733333333333,
1840
+ "grad_norm": 0.17284047904822364,
1841
+ "learning_rate": 2e-05,
1842
+ "loss": 0.0935,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 2.244266666666667,
1847
+ "grad_norm": 0.1409465306152598,
1848
+ "learning_rate": 2e-05,
1849
+ "loss": 0.1032,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 2.2528,
1854
+ "grad_norm": 0.15551418258816738,
1855
+ "learning_rate": 2e-05,
1856
+ "loss": 0.0871,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 2.2613333333333334,
1861
+ "grad_norm": 0.1741617194945442,
1862
+ "learning_rate": 2e-05,
1863
+ "loss": 0.098,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 2.2698666666666667,
1868
+ "grad_norm": 0.18387218423978585,
1869
+ "learning_rate": 2e-05,
1870
+ "loss": 0.1168,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 2.2784,
1875
+ "grad_norm": 0.21744684782545962,
1876
+ "learning_rate": 2e-05,
1877
+ "loss": 0.1061,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 2.2869333333333333,
1882
+ "grad_norm": 0.17372673806896413,
1883
+ "learning_rate": 2e-05,
1884
+ "loss": 0.0927,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 2.2954666666666665,
1889
+ "grad_norm": 0.20890400134226653,
1890
+ "learning_rate": 2e-05,
1891
+ "loss": 0.0874,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 2.304,
1896
+ "grad_norm": 0.20279172920289834,
1897
+ "learning_rate": 2e-05,
1898
+ "loss": 0.0807,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 2.3125333333333336,
1903
+ "grad_norm": 0.23060543242200862,
1904
+ "learning_rate": 2e-05,
1905
+ "loss": 0.0937,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 2.321066666666667,
1910
+ "grad_norm": 0.2866337268131343,
1911
+ "learning_rate": 2e-05,
1912
+ "loss": 0.0886,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 2.3296,
1917
+ "grad_norm": 0.3203014162518504,
1918
+ "learning_rate": 2e-05,
1919
+ "loss": 0.0741,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 2.3381333333333334,
1924
+ "grad_norm": 0.2702455454246614,
1925
+ "learning_rate": 2e-05,
1926
+ "loss": 0.0692,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 2.3466666666666667,
1931
+ "grad_norm": 0.30682595841991545,
1932
+ "learning_rate": 2e-05,
1933
+ "loss": 0.0733,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 2.3552,
1938
+ "grad_norm": 0.2844580109974713,
1939
+ "learning_rate": 2e-05,
1940
+ "loss": 0.0979,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 2.3637333333333332,
1945
+ "grad_norm": 0.31296149985818705,
1946
+ "learning_rate": 2e-05,
1947
+ "loss": 0.093,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 2.3722666666666665,
1952
+ "grad_norm": 0.24448590086634314,
1953
+ "learning_rate": 2e-05,
1954
+ "loss": 0.1078,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 2.3808,
1959
+ "grad_norm": 0.17626685777153123,
1960
+ "learning_rate": 2e-05,
1961
+ "loss": 0.0939,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 2.389333333333333,
1966
+ "grad_norm": 0.13337416253457104,
1967
+ "learning_rate": 2e-05,
1968
+ "loss": 0.0812,
1969
+ "step": 280
1970
+ }
1971
+ ],
1972
+ "logging_steps": 1,
1973
+ "max_steps": 351,
1974
+ "num_input_tokens_seen": 0,
1975
+ "num_train_epochs": 3,
1976
+ "save_steps": 20,
1977
+ "stateful_callbacks": {
1978
+ "TrainerControl": {
1979
+ "args": {
1980
+ "should_epoch_stop": false,
1981
+ "should_evaluate": false,
1982
+ "should_log": false,
1983
+ "should_save": true,
1984
+ "should_training_stop": false
1985
+ },
1986
+ "attributes": {}
1987
+ }
1988
+ },
1989
+ "total_flos": 4.004836973419168e+18,
1990
+ "train_batch_size": 16,
1991
+ "trial_name": null,
1992
+ "trial_params": null
1993
+ }
checkpoint-280/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-280/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../ckpts/Meta-Llama-3-8B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "lm_head",
27
+ "o_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "k_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21bde55efc0304e99e5e82e98c55a75914860b89ddab4ffc6669646aa38aa13
3
+ size 1138856856
checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3915aeacc40b0f3920cafe63f8a83b537514f4711d5e9f12886aa2543e2ce4f
3
+ size 528781328
checkpoint-300/global_step300/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92259a465b6d29edb36bf9a1e7975102d5bc390e4d97bf2c72e274d222b5d254
3
+ size 199905337
checkpoint-300/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step300
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75bbf68b4afb9b24c52daea43d34c43c94c81e77b7a3e07025e50c711c44a449
3
+ size 14244
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,2133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.56,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008533333333333334,
13
+ "grad_norm": 100.21848203113535,
14
+ "learning_rate": 0.0,
15
+ "loss": 7.1962,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017066666666666667,
20
+ "grad_norm": 96.43006188910957,
21
+ "learning_rate": 3.0102999566398115e-06,
22
+ "loss": 6.9414,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0256,
27
+ "grad_norm": 97.35803466618715,
28
+ "learning_rate": 4.771212547196624e-06,
29
+ "loss": 7.0102,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.034133333333333335,
34
+ "grad_norm": 95.14837816372646,
35
+ "learning_rate": 6.020599913279623e-06,
36
+ "loss": 6.5295,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042666666666666665,
41
+ "grad_norm": 91.76544275692784,
42
+ "learning_rate": 6.989700043360187e-06,
43
+ "loss": 6.4806,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0512,
48
+ "grad_norm": 84.4494318688335,
49
+ "learning_rate": 7.781512503836437e-06,
50
+ "loss": 6.4194,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05973333333333333,
55
+ "grad_norm": 71.37977490595638,
56
+ "learning_rate": 8.450980400142568e-06,
57
+ "loss": 5.4953,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06826666666666667,
62
+ "grad_norm": 49.31153456754566,
63
+ "learning_rate": 9.030899869919434e-06,
64
+ "loss": 5.4123,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0768,
69
+ "grad_norm": 20.37296364560341,
70
+ "learning_rate": 9.542425094393249e-06,
71
+ "loss": 5.2334,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08533333333333333,
76
+ "grad_norm": 7.968467079076881,
77
+ "learning_rate": 9.999999999999999e-06,
78
+ "loss": 5.0282,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09386666666666667,
83
+ "grad_norm": 3.559446532055649,
84
+ "learning_rate": 1.041392685158225e-05,
85
+ "loss": 4.612,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.1024,
90
+ "grad_norm": 3.5528846947995674,
91
+ "learning_rate": 1.0791812460476248e-05,
92
+ "loss": 4.9475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.11093333333333333,
97
+ "grad_norm": 3.541968897471334,
98
+ "learning_rate": 1.1139433523068365e-05,
99
