Upload 220 to 300 steps of 351 steps.
Browse files- checkpoint-220/README.md +202 -0
- checkpoint-220/adapter_config.json +35 -0
- checkpoint-220/adapter_model.safetensors +3 -0
- checkpoint-220/global_step220/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-220/global_step220/mp_rank_00_model_states.pt +3 -0
- checkpoint-220/latest +1 -0
- checkpoint-220/rng_state.pth +3 -0
- checkpoint-220/trainer_state.json +1573 -0
- checkpoint-220/training_args.bin +3 -0
- checkpoint-220/zero_to_fp32.py +592 -0
- checkpoint-240/README.md +202 -0
- checkpoint-240/adapter_config.json +35 -0
- checkpoint-240/adapter_model.safetensors +3 -0
- checkpoint-240/global_step240/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-240/global_step240/mp_rank_00_model_states.pt +3 -0
- checkpoint-240/latest +1 -0
- checkpoint-240/rng_state.pth +3 -0
- checkpoint-240/trainer_state.json +1713 -0
- checkpoint-240/training_args.bin +3 -0
- checkpoint-240/zero_to_fp32.py +592 -0
- checkpoint-260/README.md +202 -0
- checkpoint-260/adapter_config.json +35 -0
- checkpoint-260/adapter_model.safetensors +3 -0
- checkpoint-260/global_step260/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-260/global_step260/mp_rank_00_model_states.pt +3 -0
- checkpoint-260/latest +1 -0
- checkpoint-260/rng_state.pth +3 -0
- checkpoint-260/trainer_state.json +1853 -0
- checkpoint-260/training_args.bin +3 -0
- checkpoint-260/zero_to_fp32.py +592 -0
- checkpoint-280/README.md +202 -0
- checkpoint-280/adapter_config.json +35 -0
- checkpoint-280/adapter_model.safetensors +3 -0
- checkpoint-280/global_step280/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-280/global_step280/mp_rank_00_model_states.pt +3 -0
- checkpoint-280/latest +1 -0
- checkpoint-280/rng_state.pth +3 -0
- checkpoint-280/trainer_state.json +1993 -0
- checkpoint-280/training_args.bin +3 -0
- checkpoint-280/zero_to_fp32.py +592 -0
- checkpoint-300/README.md +202 -0
- checkpoint-300/adapter_config.json +35 -0
- checkpoint-300/adapter_model.safetensors +3 -0
- checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-300/global_step300/mp_rank_00_model_states.pt +3 -0
- checkpoint-300/latest +1 -0
- checkpoint-300/rng_state.pth +3 -0
- checkpoint-300/trainer_state.json +2133 -0
- checkpoint-300/training_args.bin +3 -0
- checkpoint-300/zero_to_fp32.py +592 -0
checkpoint-220/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../ckpts/Meta-Llama-3-8B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-220/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"q_proj",
|
26 |
+
"lm_head",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"up_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-220/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c413d5a5e805e1f58ba270fcdc8af63e5253b13148b768003336b65d47375fb3
|
3 |
+
size 1138856856
|
checkpoint-220/global_step220/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56eb33ef90047b90033906762ef15e399b1c33901bd6b6892da3e1a287cca3a2
|
3 |
+
size 528781328
|
checkpoint-220/global_step220/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aa299524e2641ee382b7d61759463ce8bcfecc5cbe9ed4ecd043623206da055
|
3 |
+
size 199905337
|
checkpoint-220/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step220
|
checkpoint-220/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c48894345a22525b1e69a19e3f3dc55a1aeef79df93012160905d737bdd2a920
|
3 |
+
size 14244
|
checkpoint-220/trainer_state.json
ADDED
@@ -0,0 +1,1573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.8773333333333333,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 220,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008533333333333334,
|
13 |
+
"grad_norm": 100.21848203113535,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.1962,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.017066666666666667,
|
20 |
+
"grad_norm": 96.43006188910957,
|
21 |
+
"learning_rate": 3.0102999566398115e-06,
|
22 |
+
"loss": 6.9414,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0256,
|
27 |
+
"grad_norm": 97.35803466618715,
|
28 |
+
"learning_rate": 4.771212547196624e-06,
|
29 |
+
"loss": 7.0102,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.034133333333333335,
|
34 |
+
"grad_norm": 95.14837816372646,
|
35 |
+
"learning_rate": 6.020599913279623e-06,
|
36 |
+
"loss": 6.5295,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.042666666666666665,
|
41 |
+
"grad_norm": 91.76544275692784,
|
42 |
+
"learning_rate": 6.989700043360187e-06,
|
43 |
+
"loss": 6.4806,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0512,
|
48 |
+
"grad_norm": 84.4494318688335,
|
49 |
+
"learning_rate": 7.781512503836437e-06,
|
50 |
+
"loss": 6.4194,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05973333333333333,
|
55 |
+
"grad_norm": 71.37977490595638,
|
56 |
+
"learning_rate": 8.450980400142568e-06,
|
57 |
+
"loss": 5.4953,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06826666666666667,
|
62 |
+
"grad_norm": 49.31153456754566,
|
63 |
+
"learning_rate": 9.030899869919434e-06,
|
64 |
+
"loss": 5.4123,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0768,
|
69 |
+
"grad_norm": 20.37296364560341,
|
70 |
+
"learning_rate": 9.542425094393249e-06,
|
71 |
+
"loss": 5.2334,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08533333333333333,
|
76 |
+
"grad_norm": 7.968467079076881,
|
77 |
+
"learning_rate": 9.999999999999999e-06,
|
78 |
+
"loss": 5.0282,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09386666666666667,
|
83 |
+
"grad_norm": 3.559446532055649,
|
84 |
+
"learning_rate": 1.041392685158225e-05,
|
85 |
+
"loss": 4.612,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1024,
|
90 |
+
"grad_norm": 3.5528846947995674,
|
91 |
+
"learning_rate": 1.0791812460476248e-05,
|
92 |
+
"loss": 4.9475,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.11093333333333333,
|
97 |
+
"grad_norm": 3.541968897471334,
|
98 |
+
"learning_rate": 1.1139433523068365e-05,
|
99 |
+
"loss": 4.2777,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.11946666666666667,
|
104 |
+
"grad_norm": 3.54718070036198,
|
105 |
+
"learning_rate": 1.1461280356782378e-05,
|
106 |
+
"loss": 4.3507,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.128,
|
111 |
+
"grad_norm": 3.8632334830606747,
|
112 |
+
"learning_rate": 1.1760912590556813e-05,
|
113 |
+