+ "loss": 4.2777,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11946666666666667,
104
+ "grad_norm": 3.54718070036198,
105
+ "learning_rate": 1.1461280356782378e-05,
106
+ "loss": 4.3507,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.128,
111
+ "grad_norm": 3.8632334830606747,
112
+ "learning_rate": 1.1760912590556813e-05,
113
+ "loss": 4.5364,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13653333333333334,
118
+ "grad_norm": 3.6637424744054004,
119
+ "learning_rate": 1.2041199826559246e-05,
120
+ "loss": 3.9672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.14506666666666668,
125
+ "grad_norm": 3.919802904818311,
126
+ "learning_rate": 1.230448921378274e-05,
127
+ "loss": 4.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1536,
132
+ "grad_norm": 4.71904950738746,
133
+ "learning_rate": 1.2552725051033058e-05,
134
+ "loss": 4.6656,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.16213333333333332,
139
+ "grad_norm": 4.6656317698690835,
140
+ "learning_rate": 1.2787536009528288e-05,
141
+ "loss": 4.1131,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17066666666666666,
146
+ "grad_norm": 5.145138692367417,
147
+ "learning_rate": 1.301029995663981e-05,
148
+ "loss": 4.0989,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1792,
153
+ "grad_norm": 5.923538014759818,
154
+ "learning_rate": 1.3222192947339192e-05,
155
+ "loss": 4.4991,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18773333333333334,
160
+ "grad_norm": 5.941056962941364,
161
+ "learning_rate": 1.3424226808222062e-05,
162
+ "loss": 4.0836,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19626666666666667,
167
+ "grad_norm": 6.171026012117947,
168
+ "learning_rate": 1.3617278360175927e-05,
169
+ "loss": 3.6861,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.2048,
174
+ "grad_norm": 7.130542138930838,
175
+ "learning_rate": 1.380211241711606e-05,
176
+ "loss": 4.0958,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21333333333333335,
181
+ "grad_norm": 7.328837606110418,
182
+ "learning_rate": 1.3979400086720374e-05,
183
+ "loss": 3.9524,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.22186666666666666,
188
+ "grad_norm": 6.923489005711429,
189
+ "learning_rate": 1.4149733479708178e-05,
190
+ "loss": 3.6062,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.2304,
195
+ "grad_norm": 6.409498926059221,
196
+ "learning_rate": 1.4313637641589872e-05,
197
+ "loss": 3.2034,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23893333333333333,
202
+ "grad_norm": 5.781628405584682,
203
+ "learning_rate": 1.4471580313422191e-05,
204
+ "loss": 2.8158,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24746666666666667,
209
+ "grad_norm": 6.2927590068243315,
210
+ "learning_rate": 1.4623979978989559e-05,
211
+ "loss": 2.9803,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.256,
216
+ "grad_norm": 6.103844678630006,
217
+ "learning_rate": 1.4771212547196623e-05,
218
+ "loss": 2.847,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26453333333333334,
223
+ "grad_norm": 7.656341925867144,
224
+ "learning_rate": 1.4913616938342726e-05,
225
+ "loss": 3.0907,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.2730666666666667,
230
+ "grad_norm": 6.324242877501844,
231
+ "learning_rate": 1.5051499783199059e-05,
232
+ "loss": 2.3467,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2816,
237
+ "grad_norm": 7.606313101162739,
238
+ "learning_rate": 1.5185139398778874e-05,
239
+ "loss": 2.5292,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.29013333333333335,
244
+ "grad_norm": 8.553792493849265,
245
+ "learning_rate": 1.531478917042255e-05,
246
+ "loss": 2.4547,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2986666666666667,
251
+ "grad_norm": 8.483368703272543,
252
+ "learning_rate": 1.5440680443502753e-05,
253
+ "loss": 2.1956,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3072,
258
+ "grad_norm": 8.364739352838077,
259
+ "learning_rate": 1.5563025007672873e-05,
260
+ "loss": 1.8552,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3157333333333333,
265
+ "grad_norm": 9.37663682000104,
266
+ "learning_rate": 1.5682017240669948e-05,
267
+ "loss": 1.9228,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.32426666666666665,
272
+ "grad_norm": 9.823047193440066,
273
+ "learning_rate": 1.57978359661681e-05,
274
+ "loss": 1.7033,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3328,
279
+ "grad_norm": 9.692618512955894,
280
+ "learning_rate": 1.591064607026499e-05,
281
+ "loss": 1.3768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3413333333333333,
286
+ "grad_norm": 9.08889021911031,
287
+ "learning_rate": 1.6020599913279622e-05,
288
+ "loss": 1.3015,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.34986666666666666,
293
+ "grad_norm": 8.081534221516058,
294
+ "learning_rate": 1.6127838567197353e-05,
295
+ "loss": 0.9228,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.3584,
300
+ "grad_norm": 6.238638048950311,
301
+ "learning_rate": 1.6232492903979005e-05,
302
+ "loss": 0.7267,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36693333333333333,
307
+ "grad_norm": 3.4058036861773604,
308
+ "learning_rate": 1.6334684555795865e-05,
309
+ "loss": 0.5875,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37546666666666667,
314
+ "grad_norm": 2.079163829467713,
315
+ "learning_rate": 1.6434526764861872e-05,
316
+ "loss": 0.6355,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.384,
321
+ "grad_norm": 1.5597487833024746,
322
+ "learning_rate": 1.6532125137753435e-05,
323
+ "loss": 0.5106,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39253333333333335,
328
+ "grad_norm": 2.491689602375256,
329
+ "learning_rate": 1.662757831681574e-05,
330
+ "loss": 0.6454,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4010666666666667,
335
+ "grad_norm": 2.010880438195854,
336
+ "learning_rate": 1.672097857935717e-05,
337
+ "loss": 0.4757,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.4096,
342
+ "grad_norm": 1.9452805114322096,
343
+ "learning_rate": 1.681241237375587e-05,
344
+ "loss": 0.4133,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.41813333333333336,
349
+ "grad_norm": 1.7620848552306103,
350
+ "learning_rate": 1.6901960800285137e-05,
351
+ "loss": 0.4004,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4266666666666667,
356
+ "grad_norm": 1.278224489774809,
357
+ "learning_rate": 1.6989700043360187e-05,
358
+ "loss": 0.3523,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4352,
363
+ "grad_norm": 1.6151354758303231,
364
+ "learning_rate": 1.7075701760979363e-05,
365
+ "loss": 0.4317,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4437333333333333,
370
+ "grad_norm": 1.3451396055695035,
371
+ "learning_rate": 1.716003343634799e-05,
372
+ "loss": 0.3474,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.45226666666666665,
377
+ "grad_norm": 1.6814977782362666,
378
+ "learning_rate": 1.724275869600789e-05,
379