"loss": 4.5364,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.13653333333333334,
|
118 |
+
"grad_norm": 3.6637424744054004,
|
119 |
+
"learning_rate": 1.2041199826559246e-05,
|
120 |
+
"loss": 3.9672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.14506666666666668,
|
125 |
+
"grad_norm": 3.919802904818311,
|
126 |
+
"learning_rate": 1.230448921378274e-05,
|
127 |
+
"loss": 4.0618,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1536,
|
132 |
+
"grad_norm": 4.71904950738746,
|
133 |
+
"learning_rate": 1.2552725051033058e-05,
|
134 |
+
"loss": 4.6656,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16213333333333332,
|
139 |
+
"grad_norm": 4.6656317698690835,
|
140 |
+
"learning_rate": 1.2787536009528288e-05,
|
141 |
+
"loss": 4.1131,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.17066666666666666,
|
146 |
+
"grad_norm": 5.145138692367417,
|
147 |
+
"learning_rate": 1.301029995663981e-05,
|
148 |
+
"loss": 4.0989,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1792,
|
153 |
+
"grad_norm": 5.923538014759818,
|
154 |
+
"learning_rate": 1.3222192947339192e-05,
|
155 |
+
"loss": 4.4991,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.18773333333333334,
|
160 |
+
"grad_norm": 5.941056962941364,
|
161 |
+
"learning_rate": 1.3424226808222062e-05,
|
162 |
+
"loss": 4.0836,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.19626666666666667,
|
167 |
+
"grad_norm": 6.171026012117947,
|
168 |
+
"learning_rate": 1.3617278360175927e-05,
|
169 |
+
"loss": 3.6861,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2048,
|
174 |
+
"grad_norm": 7.130542138930838,
|
175 |
+
"learning_rate": 1.380211241711606e-05,
|
176 |
+
"loss": 4.0958,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.21333333333333335,
|
181 |
+
"grad_norm": 7.328837606110418,
|
182 |
+
"learning_rate": 1.3979400086720374e-05,
|
183 |
+
"loss": 3.9524,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.22186666666666666,
|
188 |
+
"grad_norm": 6.923489005711429,
|
189 |
+
"learning_rate": 1.4149733479708178e-05,
|
190 |
+
"loss": 3.6062,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2304,
|
195 |
+
"grad_norm": 6.409498926059221,
|
196 |
+
"learning_rate": 1.4313637641589872e-05,
|
197 |
+
"loss": 3.2034,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.23893333333333333,
|
202 |
+
"grad_norm": 5.781628405584682,
|
203 |
+
"learning_rate": 1.4471580313422191e-05,
|
204 |
+
"loss": 2.8158,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.24746666666666667,
|
209 |
+
"grad_norm": 6.2927590068243315,
|
210 |
+
"learning_rate": 1.4623979978989559e-05,
|
211 |
+
"loss": 2.9803,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.256,
|
216 |
+
"grad_norm": 6.103844678630006,
|
217 |
+
"learning_rate": 1.4771212547196623e-05,
|
218 |
+
"loss": 2.847,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.26453333333333334,
|
223 |
+
"grad_norm": 7.656341925867144,
|
224 |
+
"learning_rate": 1.4913616938342726e-05,
|
225 |
+
"loss": 3.0907,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.2730666666666667,
|
230 |
+
"grad_norm": 6.324242877501844,
|
231 |
+
"learning_rate": 1.5051499783199059e-05,
|
232 |
+
"loss": 2.3467,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.2816,
|
237 |
+
"grad_norm": 7.606313101162739,
|
238 |
+
"learning_rate": 1.5185139398778874e-05,
|
239 |
+
"loss": 2.5292,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.29013333333333335,
|
244 |
+
"grad_norm": 8.553792493849265,
|
245 |
+
"learning_rate": 1.531478917042255e-05,
|
246 |
+
"loss": 2.4547,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2986666666666667,
|
251 |
+
"grad_norm": 8.483368703272543,
|
252 |
+
"learning_rate": 1.5440680443502753e-05,
|
253 |
+
"loss": 2.1956,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3072,
|
258 |
+
"grad_norm": 8.364739352838077,
|
259 |
+
"learning_rate": 1.5563025007672873e-05,
|
260 |
+
"loss": 1.8552,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3157333333333333,
|
265 |
+
"grad_norm": 9.37663682000104,
|
266 |
+
"learning_rate": 1.5682017240669948e-05,
|
267 |
+
"loss": 1.9228,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.32426666666666665,
|
272 |
+
"grad_norm": 9.823047193440066,
|
273 |
+
"learning_rate": 1.57978359661681e-05,
|
274 |
+
"loss": 1.7033,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.3328,
|
279 |
+
"grad_norm": 9.692618512955894,
|
280 |
+
"learning_rate": 1.591064607026499e-05,
|
281 |
+
"loss": 1.3768,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3413333333333333,
|
286 |
+
"grad_norm": 9.08889021911031,
|
287 |
+
"learning_rate": 1.6020599913279622e-05,
|
288 |
+
"loss": 1.3015,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.34986666666666666,
|
293 |
+
"grad_norm": 8.081534221516058,
|
294 |
+
"learning_rate": 1.6127838567197353e-05,
|
295 |
+
"loss": 0.9228,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3584,
|
300 |
+
"grad_norm": 6.238638048950311,
|
301 |
+
"learning_rate": 1.6232492903979005e-05,
|
302 |
+
"loss": 0.7267,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.36693333333333333,
|
307 |
+
"grad_norm": 3.4058036861773604,
|
308 |
+
"learning_rate": 1.6334684555795865e-05,
|
309 |
+
"loss": 0.5875,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.37546666666666667,
|
314 |
+
"grad_norm": 2.079163829467713,
|
315 |
+
"learning_rate": 1.6434526764861872e-05,
|
316 |
+
"loss": 0.6355,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.384,
|
321 |
+
"grad_norm": 1.5597487833024746,
|
322 |
+
"learning_rate": 1.6532125137753435e-05,
|
323 |
+
"loss": 0.5106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.39253333333333335,
|
328 |
+
"grad_norm": 2.491689602375256,
|
329 |
+
"learning_rate": 1.662757831681574e-05,
|
330 |
+
"loss": 0.6454,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.4010666666666667,
|
335 |
+
"grad_norm": 2.010880438195854,
|
336 |
+
"learning_rate": 1.672097857935717e-05,
|
337 |
+
"loss": 0.4757,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4096,
|
342 |
+
"grad_norm": 1.9452805114322096,
|
343 |
+
"learning_rate": 1.681241237375587e-05,
|
344 |
+
"loss": 0.4133,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.41813333333333336,
|
349 |
+
"grad_norm": 1.7620848552306103,
|
350 |
+
"learning_rate": 1.6901960800285137e-05,
|
351 |
+