+ "loss": 0.3706,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.4608,
384
+ "grad_norm": 1.1682442432688667,
385
+ "learning_rate": 1.7323937598229687e-05,
386
+ "loss": 0.3488,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4693333333333333,
391
+ "grad_norm": 0.8839814540462471,
392
+ "learning_rate": 1.7403626894942437e-05,
393
+ "loss": 0.293,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47786666666666666,
398
+ "grad_norm": 0.7974304806295485,
399
+ "learning_rate": 1.7481880270062003e-05,
400
+ "loss": 0.2717,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.4864,
405
+ "grad_norm": 0.6232203657585239,
406
+ "learning_rate": 1.7558748556724913e-05,
407
+ "loss": 0.1741,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49493333333333334,
412
+ "grad_norm": 0.6850688604563008,
413
+ "learning_rate": 1.763427993562937e-05,
414
+ "loss": 0.228,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5034666666666666,
419
+ "grad_norm": 0.5923826384300431,
420
+ "learning_rate": 1.7708520116421443e-05,
421
+ "loss": 0.2131,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.512,
426
+ "grad_norm": 0.489754430485032,
427
+ "learning_rate": 1.7781512503836432e-05,
428
+ "loss": 0.165,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5205333333333333,
433
+ "grad_norm": 0.5280940052395061,
434
+ "learning_rate": 1.7853298350107667e-05,
435
+ "loss": 0.1658,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5290666666666667,
440
+ "grad_norm": 0.4750905992036739,
441
+ "learning_rate": 1.7923916894982537e-05,
442
+ "loss": 0.1438,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5376,
447
+ "grad_norm": 0.4162998392722401,
448
+ "learning_rate": 1.7993405494535815e-05,
449
+ "loss": 0.1555,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5461333333333334,
454
+ "grad_norm": 0.26863266246370443,
455
+ "learning_rate": 1.806179973983887e-05,
456
+ "loss": 0.1323,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5546666666666666,
461
+ "grad_norm": 0.26534221125601215,
462
+ "learning_rate": 1.8129133566428553e-05,
463
+ "loss": 0.1671,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5632,
468
+ "grad_norm": 0.2548662962257576,
469
+ "learning_rate": 1.8195439355418686e-05,
470
+ "loss": 0.1308,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5717333333333333,
475
+ "grad_norm": 0.18045394638578796,
476
+ "learning_rate": 1.8260748027008263e-05,
477
+ "loss": 0.1262,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5802666666666667,
482
+ "grad_norm": 0.17070388073612064,
483
+ "learning_rate": 1.8325089127062364e-05,
484
+ "loss": 0.1192,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5888,
489
+ "grad_norm": 0.1531381679244776,
490
+ "learning_rate": 1.8388490907372553e-05,
491
+ "loss": 0.1274,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5973333333333334,
496
+ "grad_norm": 0.18196434993687946,
497
+ "learning_rate": 1.8450980400142568e-05,
498
+ "loss": 0.1375,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6058666666666667,
503
+ "grad_norm": 0.15324416972951205,
504
+ "learning_rate": 1.8512583487190752e-05,
505
+ "loss": 0.1599,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6144,
510
+ "grad_norm": 0.10884462064503801,
511
+ "learning_rate": 1.857332496431268e-05,
512
+ "loss": 0.1041,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6229333333333333,
517
+ "grad_norm": 0.12915133528192668,
518
+ "learning_rate": 1.8633228601204555e-05,
519
+ "loss": 0.1406,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6314666666666666,
524
+ "grad_norm": 0.12553425699952878,
525
+ "learning_rate": 1.8692317197309763e-05,
526
+ "loss": 0.1256,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "grad_norm": 0.11976960918968543,
532
+ "learning_rate": 1.8750612633916997e-05,
533
+ "loss": 0.1144,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6485333333333333,
538
+ "grad_norm": 0.115805998298789,
539
+ "learning_rate": 1.8808135922807914e-05,
540
+ "loss": 0.1528,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6570666666666667,
545
+ "grad_norm": 0.10325948496697443,
546
+ "learning_rate": 1.8864907251724818e-05,
547
+ "loss": 0.1044,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6656,
552
+ "grad_norm": 0.09595064346541006,
553
+ "learning_rate": 1.8920946026904802e-05,
554
+ "loss": 0.1534,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6741333333333334,
559
+ "grad_norm": 0.08796742845240496,
560
+ "learning_rate": 1.8976270912904414e-05,
561
+ "loss": 0.1155,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6826666666666666,
566
+ "grad_norm": 0.08218991738379527,
567
+ "learning_rate": 1.9030899869919434e-05,
568
+ "loss": 0.1311,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6912,
573
+ "grad_norm": 0.08290815261109215,
574
+ "learning_rate": 1.9084850188786497e-05,
575
+ "loss": 0.11,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.6997333333333333,
580
+ "grad_norm": 0.0794132180176064,
581
+ "learning_rate": 1.9138138523837165e-05,
582
+ "loss": 0.1135,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7082666666666667,
587
+ "grad_norm": 0.06934410705255296,
588
+ "learning_rate": 1.919078092376074e-05,
589
+ "loss": 0.109,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.7168,
594
+ "grad_norm": 0.09000563031870593,
595
+ "learning_rate": 1.9242792860618813e-05,
596
+ "loss": 0.12,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7253333333333334,
601
+ "grad_norm": 0.1134042277879818,
602
+ "learning_rate": 1.929418925714293e-05,
603
+ "loss": 0.1223,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7338666666666667,
608
+ "grad_norm": 0.09118764690233076,
609
+ "learning_rate": 1.9344984512435673e-05,
610
+ "loss": 0.1459,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7424,
615
+ "grad_norm": 0.07873016754353963,
616
+ "learning_rate": 1.9395192526186183e-05,
617
+ "loss": 0.1422,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7509333333333333,
622
+ "grad_norm": 0.1796495874463076,
623
+ "learning_rate": 1.9444826721501687e-05,
624
+ "loss": 0.1291,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7594666666666666,
629
+ "grad_norm": 0.0679589944174269,
630
+ "learning_rate": 1.9493900066449125e-05,
631
+ "loss": 0.108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.768,
636
+ "grad_norm": 0.08174688574235538,
637
+ "learning_rate": 1.9542425094393246e-05,
638
+ "loss": 0.1081,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7765333333333333,
643
+ "grad_norm": 0.057137370501406756,
644
+ "learning_rate": 1.9590413923210934e-05,
645
+ "loss": 0.0934,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7850666666666667,
650
+ "grad_norm": 0.06578111924908255,
651
+ "learning_rate": 1.9637878273455555e-05,
652
+ "loss": 0.1085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7936,
657
+ "grad_norm": 0.08945990540906254,
658
+ "learning_rate": 1.968482948553935e-05,
659
+ "loss": 0.1747,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8021333333333334,
664
+ "grad_norm": 0.06183863311044229,
665
+ "learning_rate": 1.9731278535996986e-05,
666
+ "loss": 0.1136,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.8106666666666666,
671
+ "grad_norm": 0.05777899602544702,
672
+ "learning_rate": 1.9777236052888476e-05,
673
+ "loss": 0.0984,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8192,
678
+ "grad_norm": 0.08130851607693534,
679
+ "learning_rate": 1.9822712330395683e-05,
680
+ "loss": 0.187,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8277333333333333,
685
+ "grad_norm": 0.06426546202002927,
686
+ "learning_rate": 1.986771734266245e-05,
687
+ "loss": 0.1296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8362666666666667,
692
+ "grad_norm": 0.069692313707994,
693
+ "learning_rate": 1.991226075692495e-05,
694
+ "loss": 0.1404,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8448,
699
+ "grad_norm": 0.05494542266886729,
700
+ "learning_rate": 1.9956351945975496e-05,
701
+ "loss": 0.116,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8533333333333334,
706
+ "grad_norm": 0.07571686966840627,
707
+ "learning_rate": 1.9999999999999998e-05,
708
+ "loss": 0.1539,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8618666666666667,
713
+ "grad_norm": 0.054351059117603705,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.1037,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8704,
720
+ "grad_norm": 0.06531899611551092,
721
+ "learning_rate": 2e-05,
722
+ "loss": 0.0827,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8789333333333333,
727
+ "grad_norm": 0.06131678646504652,
728
+ "learning_rate": 2e-05,
729
+ "loss": 0.1266,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8874666666666666,
734
+ "grad_norm": 0.06850220540661824,
735
+ "learning_rate": 2e-05,
736
+ "loss": 0.1456,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.896,
741
+ "grad_norm": 0.05806908951252483,
742
+ "learning_rate": 2e-05,
743
+ "loss": 0.0954,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.9045333333333333,
748
+ "grad_norm": 0.06503642452033717,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.1417,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9130666666666667,
755
+ "grad_norm": 0.050486271853277066,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.0959,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9216,
762
+ "grad_norm": 0.07746063813802379,
763
+ "learning_rate": 2e-05,
764
+ "loss": 0.1256,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9301333333333334,
769
+ "grad_norm": 0.051231172380840004,
770
+ "learning_rate": 2e-05,
771
+ "loss": 0.1116,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9386666666666666,
776
+ "grad_norm": 0.056296443557859455,
777
+ "learning_rate": 2e-05,
778
+ "loss": 0.1056,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9472,
783
+ "grad_norm": 0.05058663240713958,
784
+ "learning_rate": 2e-05,
785
+ "loss": 0.0971,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9557333333333333,
790
+ "grad_norm": 0.05532886570130611,
791
+ "learning_rate": 2e-05,
792
+ "loss": 0.1086,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9642666666666667,
797
+ "grad_norm": 0.05327811326654907,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0989,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9728,
804
+ "grad_norm": 0.05663279364147864,
805
+ "learning_rate": 2e-05,
806
+ "loss": 0.0958,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9813333333333333,
811
+ "grad_norm": 0.04930904541225805,
812
+ "learning_rate": 2e-05,
813
+ "loss": 0.0887,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9898666666666667,
818
+ "grad_norm": 0.06096947951115022,
819
+ "learning_rate": 2e-05,
820
+ "loss": 0.106,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.9984,
825
+ "grad_norm": 0.050092322361182495,
826
+ "learning_rate": 2e-05,
827
+ "loss": 0.0931,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0069333333333332,
832
+ "grad_norm": 0.04980408443758999,
833
+ "learning_rate": 2e-05,
834
+ "loss": 0.0955,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.0154666666666667,
839
+ "grad_norm": 0.051183082721834305,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.1049,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.024,
846
+ "grad_norm": 0.04332220265802814,
847
+ "learning_rate": 2e-05,
848
+ "loss": 0.0983,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0325333333333333,
853
+ "grad_norm": 0.07211731499677299,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.1386,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0410666666666666,
860
+ "grad_norm": 0.06550870223740553,
861
+ "learning_rate": 2e-05,
862
+ "loss": 0.1334,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0496,
867
+ "grad_norm": 0.05331839690767287,
868
+ "learning_rate": 2e-05,
869
+ "loss": 0.1014,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0581333333333334,
874
+ "grad_norm": 0.05227685628767905,
875
+ "learning_rate": 2e-05,
876
+ "loss": 0.1098,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0666666666666667,
881
+ "grad_norm": 0.07641693882491171,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.1127,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0752,
888
+ "grad_norm": 0.052835367770791786,
889
+ "learning_rate": 2e-05,
890
+ "loss": 0.1231,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0837333333333334,
895
+ "grad_norm": 0.07520329755025788,
896
+ "learning_rate": 2e-05,
897
+ "loss": 0.085,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0922666666666667,
902
+ "grad_norm": 0.07670066152157425,
903
+ "learning_rate": 2e-05,
904
+ "loss": 0.1071,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1008,
909
+ "grad_norm": 0.052832906560645154,
910
+ "learning_rate": 2e-05,
911
+ "loss": 0.1093,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1093333333333333,
916
+ "grad_norm": 0.06573889037311398,
917
+ "learning_rate": 2e-05,
918
+ "loss": 0.1193,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1178666666666666,
923
+ "grad_norm": 0.05175471296566334,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.1184,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1264,
930
+ "grad_norm": 0.05912231419793496,
931
+ "learning_rate": 2e-05,
932
+ "loss": 0.1154,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1349333333333333,
937
+ "grad_norm": 0.04899140475981105,
938
+ "learning_rate": 2e-05,
939
+ "loss": 0.0957,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1434666666666666,
944
+ "grad_norm": 0.05939916939142137,
945
+ "learning_rate": 2e-05,
946
+ "loss": 0.0979,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.152,
951
+ "grad_norm": 0.0516819217599706,
952
+ "learning_rate": 2e-05,
953
+ "loss": 0.0834,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1605333333333334,
958