"loss": 0.4004,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4266666666666667,
|
356 |
+
"grad_norm": 1.278224489774809,
|
357 |
+
"learning_rate": 1.6989700043360187e-05,
|
358 |
+
"loss": 0.3523,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4352,
|
363 |
+
"grad_norm": 1.6151354758303231,
|
364 |
+
"learning_rate": 1.7075701760979363e-05,
|
365 |
+
"loss": 0.4317,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.4437333333333333,
|
370 |
+
"grad_norm": 1.3451396055695035,
|
371 |
+
"learning_rate": 1.716003343634799e-05,
|
372 |
+
"loss": 0.3474,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.45226666666666665,
|
377 |
+
"grad_norm": 1.6814977782362666,
|
378 |
+
"learning_rate": 1.724275869600789e-05,
|
379 |
+
"loss": 0.3706,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.4608,
|
384 |
+
"grad_norm": 1.1682442432688667,
|
385 |
+
"learning_rate": 1.7323937598229687e-05,
|
386 |
+
"loss": 0.3488,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.4693333333333333,
|
391 |
+
"grad_norm": 0.8839814540462471,
|
392 |
+
"learning_rate": 1.7403626894942437e-05,
|
393 |
+
"loss": 0.293,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.47786666666666666,
|
398 |
+
"grad_norm": 0.7974304806295485,
|
399 |
+
"learning_rate": 1.7481880270062003e-05,
|
400 |
+
"loss": 0.2717,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.4864,
|
405 |
+
"grad_norm": 0.6232203657585239,
|
406 |
+
"learning_rate": 1.7558748556724913e-05,
|
407 |
+
"loss": 0.1741,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.49493333333333334,
|
412 |
+
"grad_norm": 0.6850688604563008,
|
413 |
+
"learning_rate": 1.763427993562937e-05,
|
414 |
+
"loss": 0.228,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5034666666666666,
|
419 |
+
"grad_norm": 0.5923826384300431,
|
420 |
+
"learning_rate": 1.7708520116421443e-05,
|
421 |
+
"loss": 0.2131,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.512,
|
426 |
+
"grad_norm": 0.489754430485032,
|
427 |
+
"learning_rate": 1.7781512503836432e-05,
|
428 |
+
"loss": 0.165,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5205333333333333,
|
433 |
+
"grad_norm": 0.5280940052395061,
|
434 |
+
"learning_rate": 1.7853298350107667e-05,
|
435 |
+
"loss": 0.1658,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.5290666666666667,
|
440 |
+
"grad_norm": 0.4750905992036739,
|
441 |
+
"learning_rate": 1.7923916894982537e-05,
|
442 |
+
"loss": 0.1438,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.5376,
|
447 |
+
"grad_norm": 0.4162998392722401,
|
448 |
+
"learning_rate": 1.7993405494535815e-05,
|
449 |
+
"loss": 0.1555,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.5461333333333334,
|
454 |
+
"grad_norm": 0.26863266246370443,
|
455 |
+
"learning_rate": 1.806179973983887e-05,
|
456 |
+
"loss": 0.1323,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.5546666666666666,
|
461 |
+
"grad_norm": 0.26534221125601215,
|
462 |
+
"learning_rate": 1.8129133566428553e-05,
|
463 |
+
"loss": 0.1671,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.5632,
|
468 |
+
"grad_norm": 0.2548662962257576,
|
469 |
+
"learning_rate": 1.8195439355418686e-05,
|
470 |
+
"loss": 0.1308,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.5717333333333333,
|
475 |
+
"grad_norm": 0.18045394638578796,
|
476 |
+
"learning_rate": 1.8260748027008263e-05,
|
477 |
+
"loss": 0.1262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.5802666666666667,
|
482 |
+
"grad_norm": 0.17070388073612064,
|
483 |
+
"learning_rate": 1.8325089127062364e-05,
|
484 |
+
"loss": 0.1192,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.5888,
|
489 |
+
"grad_norm": 0.1531381679244776,
|
490 |
+
"learning_rate": 1.8388490907372553e-05,
|
491 |
+
"loss": 0.1274,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5973333333333334,
|
496 |
+
"grad_norm": 0.18196434993687946,
|
497 |
+
"learning_rate": 1.8450980400142568e-05,
|
498 |
+
"loss": 0.1375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6058666666666667,
|
503 |
+
"grad_norm": 0.15324416972951205,
|
504 |
+
"learning_rate": 1.8512583487190752e-05,
|
505 |
+
"loss": 0.1599,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6144,
|
510 |
+
"grad_norm": 0.10884462064503801,
|
511 |
+
"learning_rate": 1.857332496431268e-05,
|
512 |
+
"loss": 0.1041,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.6229333333333333,
|
517 |
+
"grad_norm": 0.12915133528192668,
|
518 |
+
"learning_rate": 1.8633228601204555e-05,
|
519 |
+
"loss": 0.1406,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6314666666666666,
|
524 |
+
"grad_norm": 0.12553425699952878,
|
525 |
+
"learning_rate": 1.8692317197309763e-05,
|
526 |
+
"loss": 0.1256,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.64,
|
531 |
+
"grad_norm": 0.11976960918968543,
|
532 |
+
"learning_rate": 1.8750612633916997e-05,
|
533 |
+
"loss": 0.1144,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.6485333333333333,
|
538 |
+
"grad_norm": 0.115805998298789,
|
539 |
+
"learning_rate": 1.8808135922807914e-05,
|
540 |
+
"loss": 0.1528,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.6570666666666667,
|
545 |
+
"grad_norm": 0.10325948496697443,
|
546 |
+
"learning_rate": 1.8864907251724818e-05,
|
547 |
+
"loss": 0.1044,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.6656,
|
552 |
+
"grad_norm": 0.09595064346541006,
|
553 |
+
"learning_rate": 1.8920946026904802e-05,
|
554 |
+
"loss": 0.1534,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.6741333333333334,
|
559 |
+
"grad_norm": 0.08796742845240496,
|
560 |
+
"learning_rate": 1.8976270912904414e-05,
|
561 |
+
"loss": 0.1155,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.6826666666666666,
|
566 |
+
"grad_norm": 0.08218991738379527,
|
567 |
+
"learning_rate": 1.9030899869919434e-05,
|
568 |
+
"loss": 0.1311,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.6912,
|
573 |
+
"grad_norm": 0.08290815261109215,
|
574 |
+
"learning_rate": 1.9084850188786497e-05,
|
575 |
+
"loss": 0.11,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.6997333333333333,
|
580 |
+
"grad_norm": 0.0794132180176064,
|
581 |
+
"learning_rate": 1.9138138523837165e-05,
|
582 |
+
"loss": 0.1135,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.7082666666666667,
|
587 |
+
"grad_norm": 0.06934410705255296,
|
588 |
+
"learning_rate": 1.919078092376074e-05,
|
589 |
+
"loss": 0.109,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7168,
|
594 |
+
"grad_norm": 0.09000563031870593,
|
595 |
+
"learning_rate": 1.9242792860618813e-05,
|
596 |
+
"loss": 0.12,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.7253333333333334,
|
601 |
+
"grad_norm": 0.1134042277879818,
|
602 |
+
"learning_rate": 1.929418925714293e-05,
|
603 |
+
"loss": 0.1223,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.7338666666666667,
|
608 |
+
"grad_norm": 0.09118764690233076,
|
609 |
+
"learning_rate": 1.9344984512435673e-05,
|
610 |
+
"loss": 0.1459,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.7424,
|
615 |
+
"grad_norm": 0.07873016754353963,
|
616 |
+
"learning_rate": 1.9395192526186183e-05,
|
617 |
+
"loss": 0.1422,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.7509333333333333,
|
622 |
+
"grad_norm": 0.1796495874463076,
|
623 |
+
"learning_rate": 1.9444826721501687e-05,
|
624 |
+
"loss": 0.1291,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7594666666666666,
|
629 |
+
"grad_norm": 0.0679589944174269,
|
630 |
+
"learning_rate": 1.9493900066449125e-05,
|
631 |
+
"loss": 0.108,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.768,
|
636 |
+
"grad_norm": 0.08174688574235538,
|
637 |
+
"learning_rate": 1.9542425094393246e-05,
|
638 |
+
"loss": 0.1081,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.7765333333333333,
|
643 |
+
"grad_norm": 0.057137370501406756,
|
644 |
+
"learning_rate": 1.9590413923210934e-05,
|
645 |
+
"loss": 0.0934,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.7850666666666667,
|
650 |
+
"grad_norm": 0.06578111924908255,
|
651 |
+
"learning_rate": 1.9637878273455555e-05,
|
652 |
+
"loss": 0.1085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.7936,
|
657 |
+
"grad_norm": 0.08945990540906254,
|
658 |
+
"learning_rate": 1.968482948553935e-05,
|
659 |
+
"loss": 0.1747,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.8021333333333334,
|
664 |
+
"grad_norm": 0.06183863311044229,
|
665 |
+
"learning_rate": 1.9731278535996986e-05,
|
666 |
+
"loss": 0.1136,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.8106666666666666,
|
671 |
+
"grad_norm": 0.05777899602544702,
|
672 |
+
"learning_rate": 1.9777236052888476e-05,
|
673 |
+
"loss": 0.0984,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8192,
|
678 |
+
"grad_norm": 0.08130851607693534,
|
679 |
+
"learning_rate": 1.9822712330395683e-05,
|
680 |
+
"loss": 0.187,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.8277333333333333,
|
685 |
+
"grad_norm": 0.06426546202002927,
|
686 |
+
"learning_rate": 1.986771734266245e-05,
|
687 |
+
"loss": 0.1296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.8362666666666667,
|
692 |
+
"grad_norm": 0.069692313707994,
|
693 |
+
"learning_rate": 1.991226075692495e-05,
|
694 |
+
"loss": 0.1404,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.8448,
|
699 |
+
"grad_norm": 0.05494542266886729,
|
700 |
+
"learning_rate": 1.9956351945975496e-05,
|
701 |
+
"loss": 0.116,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8533333333333334,
|
706 |
+
"grad_norm": 0.07571686966840627,
|
707 |
+
"learning_rate": 1.9999999999999998e-05,
|
708 |
+
"loss": 0.1539,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.8618666666666667,
|
713 |
+
"grad_norm": 0.054351059117603705,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.1037,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.8704,
|
720 |
+
"grad_norm": 0.06531899611551092,
|
721 |
+
"learning_rate": 2e-05,
|
722 |
+
"loss": 0.0827,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8789333333333333,
|
727 |
+
"grad_norm": 0.06131678646504652,
|
728 |
+
"learning_rate": 2e-05,
|
729 |
+
"loss": 0.1266,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8874666666666666,
|
734 |
+
"grad_norm": 0.06850220540661824,
|
735 |
+
"learning_rate": 2e-05,
|
736 |
+
"loss": 0.1456,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.896,
|
741 |
+
"grad_norm": 0.05806908951252483,
|
742 |
+
"learning_rate": 2e-05,
|
743 |
+
"loss": 0.0954,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.9045333333333333,
|
748 |
+
"grad_norm": 0.06503642452033717,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.1417,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.9130666666666667,
|
755 |
+
"grad_norm": 0.050486271853277066,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.0959,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9216,
|
762 |
+
"grad_norm": 0.07746063813802379,
|
763 |
+
"learning_rate": 2e-05,
|
764 |
+
"loss": 0.1256,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.9301333333333334,
|
769 |
+
"grad_norm": 0.051231172380840004,
|
770 |
+
"learning_rate": 2e-05,
|
771 |
+
"loss": 0.1116,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.9386666666666666,
|
776 |
+
"grad_norm": 0.056296443557859455,
|
777 |
+
"learning_rate": 2e-05,
|
778 |
+
"loss": 0.1056,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.9472,
|
783 |
+
"grad_norm": 0.05058663240713958,
|
784 |
+
"learning_rate": 2e-05,
|
785 |
+
"loss": 0.0971,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.9557333333333333,
|
790 |
+
"grad_norm": 0.05532886570130611,
|
791 |
+
"learning_rate": 2e-05,
|
792 |
+
"loss": 0.1086,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.9642666666666667,
|
797 |
+
"grad_norm": 0.05327811326654907,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0989,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.9728,
|
804 |
+
"grad_norm": 0.05663279364147864,
|
805 |
+
"learning_rate": 2e-05,
|
806 |
+
"loss": 0.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.9813333333333333,
|
811 |
+
"grad_norm": 0.04930904541225805,
|
812 |
+
"learning_rate": 2e-05,
|
813 |
+
"loss": 0.0887,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.9898666666666667,
|
818 |
+
"grad_norm": 0.06096947951115022,
|
819 |
+
"learning_rate": 2e-05,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.9984,
|
825 |
+
"grad_norm": 0.050092322361182495,
|
826 |
+
"learning_rate": 2e-05,
|
827 |
+
"loss": 0.0931,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.0069333333333332,
|
832 |
+
"grad_norm": 0.04980408443758999,
|
833 |
+
"learning_rate": 2e-05,
|
834 |
+
"loss": 0.0955,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0154666666666667,