+ "grad_norm": 0.05456440346454737,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.1183,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.1690666666666667,
965
+ "grad_norm": 0.059906464476343235,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.1048,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1776,
972
+ "grad_norm": 0.0720112680204319,
973
+ "learning_rate": 2e-05,
974
+ "loss": 0.1168,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.1861333333333333,
979
+ "grad_norm": 0.04940202805828527,
980
+ "learning_rate": 2e-05,
981
+ "loss": 0.0948,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1946666666666665,
986
+ "grad_norm": 0.060088609545130046,
987
+ "learning_rate": 2e-05,
988
+ "loss": 0.0952,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.2032,
993
+ "grad_norm": 0.04694761423612446,
994
+ "learning_rate": 2e-05,
995
+ "loss": 0.0717,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2117333333333333,
1000
+ "grad_norm": 0.05628581562512457,
1001
+ "learning_rate": 2e-05,
1002
+ "loss": 0.1062,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2202666666666666,
1007
+ "grad_norm": 0.06876420990437652,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.1218,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2288000000000001,
1014
+ "grad_norm": 0.058774700501610655,
1015
+ "learning_rate": 2e-05,
1016
+ "loss": 0.1125,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2373333333333334,
1021
+ "grad_norm": 0.061855922064341186,
1022
+ "learning_rate": 2e-05,
1023
+ "loss": 0.1295,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2458666666666667,
1028
+ "grad_norm": 0.0813047704730138,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 0.1165,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2544,
1035
+ "grad_norm": 0.061374000305305446,
1036
+ "learning_rate": 2e-05,
1037
+ "loss": 0.1094,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.2629333333333332,
1042
+ "grad_norm": 0.055537169110833,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 0.1054,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2714666666666667,
1049
+ "grad_norm": 0.04423248714119304,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0841,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.28,
1056
+ "grad_norm": 0.049931966607835034,
1057
+ "learning_rate": 2e-05,
1058
+ "loss": 0.0961,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2885333333333333,
1063
+ "grad_norm": 0.06178656953298769,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.0854,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2970666666666666,
1070
+ "grad_norm": 0.05783812343287897,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 0.1141,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3056,
1077
+ "grad_norm": 0.048955120400167584,
1078
+ "learning_rate": 2e-05,
1079
+ "loss": 0.0947,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3141333333333334,
1084
+ "grad_norm": 0.12270174746806978,
1085
+ "learning_rate": 2e-05,
1086
+ "loss": 0.1553,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3226666666666667,
1091
+ "grad_norm": 0.06928026959973474,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.1274,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3312,
1098
+ "grad_norm": 0.04756100666105405,
1099
+ "learning_rate": 2e-05,
1100
+ "loss": 0.0893,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.3397333333333332,
1105
+ "grad_norm": 0.056054951338196934,
1106
+ "learning_rate": 2e-05,
1107
+ "loss": 0.0831,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3482666666666667,
1112
+ "grad_norm": 0.0516990471964239,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 0.0883,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.3568,
1119
+ "grad_norm": 0.06011650542069954,
1120
+ "learning_rate": 2e-05,
1121
+ "loss": 0.0938,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3653333333333333,
1126
+ "grad_norm": 0.051831307951873976,
1127
+ "learning_rate": 2e-05,
1128
+ "loss": 0.1019,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.3738666666666668,
1133
+ "grad_norm": 0.0544902702048936,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0906,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3824,
1140
+ "grad_norm": 0.06057617032526,
1141
+ "learning_rate": 2e-05,
1142
+ "loss": 0.1206,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.3909333333333334,
1147
+ "grad_norm": 0.07288058025189605,
1148
+ "learning_rate": 2e-05,
1149
+ "loss": 0.1175,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.3994666666666666,
1154
+ "grad_norm": 0.05639043792084219,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 0.1031,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.408,
1161
+ "grad_norm": 0.0586469408837505,
1162
+ "learning_rate": 2e-05,
1163
+ "loss": 0.1143,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4165333333333332,
1168
+ "grad_norm": 0.059243429040783904,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.0838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4250666666666667,
1175
+ "grad_norm": 0.0621476448363388,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.1032,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.4336,
1182
+ "grad_norm": 0.06083867682720169,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1119,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4421333333333333,
1189
+ "grad_norm": 0.09583165335305677,
1190
+ "learning_rate": 2e-05,
1191
+ "loss": 0.1028,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.4506666666666668,
1196
+ "grad_norm": 0.06411638581314043,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 0.1181,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4592,
1203
+ "grad_norm": 0.05632977234908945,
1204
+ "learning_rate": 2e-05,
1205
+ "loss": 0.1055,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4677333333333333,
1210
+ "grad_norm": 0.05666068971337413,
1211
+ "learning_rate": 2e-05,
1212
+ "loss": 0.1116,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4762666666666666,
1217
+ "grad_norm": 0.04502062723807536,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 0.0588,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4848,
1224
+ "grad_norm": 0.05916500176868301,
1225
+ "learning_rate": 2e-05,
1226
+ "loss": 0.0949,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4933333333333334,
1231
+ "grad_norm": 0.056484273808864845,
1232
+ "learning_rate": 2e-05,
1233
+ "loss": 0.0948,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5018666666666667,
1238
+ "grad_norm": 0.06652084448571674,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 0.1086,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5104,
1245
+ "grad_norm": 0.05400238078068516,
1246
+ "learning_rate": 2e-05,
1247
+ "loss": 0.0919,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5189333333333335,
1252
+ "grad_norm": 0.04979579743346662,
1253
+ "learning_rate": 2e-05,
1254
+ "loss": 0.0879,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5274666666666668,
1259
+ "grad_norm": 0.06876105414733971,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 0.1162,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.536,
1266
+ "grad_norm": 0.05633262015499721,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 0.1142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.5445333333333333,
1273
+ "grad_norm": 0.0599508967519892,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.1073,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5530666666666666,
1280
+ "grad_norm": 0.058912170976454126,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 0.1102,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.5615999999999999,
1287
+ "grad_norm": 0.05361414988566254,
1288
+ "learning_rate": 2e-05,
1289
+ "loss": 0.0885,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5701333333333334,
1294
+ "grad_norm": 0.04517277847384077,
1295
+ "learning_rate": 2e-05,
1296
+ "loss": 0.0763,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5786666666666667,
1301
+ "grad_norm": 0.05551553662051771,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 0.0877,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5872000000000002,
1308
+ "grad_norm": 0.05814223969236194,
1309
+ "learning_rate": 2e-05,
1310
+ "loss": 0.1044,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5957333333333334,
1315
+ "grad_norm": 0.05710054166191597,
1316
+ "learning_rate": 2e-05,
1317
+ "loss": 0.0962,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.6042666666666667,
1322
+ "grad_norm": 0.054744343932104075,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 0.0873,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6128,
1329
+ "grad_norm": 0.051145521687090995,
1330
+ "learning_rate": 2e-05,
1331
+ "loss": 0.0855,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.6213333333333333,
1336
+ "grad_norm": 0.05414658860737789,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 0.0872,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6298666666666666,
1343
+ "grad_norm": 0.05084744595533029,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 0.0891,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.6383999999999999,
1350
+ "grad_norm": 0.0567070082820597,
1351
+ "learning_rate": 2e-05,
1352
+ "loss": 0.0965,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6469333333333334,
1357
+ "grad_norm": 0.0494785311411315,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.0941,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.6554666666666666,
1364
+ "grad_norm": 0.062341158530385396,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 0.1154,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6640000000000001,
1371
+ "grad_norm": 0.059888336716275685,
1372
+ "learning_rate": 2e-05,
1373
+ "loss": 0.1037,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6725333333333334,
1378
+ "grad_norm": 0.07346562318829057,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.1329,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6810666666666667,
1385
+ "grad_norm": 0.0792360016934733,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.1392,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6896,
1392
+ "grad_norm": 0.0800342963229883,
1393
+ "learning_rate": 2e-05,
1394
+ "loss": 0.1199,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.6981333333333333,
1399
+ "grad_norm": 0.06848045933195548,
1400
+ "learning_rate": 2e-05,
1401
+ "loss": 0.0998,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7066666666666666,
1406
+ "grad_norm": 0.05743199019316764,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 0.0811,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.7151999999999998,
1413
+ "grad_norm": 0.07170531168284446,
1414
+ "learning_rate": 2e-05,
1415
+ "loss": 0.1079,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7237333333333333,
1420
+ "grad_norm": 0.05772905481368506,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 0.0844,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.7322666666666666,
1427
+ "grad_norm": 0.07504946014098464,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 0.1257,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7408000000000001,
1434
+ "grad_norm": 0.06450179819785838,
1435
+ "learning_rate": 2e-05,
1436
+ "loss": 0.1104,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7493333333333334,
1441
+ "grad_norm": 0.06595445965110332,
1442
+ "learning_rate": 2e-05,
1443
+ "loss": 0.093,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7578666666666667,
1448
+ "grad_norm": 0.07203558121131749,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 0.1117,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7664,
1455
+ "grad_norm": 0.05954646782409283,
1456
+ "learning_rate": 2e-05,
1457
+ "loss": 0.0729,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7749333333333333,
1462
+ "grad_norm": 0.06624894584410884,
1463
+ "learning_rate": 2e-05,
1464
+ "loss": 0.0998,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7834666666666665,
1469
+ "grad_norm": 0.06888562028256219,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 0.1398,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.792,
1476
+ "grad_norm": 0.061224088077794406,
1477
+ "learning_rate": 2e-05,
1478
+ "loss": 0.1112,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8005333333333333,
1483
+ "grad_norm": 0.06857358883856608,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.1293,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.8090666666666668,
1490
+ "grad_norm": 0.06177352416779139,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 0.0884,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8176,
1497
+ "grad_norm": 0.08324567429925228,
1498
+ "learning_rate": 2e-05,
1499
+ "loss": 0.1127,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8261333333333334,
1504
+ "grad_norm": 0.06771677297787752,
1505
+ "learning_rate": 2e-05,
1506
+ "loss": 0.089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8346666666666667,
1511
+ "grad_norm": 0.07055754809472485,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 0.1206,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8432,
1518
+ "grad_norm": 0.05856797724392531,
1519
+ "learning_rate": 2e-05,
1520
+ "loss": 0.0893,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8517333333333332,
1525
+ "grad_norm": 0.07555286129801597,
1526
+ "learning_rate": 2e-05,
1527
+ "loss": 0.0913,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8602666666666665,
1532
+ "grad_norm": 0.09242462538643775,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 0.1241,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8688,
1539
+ "grad_norm": 0.06550805537088374,
1540
+ "learning_rate": 2e-05,
1541
+ "loss": 0.0819,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8773333333333333,
1546
+ "grad_norm": 0.06016048263236861,