|
839 |
+
"grad_norm": 0.051183082721834305,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.1049,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.024,
|
846 |
+
"grad_norm": 0.04332220265802814,
|
847 |
+
"learning_rate": 2e-05,
|
848 |
+
"loss": 0.0983,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.0325333333333333,
|
853 |
+
"grad_norm": 0.07211731499677299,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.1386,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.0410666666666666,
|
860 |
+
"grad_norm": 0.06550870223740553,
|
861 |
+
"learning_rate": 2e-05,
|
862 |
+
"loss": 0.1334,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.0496,
|
867 |
+
"grad_norm": 0.05331839690767287,
|
868 |
+
"learning_rate": 2e-05,
|
869 |
+
"loss": 0.1014,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.0581333333333334,
|
874 |
+
"grad_norm": 0.05227685628767905,
|
875 |
+
"learning_rate": 2e-05,
|
876 |
+
"loss": 0.1098,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0666666666666667,
|
881 |
+
"grad_norm": 0.07641693882491171,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.1127,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0752,
|
888 |
+
"grad_norm": 0.052835367770791786,
|
889 |
+
"learning_rate": 2e-05,
|
890 |
+
"loss": 0.1231,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.0837333333333334,
|
895 |
+
"grad_norm": 0.07520329755025788,
|
896 |
+
"learning_rate": 2e-05,
|
897 |
+
"loss": 0.085,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.0922666666666667,
|
902 |
+
"grad_norm": 0.07670066152157425,
|
903 |
+
"learning_rate": 2e-05,
|
904 |
+
"loss": 0.1071,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.1008,
|
909 |
+
"grad_norm": 0.052832906560645154,
|
910 |
+
"learning_rate": 2e-05,
|
911 |
+
"loss": 0.1093,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.1093333333333333,
|
916 |
+
"grad_norm": 0.06573889037311398,
|
917 |
+
"learning_rate": 2e-05,
|
918 |
+
"loss": 0.1193,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.1178666666666666,
|
923 |
+
"grad_norm": 0.05175471296566334,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.1184,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1264,
|
930 |
+
"grad_norm": 0.05912231419793496,
|
931 |
+
"learning_rate": 2e-05,
|
932 |
+
"loss": 0.1154,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.1349333333333333,
|
937 |
+
"grad_norm": 0.04899140475981105,
|
938 |
+
"learning_rate": 2e-05,
|
939 |
+
"loss": 0.0957,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.1434666666666666,
|
944 |
+
"grad_norm": 0.05939916939142137,
|
945 |
+
"learning_rate": 2e-05,
|
946 |
+
"loss": 0.0979,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.152,
|
951 |
+
"grad_norm": 0.0516819217599706,
|
952 |
+
"learning_rate": 2e-05,
|
953 |
+
"loss": 0.0834,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.1605333333333334,
|
958 |
+
"grad_norm": 0.05456440346454737,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.1183,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.1690666666666667,
|
965 |
+
"grad_norm": 0.059906464476343235,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.1048,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.1776,
|
972 |
+
"grad_norm": 0.0720112680204319,
|
973 |
+
"learning_rate": 2e-05,
|
974 |
+
"loss": 0.1168,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.1861333333333333,
|
979 |
+
"grad_norm": 0.04940202805828527,
|
980 |
+
"learning_rate": 2e-05,
|
981 |
+
"loss": 0.0948,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.1946666666666665,
|
986 |
+
"grad_norm": 0.060088609545130046,
|
987 |
+
"learning_rate": 2e-05,
|
988 |
+
"loss": 0.0952,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.2032,
|
993 |
+
"grad_norm": 0.04694761423612446,
|
994 |
+
"learning_rate": 2e-05,
|
995 |
+
"loss": 0.0717,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.2117333333333333,
|
1000 |
+
"grad_norm": 0.05628581562512457,
|
1001 |
+
"learning_rate": 2e-05,
|
1002 |
+
"loss": 0.1062,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.2202666666666666,
|
1007 |
+
"grad_norm": 0.06876420990437652,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.1218,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2288000000000001,
|
1014 |
+
"grad_norm": 0.058774700501610655,
|
1015 |
+
"learning_rate": 2e-05,
|
1016 |
+
"loss": 0.1125,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.2373333333333334,
|
1021 |
+
"grad_norm": 0.061855922064341186,
|
1022 |
+
"learning_rate": 2e-05,
|
1023 |
+
"loss": 0.1295,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.2458666666666667,
|
1028 |
+
"grad_norm": 0.0813047704730138,
|
1029 |
+
"learning_rate": 2e-05,
|
1030 |
+
"loss": 0.1165,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.2544,
|
1035 |
+
"grad_norm": 0.061374000305305446,
|
1036 |
+
"learning_rate": 2e-05,
|
1037 |
+
"loss": 0.1094,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.2629333333333332,
|
1042 |
+
"grad_norm": 0.055537169110833,
|
1043 |
+
"learning_rate": 2e-05,
|
1044 |
+
"loss": 0.1054,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.2714666666666667,
|
1049 |
+
"grad_norm": 0.04423248714119304,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0841,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.28,
|
1056 |
+
"grad_norm": 0.049931966607835034,
|
1057 |
+
"learning_rate": 2e-05,
|
1058 |
+
"loss": 0.0961,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.2885333333333333,
|
1063 |
+
"grad_norm": 0.06178656953298769,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.0854,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.2970666666666666,
|
1070 |
+
"grad_norm": 0.05783812343287897,
|
1071 |
+
"learning_rate": 2e-05,
|
1072 |
+
"loss": 0.1141,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.3056,
|
1077 |
+
"grad_norm": 0.048955120400167584,
|
1078 |
+
"learning_rate": 2e-05,
|
1079 |
+
"loss": 0.0947,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.3141333333333334,
|
1084 |
+
"grad_norm": 0.12270174746806978,
|
1085 |
+
"learning_rate": 2e-05,
|
1086 |
+
"loss": 0.1553,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.3226666666666667,
|
1091 |
+
"grad_norm": 0.06928026959973474,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.1274,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3312,
|
1098 |
+
"grad_norm": 0.04756100666105405,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 0.0893,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.3397333333333332,
|
1105 |
+
"grad_norm": 0.056054951338196934,
|
1106 |
+
"learning_rate": 2e-05,
|
1107 |
+
"loss": 0.0831,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.3482666666666667,
|
1112 |
+
"grad_norm": 0.0516990471964239,
|
1113 |
+
"learning_rate": 2e-05,
|
1114 |
+
"loss": 0.0883,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.3568,
|
1119 |
+
"grad_norm": 0.06011650542069954,
|
1120 |
+
"learning_rate": 2e-05,
|
1121 |
+
"loss": 0.0938,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.3653333333333333,
|
1126 |
+
"grad_norm": 0.051831307951873976,
|
1127 |
+
"learning_rate": 2e-05,
|
1128 |
+
"loss": 0.1019,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.3738666666666668,
|
1133 |
+
"grad_norm": 0.0544902702048936,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0906,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.3824,
|
1140 |
+
"grad_norm": 0.06057617032526,
|
1141 |
+
"learning_rate": 2e-05,
|
1142 |
+
"loss": 0.1206,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.3909333333333334,
|
1147 |
+
"grad_norm": 0.07288058025189605,
|
1148 |
+
"learning_rate": 2e-05,
|
1149 |
+
"loss": 0.1175,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.3994666666666666,
|
1154 |
+
"grad_norm": 0.05639043792084219,
|
1155 |
+
"learning_rate": 2e-05,
|
1156 |
+
"loss": 0.1031,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.408,
|
1161 |
+
"grad_norm": 0.0586469408837505,
|
1162 |
+
"learning_rate": 2e-05,
|
1163 |
+
"loss": 0.1143,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.4165333333333332,
|
1168 |
+
"grad_norm": 0.059243429040783904,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.0838,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.4250666666666667,
|
1175 |
+
"grad_norm": 0.0621476448363388,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.1032,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4336,
|
1182 |
+
"grad_norm": 0.06083867682720169,
|
1183 |
+
"learning_rate": 2e-05,
|
1184 |
+
"loss": 0.1119,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.4421333333333333,
|
1189 |
+
"grad_norm": 0.09583165335305677,
|
1190 |
+
"learning_rate": 2e-05,
|
1191 |
+
"loss": 0.1028,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.4506666666666668,
|
1196 |
+
"grad_norm": 0.06411638581314043,
|
1197 |
+
"learning_rate": 2e-05,
|
1198 |
+
"loss": 0.1181,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.4592,
|
1203 |
+
"grad_norm": 0.05632977234908945,
|
1204 |
+
"learning_rate": 2e-05,
|
1205 |
+
"loss": 0.1055,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.4677333333333333,
|
1210 |
+
"grad_norm": 0.05666068971337413,
|
1211 |
+
"learning_rate": 2e-05,
|
1212 |
+
"loss": 0.1116,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.4762666666666666,
|
1217 |
+
"grad_norm": 0.04502062723807536,
|
1218 |
+
"learning_rate": 2e-05,
|
1219 |
+
"loss": 0.0588,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.4848,
|
1224 |
+
"grad_norm": 0.05916500176868301,
|
1225 |
+
"learning_rate": 2e-05,
|
1226 |
+
"loss": 0.0949,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4933333333333334,
|
1231 |
+
"grad_norm": 0.056484273808864845,
|
1232 |
+
"learning_rate": 2e-05,
|
1233 |
+
"loss": 0.0948,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.5018666666666667,
|
1238 |
+
"grad_norm": 0.06652084448571674,
|
1239 |
+
"learning_rate": 2e-05,
|
1240 |
+
"loss": 0.1086,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5104,
|
1245 |
+
"grad_norm": 0.05400238078068516,
|
1246 |
+
"learning_rate": 2e-05,
|
1247 |
+
"loss": 0.0919,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.5189333333333335,
|
1252 |
+
"grad_norm": 0.04979579743346662,
|
1253 |
+
"learning_rate": 2e-05,
|
1254 |
+
"loss": 0.0879,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.5274666666666668,
|
1259 |
+
"grad_norm": 0.06876105414733971,
|
1260 |
+
"learning_rate": 2e-05,
|
1261 |
+
"loss": 0.1162,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.536,
|
1266 |
+
"grad_norm": 0.05633262015499721,
|
1267 |
+
"learning_rate": 2e-05,
|
1268 |
+
"loss": 0.1142,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.5445333333333333,
|
1273 |
+
"grad_norm": 0.0599508967519892,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.1073,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.5530666666666666,
|
1280 |
+
"grad_norm": 0.058912170976454126,
|
1281 |
+
"learning_rate": 2e-05,
|
1282 |
+
"loss": 0.1102,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.5615999999999999,
|
1287 |
+
"grad_norm": 0.05361414988566254,
|
1288 |
+
"learning_rate": 2e-05,
|
1289 |
+
"loss": 0.0885,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.5701333333333334,
|
1294 |
+
"grad_norm": 0.04517277847384077,
|
1295 |
+
"learning_rate": 2e-05,
|
1296 |
+
"loss": 0.0763,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.5786666666666667,
|
1301 |
+
"grad_norm": 0.05551553662051771,
|
1302 |
+
"learning_rate": 2e-05,
|
1303 |
+
"loss": 0.0877,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.5872000000000002,
|
1308 |
+
"grad_norm": 0.05814223969236194,
|
1309 |
+
"learning_rate": 2e-05,
|
1310 |
+
"loss": 0.1044,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.5957333333333334,
|
1315 |
+
"grad_norm": 0.05710054166191597,
|
1316 |
+
"learning_rate": 2e-05,
|
1317 |
+
"loss": 0.0962,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6042666666666667,
|
1322 |
+
"grad_norm": 0.054744343932104075,
|
1323 |
+
"learning_rate": 2e-05,
|
1324 |
+
"loss": 0.0873,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.6128,
|
1329 |
+
"grad_norm": 0.051145521687090995,
|
1330 |
+
"learning_rate": 2e-05,
|
1331 |
+
"loss": 0.0855,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.6213333333333333,
|
1336 |
+
"grad_norm": 0.05414658860737789,
|
1337 |
+
"learning_rate": 2e-05,
|
1338 |
+
"loss": 0.0872,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.6298666666666666,
|
1343 |
+
"grad_norm": 0.05084744595533029,
|
1344 |
+
"learning_rate": 2e-05,
|
1345 |
+
"loss": 0.0891,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6383999999999999,