1547
+ "learning_rate": 2e-05,
1548
+ "loss": 0.0955,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8858666666666668,
1553
+ "grad_norm": 0.06856661106001445,
1554
+ "learning_rate": 2e-05,
1555
+ "loss": 0.1132,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8944,
1560
+ "grad_norm": 0.06383306455000529,
1561
+ "learning_rate": 2e-05,
1562
+ "loss": 0.1086,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9029333333333334,
1567
+ "grad_norm": 0.07240472757239624,
1568
+ "learning_rate": 2e-05,
1569
+ "loss": 0.0863,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9114666666666666,
1574
+ "grad_norm": 0.07845654471077741,
1575
+ "learning_rate": 2e-05,
1576
+ "loss": 0.1284,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.92,
1581
+ "grad_norm": 0.07192185833649212,
1582
+ "learning_rate": 2e-05,
1583
+ "loss": 0.1101,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9285333333333332,
1588
+ "grad_norm": 0.06390598005596872,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.0917,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9370666666666667,
1595
+ "grad_norm": 0.06306138712432224,
1596
+ "learning_rate": 2e-05,
1597
+ "loss": 0.0936,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9456,
1602
+ "grad_norm": 0.06771381941296478,
1603
+ "learning_rate": 2e-05,
1604
+ "loss": 0.0936,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9541333333333335,
1609
+ "grad_norm": 0.05899006803461524,
1610
+ "learning_rate": 2e-05,
1611
+ "loss": 0.0782,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.9626666666666668,
1616
+ "grad_norm": 0.07426956281950735,
1617
+ "learning_rate": 2e-05,
1618
+ "loss": 0.1095,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9712,
1623
+ "grad_norm": 0.06567534902293475,
1624
+ "learning_rate": 2e-05,
1625
+ "loss": 0.0956,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.9797333333333333,
1630
+ "grad_norm": 0.07430395142282198,
1631
+ "learning_rate": 2e-05,
1632
+ "loss": 0.0957,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9882666666666666,
1637
+ "grad_norm": 0.05834447367264806,
1638
+ "learning_rate": 2e-05,
1639
+ "loss": 0.0767,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.9968,
1644
+ "grad_norm": 0.07137090413877054,
1645
+ "learning_rate": 2e-05,
1646
+ "loss": 0.0821,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.005333333333333,
1651
+ "grad_norm": 0.07797914240805551,
1652
+ "learning_rate": 2e-05,
1653
+ "loss": 0.1175,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.0138666666666665,
1658
+ "grad_norm": 0.09335648879374187,
1659
+ "learning_rate": 2e-05,
1660
+ "loss": 0.1632,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0224,
1665
+ "grad_norm": 0.08280719749100944,
1666
+ "learning_rate": 2e-05,
1667
+ "loss": 0.115,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.0309333333333335,
1672
+ "grad_norm": 0.08956213539053312,
1673
+ "learning_rate": 2e-05,
1674
+ "loss": 0.109,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0394666666666668,
1679
+ "grad_norm": 0.08849786687188893,
1680
+ "learning_rate": 2e-05,
1681
+ "loss": 0.1234,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.048,
1686
+ "grad_norm": 0.16956065138312856,
1687
+ "learning_rate": 2e-05,
1688
+ "loss": 0.1055,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 2.0565333333333333,
1693
+ "grad_norm": 0.07377723133015779,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.1068,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 2.0650666666666666,
1700
+ "grad_norm": 0.08839651322303756,
1701
+ "learning_rate": 2e-05,
1702
+ "loss": 0.0965,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 2.0736,
1707
+ "grad_norm": 0.10641135540308218,
1708
+ "learning_rate": 2e-05,
1709
+ "loss": 0.0887,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 2.082133333333333,
1714
+ "grad_norm": 0.09370442613891326,
1715
+ "learning_rate": 2e-05,
1716
+ "loss": 0.0931,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 2.0906666666666665,
1721
+ "grad_norm": 0.08988093042206098,
1722
+ "learning_rate": 2e-05,
1723
+ "loss": 0.1201,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 2.0992,
1728
+ "grad_norm": 0.07167309696967938,
1729
+ "learning_rate": 2e-05,
1730
+ "loss": 0.0747,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 2.1077333333333335,
1735
+ "grad_norm": 0.08822161286881192,
1736
+ "learning_rate": 2e-05,
1737
+ "loss": 0.1044,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 2.1162666666666667,
1742
+ "grad_norm": 0.08439713613775747,
1743
+ "learning_rate": 2e-05,
1744
+ "loss": 0.1063,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 2.1248,
1749
+ "grad_norm": 0.0942232139678121,
1750
+ "learning_rate": 2e-05,
1751
+ "loss": 0.0865,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.1333333333333333,
1756
+ "grad_norm": 0.1066306844906037,
1757
+ "learning_rate": 2e-05,
1758
+ "loss": 0.1198,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.1418666666666666,
1763
+ "grad_norm": 0.10435492421714423,
1764
+ "learning_rate": 2e-05,
1765
+ "loss": 0.0968,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 2.1504,
1770
+ "grad_norm": 0.10513719348492025,
1771
+ "learning_rate": 2e-05,
1772
+ "loss": 0.1045,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 2.158933333333333,
1777
+ "grad_norm": 0.12580299248756027,
1778
+ "learning_rate": 2e-05,
1779
+ "loss": 0.0941,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 2.167466666666667,
1784
+ "grad_norm": 0.10265943183351584,
1785
+ "learning_rate": 2e-05,
1786
+ "loss": 0.0892,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 2.176,
1791
+ "grad_norm": 0.09473119803029131,
1792
+ "learning_rate": 2e-05,
1793
+ "loss": 0.0721,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 2.1845333333333334,
1798
+ "grad_norm": 0.13420988295622846,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.1034,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 2.1930666666666667,
1805
+ "grad_norm": 0.11474592330595303,
1806
+ "learning_rate": 2e-05,
1807
+ "loss": 0.1095,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 2.2016,
1812
+ "grad_norm": 0.12382914500613644,
1813
+ "learning_rate": 2e-05,
1814
+ "loss": 0.0947,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 2.2101333333333333,
1819
+ "grad_norm": 0.12984065755657193,
1820
+ "learning_rate": 2e-05,
1821
+ "loss": 0.0888,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 2.2186666666666666,
1826
+ "grad_norm": 0.14210964340218168,
1827
+ "learning_rate": 2e-05,
1828
+ "loss": 0.105,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 2.2272,
1833
+ "grad_norm": 0.13862185852250883,
1834
+ "learning_rate": 2e-05,
1835
+ "loss": 0.0876,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 2.235733333333333,
1840
+ "grad_norm": 0.17284047904822364,
1841
+ "learning_rate": 2e-05,
1842
+ "loss": 0.0935,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 2.244266666666667,