|
1350 |
+
"grad_norm": 0.0567070082820597,
|
1351 |
+
"learning_rate": 2e-05,
|
1352 |
+
"loss": 0.0965,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.6469333333333334,
|
1357 |
+
"grad_norm": 0.0494785311411315,
|
1358 |
+
"learning_rate": 2e-05,
|
1359 |
+
"loss": 0.0941,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.6554666666666666,
|
1364 |
+
"grad_norm": 0.062341158530385396,
|
1365 |
+
"learning_rate": 2e-05,
|
1366 |
+
"loss": 0.1154,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.6640000000000001,
|
1371 |
+
"grad_norm": 0.059888336716275685,
|
1372 |
+
"learning_rate": 2e-05,
|
1373 |
+
"loss": 0.1037,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.6725333333333334,
|
1378 |
+
"grad_norm": 0.07346562318829057,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.1329,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.6810666666666667,
|
1385 |
+
"grad_norm": 0.0792360016934733,
|
1386 |
+
"learning_rate": 2e-05,
|
1387 |
+
"loss": 0.1392,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.6896,
|
1392 |
+
"grad_norm": 0.0800342963229883,
|
1393 |
+
"learning_rate": 2e-05,
|
1394 |
+
"loss": 0.1199,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.6981333333333333,
|
1399 |
+
"grad_norm": 0.06848045933195548,
|
1400 |
+
"learning_rate": 2e-05,
|
1401 |
+
"loss": 0.0998,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.7066666666666666,
|
1406 |
+
"grad_norm": 0.05743199019316764,
|
1407 |
+
"learning_rate": 2e-05,
|
1408 |
+
"loss": 0.0811,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.7151999999999998,
|
1413 |
+
"grad_norm": 0.07170531168284446,
|
1414 |
+
"learning_rate": 2e-05,
|
1415 |
+
"loss": 0.1079,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.7237333333333333,
|
1420 |
+
"grad_norm": 0.05772905481368506,
|
1421 |
+
"learning_rate": 2e-05,
|
1422 |
+
"loss": 0.0844,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.7322666666666666,
|
1427 |
+
"grad_norm": 0.07504946014098464,
|
1428 |
+
"learning_rate": 2e-05,
|
1429 |
+
"loss": 0.1257,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7408000000000001,
|
1434 |
+
"grad_norm": 0.06450179819785838,
|
1435 |
+
"learning_rate": 2e-05,
|
1436 |
+
"loss": 0.1104,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.7493333333333334,
|
1441 |
+
"grad_norm": 0.06595445965110332,
|
1442 |
+
"learning_rate": 2e-05,
|
1443 |
+
"loss": 0.093,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.7578666666666667,
|
1448 |
+
"grad_norm": 0.07203558121131749,
|
1449 |
+
"learning_rate": 2e-05,
|
1450 |
+
"loss": 0.1117,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.7664,
|
1455 |
+
"grad_norm": 0.05954646782409283,
|
1456 |
+
"learning_rate": 2e-05,
|
1457 |
+
"loss": 0.0729,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.7749333333333333,
|
1462 |
+
"grad_norm": 0.06624894584410884,
|
1463 |
+
"learning_rate": 2e-05,
|
1464 |
+
"loss": 0.0998,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.7834666666666665,
|
1469 |
+
"grad_norm": 0.06888562028256219,
|
1470 |
+
"learning_rate": 2e-05,
|
1471 |
+
"loss": 0.1398,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.792,
|
1476 |
+
"grad_norm": 0.061224088077794406,
|
1477 |
+
"learning_rate": 2e-05,
|
1478 |
+
"loss": 0.1112,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.8005333333333333,
|
1483 |
+
"grad_norm": 0.06857358883856608,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.1293,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.8090666666666668,
|
1490 |
+
"grad_norm": 0.06177352416779139,
|
1491 |
+
"learning_rate": 2e-05,
|
1492 |
+
"loss": 0.0884,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.8176,
|
1497 |
+
"grad_norm": 0.08324567429925228,
|
1498 |
+
"learning_rate": 2e-05,
|
1499 |
+
"loss": 0.1127,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.8261333333333334,
|
1504 |
+
"grad_norm": 0.06771677297787752,
|
1505 |
+
"learning_rate": 2e-05,
|
1506 |
+
"loss": 0.089,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.8346666666666667,
|
1511 |
+
"grad_norm": 0.07055754809472485,
|
1512 |
+
"learning_rate": 2e-05,
|
1513 |
+
"loss": 0.1206,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8432,
|
1518 |
+
"grad_norm": 0.05856797724392531,
|
1519 |
+
"learning_rate": 2e-05,
|
1520 |
+
"loss": 0.0893,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.8517333333333332,
|
1525 |
+
"grad_norm": 0.07555286129801597,
|
1526 |
+
"learning_rate": 2e-05,
|
1527 |
+
"loss": 0.0913,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.8602666666666665,
|
1532 |
+
"grad_norm": 0.09242462538643775,
|
1533 |
+
"learning_rate": 2e-05,
|
1534 |
+
"loss": 0.1241,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.8688,
|
1539 |
+
"grad_norm": 0.06550805537088374,
|
1540 |
+
"learning_rate": 2e-05,
|
1541 |
+
"loss": 0.0819,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.8773333333333333,
|
1546 |
+
"grad_norm": 0.06016048263236861,
|
1547 |
+
"learning_rate": 2e-05,
|
1548 |
+
"loss": 0.0955,
|
1549 |
+
"step": 220
|
1550 |
+
}
|
1551 |
+
],
|
1552 |
+
"logging_steps": 1,
|
1553 |
+
"max_steps": 351,
|
1554 |
+
"num_input_tokens_seen": 0,
|
1555 |
+
"num_train_epochs": 3,
|
1556 |
+
"save_steps": 20,
|
1557 |
+
"stateful_callbacks": {
|
1558 |
+
"TrainerControl": {
|
1559 |
+
"args": {
|
1560 |
+
"should_epoch_stop": false,
|
1561 |
+
"should_evaluate": false,
|
1562 |
+
"should_log": false,
|
1563 |
+
"should_save": true,
|
1564 |
+
"should_training_stop": false
|
1565 |
+
},
|
1566 |
+
"attributes": {}
|
1567 |
+
}
|
1568 |
+
},
|
1569 |
+
"total_flos": 3.1374063827523994e+18,
|
1570 |
+
"train_batch_size": 16,
|
1571 |
+
"trial_name": null,
|
1572 |
+
"trial_params": null
|
1573 |
+
}
|
checkpoint-220/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
|
3 |
+
size 6840
|
checkpoint-220/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-240/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../ckpts/Meta-Llama-3-8B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-240/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"q_proj",
|
26 |
+
"lm_head",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"up_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-240/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2b0102ec16154b1882251190f7984562a5f9255aaed7799bf80b27e06299967