1847
+ "grad_norm": 0.1409465306152598,
1848
+ "learning_rate": 2e-05,
1849
+ "loss": 0.1032,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 2.2528,
1854
+ "grad_norm": 0.15551418258816738,
1855
+ "learning_rate": 2e-05,
1856
+ "loss": 0.0871,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 2.2613333333333334,
1861
+ "grad_norm": 0.1741617194945442,
1862
+ "learning_rate": 2e-05,
1863
+ "loss": 0.098,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 2.2698666666666667,
1868
+ "grad_norm": 0.18387218423978585,
1869
+ "learning_rate": 2e-05,
1870
+ "loss": 0.1168,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 2.2784,
1875
+ "grad_norm": 0.21744684782545962,
1876
+ "learning_rate": 2e-05,
1877
+ "loss": 0.1061,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 2.2869333333333333,
1882
+ "grad_norm": 0.17372673806896413,
1883
+ "learning_rate": 2e-05,
1884
+ "loss": 0.0927,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 2.2954666666666665,
1889
+ "grad_norm": 0.20890400134226653,
1890
+ "learning_rate": 2e-05,
1891
+ "loss": 0.0874,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 2.304,
1896
+ "grad_norm": 0.20279172920289834,
1897
+ "learning_rate": 2e-05,
1898
+ "loss": 0.0807,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 2.3125333333333336,
1903
+ "grad_norm": 0.23060543242200862,
1904
+ "learning_rate": 2e-05,
1905
+ "loss": 0.0937,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 2.321066666666667,
1910
+ "grad_norm": 0.2866337268131343,
1911
+ "learning_rate": 2e-05,
1912
+ "loss": 0.0886,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 2.3296,
1917
+ "grad_norm": 0.3203014162518504,
1918
+ "learning_rate": 2e-05,
1919
+ "loss": 0.0741,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 2.3381333333333334,
1924
+ "grad_norm": 0.2702455454246614,
1925
+ "learning_rate": 2e-05,
1926
+ "loss": 0.0692,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 2.3466666666666667,
1931
+ "grad_norm": 0.30682595841991545,
1932
+ "learning_rate": 2e-05,
1933
+ "loss": 0.0733,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 2.3552,
1938
+ "grad_norm": 0.2844580109974713,
1939
+ "learning_rate": 2e-05,
1940
+ "loss": 0.0979,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 2.3637333333333332,
1945
+ "grad_norm": 0.31296149985818705,
1946
+ "learning_rate": 2e-05,
1947
+ "loss": 0.093,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 2.3722666666666665,
1952
+ "grad_norm": 0.24448590086634314,
1953
+ "learning_rate": 2e-05,
1954
+ "loss": 0.1078,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 2.3808,
1959
+ "grad_norm": 0.17626685777153123,
1960
+ "learning_rate": 2e-05,
1961
+ "loss": 0.0939,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 2.389333333333333,
1966
+ "grad_norm": 0.13337416253457104,
1967
+ "learning_rate": 2e-05,
1968
+ "loss": 0.0812,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 2.397866666666667,
1973
+ "grad_norm": 0.13083267651254354,
1974
+ "learning_rate": 2e-05,
1975
+ "loss": 0.0929,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 2.4064,
1980
+ "grad_norm": 0.10994823562004175,
1981
+ "learning_rate": 2e-05,
1982
+ "loss": 0.098,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 2.4149333333333334,
1987
+ "grad_norm": 0.11578539664581784,
1988
+ "learning_rate": 2e-05,
1989
+ "loss": 0.098,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 2.4234666666666667,
1994
+ "grad_norm": 0.13153226988739827,
1995
+ "learning_rate": 2e-05,
1996
+ "loss": 0.0865,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 2.432,
2001
+ "grad_norm": 0.14019083181189823,
2002
+ "learning_rate": 2e-05,
2003
+ "loss": 0.1058,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 2.440533333333333,
2008
+ "grad_norm": 0.15458456814813418,
2009
+ "learning_rate": 2e-05,
2010
+ "loss": 0.0961,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 2.4490666666666665,
2015
+ "grad_norm": 0.13535285938076497,
2016
+ "learning_rate": 2e-05,
2017
+ "loss": 0.0919,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 2.4576000000000002,
2022
+ "grad_norm": 0.13511973312198838,
2023
+ "learning_rate": 2e-05,
2024
+ "loss": 0.0917,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 2.4661333333333335,
2029
+ "grad_norm": 0.12593494881253786,
2030
+ "learning_rate": 2e-05,
2031
+ "loss": 0.0894,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 2.474666666666667,
2036
+ "grad_norm": 0.11749403519277489,
2037
+ "learning_rate": 2e-05,
2038
+ "loss": 0.0701,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 2.4832,
2043
+ "grad_norm": 0.09252484293260567,
2044
+ "learning_rate": 2e-05,
2045
+ "loss": 0.1034,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 2.4917333333333334,
2050
+ "grad_norm": 0.12694234802279894,
2051
+ "learning_rate": 2e-05,
2052
+ "loss": 0.1053,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 2.5002666666666666,
2057
+ "grad_norm": 0.08086766935276264,
2058
+ "learning_rate": 2e-05,
2059
+ "loss": 0.0645,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 2.5088,
2064
+ "grad_norm": 0.0761948300276639,
2065
+ "learning_rate": 2e-05,
2066
+ "loss": 0.0825,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 2.517333333333333,
2071
+ "grad_norm": 0.05469199783697831,
2072
+ "learning_rate": 2e-05,
2073
+ "loss": 0.0809,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 2.5258666666666665,
2078
+ "grad_norm": 0.052391133906216227,
2079
+ "learning_rate": 2e-05,
2080
+ "loss": 0.0702,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 2.5343999999999998,
2085
+ "grad_norm": 0.05612973089592643,
2086
+ "learning_rate": 2e-05,
2087
+ "loss": 0.0739,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 2.5429333333333335,
2092
+ "grad_norm": 0.06163544903262162,
2093
+ "learning_rate": 2e-05,
2094
+ "loss": 0.0787,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 2.5514666666666668,
2099
+ "grad_norm": 0.04805683850668383,
2100
+ "learning_rate": 2e-05,
2101
+ "loss": 0.0781,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 2.56,
2106
+ "grad_norm": 0.04677194701582553,
2107
+ "learning_rate": 2e-05,
2108
+ "loss": 0.0808,
2109
+ "step": 300
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1,
2113
+ "max_steps": 351,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 3,
2116
+ "save_steps": 20,
2117
+ "stateful_callbacks": {
2118
+ "TrainerControl": {
2119
+ "args": {
2120
+ "should_epoch_stop": false,
2121
+ "should_evaluate": false,
2122
+ "should_log": false,
2123
+ "should_save": true,
2124
+ "should_training_stop": false
2125
+ },
2126
+ "attributes": {}
2127
+ }
2128
+ },
2129
+ "total_flos": 4.2831937920617677e+18,
2130
+ "train_batch_size": 16,
2131
+ "trial_name": null,
2132
+ "trial_params": null
2133
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
3
+ size 6840
checkpoint-300/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)