|
3 |
+
size 1138856856
|
checkpoint-240/global_step240/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d2d9813bc8f9fdb7e61aa7c515b974f9e3a321c0c00c461ae2223c64ea368ac
|
3 |
+
size 528781328
|
checkpoint-240/global_step240/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b92dc14f0a23e1d44580987f2a390d1ffcd884ae2bbee1358798e9f91fbece65
|
3 |
+
size 199905337
|
checkpoint-240/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step240
|
checkpoint-240/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:520b20ae855dee764163de1cce297ae24a311e9fc58dab9dc56d3069fcb4f3dc
|
3 |
+
size 14244
|
checkpoint-240/trainer_state.json
ADDED
@@ -0,0 +1,1713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.048,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 240,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008533333333333334,
|
13 |
+
"grad_norm": 100.21848203113535,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.1962,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.017066666666666667,
|
20 |
+
"grad_norm": 96.43006188910957,
|
21 |
+
"learning_rate": 3.0102999566398115e-06,
|
22 |
+
"loss": 6.9414,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0256,
|
27 |
+
"grad_norm": 97.35803466618715,
|
28 |
+
"learning_rate": 4.771212547196624e-06,
|
29 |
+
"loss": 7.0102,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.034133333333333335,
|
34 |
+
"grad_norm": 95.14837816372646,
|
35 |
+
"learning_rate": 6.020599913279623e-06,
|
36 |
+
"loss": 6.5295,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.042666666666666665,
|
41 |
+
"grad_norm": 91.76544275692784,
|
42 |
+
"learning_rate": 6.989700043360187e-06,
|
43 |
+
"loss": 6.4806,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0512,
|
48 |
+
"grad_norm": 84.4494318688335,
|
49 |
+
"learning_rate": 7.781512503836437e-06,
|
50 |
+
"loss": 6.4194,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05973333333333333,
|
55 |
+
"grad_norm": 71.37977490595638,
|
56 |
+
"learning_rate": 8.450980400142568e-06,
|
57 |
+
"loss": 5.4953,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06826666666666667,
|
62 |
+
"grad_norm": 49.31153456754566,
|
63 |
+
"learning_rate": 9.030899869919434e-06,
|
64 |
+
"loss": 5.4123,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0768,
|
69 |
+
"grad_norm": 20.37296364560341,
|
70 |
+
"learning_rate": 9.542425094393249e-06,
|
71 |
+
"loss": 5.2334,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08533333333333333,
|
76 |
+
"grad_norm": 7.968467079076881,
|
77 |
+
"learning_rate": 9.999999999999999e-06,
|
78 |
+
"loss": 5.0282,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09386666666666667,
|
83 |
+
"grad_norm": 3.559446532055649,
|
84 |
+
"learning_rate": 1.041392685158225e-05,
|
85 |
+
"loss": 4.612,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1024,
|
90 |
+
"grad_norm": 3.5528846947995674,
|
91 |
+
"learning_rate": 1.0791812460476248e-05,
|
92 |
+
"loss": 4.9475,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.11093333333333333,
|
97 |
+
"grad_norm": 3.541968897471334,
|
98 |
+
"learning_rate": 1.1139433523068365e-05,
|
99 |
+
"loss": 4.2777,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.11946666666666667,
|
104 |
+
"grad_norm": 3.54718070036198,
|
105 |
+
"learning_rate": 1.1461280356782378e-05,
|
106 |
+
"loss": 4.3507,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.128,
|
111 |
+
"grad_norm": 3.8632334830606747,
|
112 |
+
"learning_rate": 1.1760912590556813e-05,
|
113 |
+
"loss": 4.5364,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.13653333333333334,
|
118 |
+
"grad_norm": 3.6637424744054004,
|
119 |
+
"learning_rate": 1.2041199826559246e-05,
|
120 |
+
"loss": 3.9672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.14506666666666668,
|
125 |
+
"grad_norm": 3.919802904818311,
|
126 |
+
"learning_rate": 1.230448921378274e-05,
|
127 |
+
"loss": 4.0618,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1536,
|
132 |
+
"grad_norm": 4.71904950738746,
|
133 |
+
"learning_rate": 1.2552725051033058e-05,
|
134 |
+
"loss": 4.6656,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16213333333333332,
|
139 |
+
"grad_norm": 4.6656317698690835,
|
140 |
+
"learning_rate": 1.2787536009528288e-05,
|
141 |
+
"loss": 4.1131,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.17066666666666666,
|
146 |
+
"grad_norm": 5.145138692367417,
|
147 |
+
"learning_rate": 1.301029995663981e-05,
|
148 |
+
"loss": 4.0989,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1792,
|
153 |
+
"grad_norm": 5.923538014759818,
|
154 |
+
"learning_rate": 1.3222192947339192e-05,
|
155 |
+
"loss": 4.4991,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.18773333333333334,
|
160 |
+
"grad_norm": 5.941056962941364,
|
161 |
+
"learning_rate": 1.3424226808222062e-05,
|
162 |
+
"loss": 4.0836,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.19626666666666667,
|
167 |
+
"grad_norm": 6.171026012117947,
|
168 |
+
"learning_rate": 1.3617278360175927e-05,
|
169 |
+
"loss": 3.6861,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2048,
|
174 |
+
"grad_norm": 7.130542138930838,
|
175 |
+
"learning_rate": 1.380211241711606e-05,
|
176 |
+
"loss": 4.0958,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.21333333333333335,
|
181 |
+
"grad_norm": 7.328837606110418,
|
182 |
+
"learning_rate": 1.3979400086720374e-05,
|
183 |
+
"loss": 3.9524,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.22186666666666666,
|
188 |
+
"grad_norm": 6.923489005711429,
|
189 |
+
"learning_rate": 1.4149733479708178e-05,
|
190 |
+
"loss": 3.6062,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2304,
|
195 |
+
"grad_norm": 6.409498926059221,
|
196 |
+
"learning_rate": 1.4313637641589872e-05,
|
197 |
+
"loss": 3.2034,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.23893333333333333,
|
202 |
+
"grad_norm": 5.781628405584682,
|
203 |
+
"learning_rate": 1.4471580313422191e-05,
|
204 |
+
"loss": 2.8158,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.24746666666666667,
|
209 |
+
"grad_norm": 6.2927590068243315,
|
210 |
+
"learning_rate": 1.4623979978989559e-05,
|
211 |
+
"loss": 2.9803,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.256,
|
216 |
+
"grad_norm": 6.103844678630006,
|
217 |
+
"learning_rate": 1.4771212547196623e-05,
|
218 |
+
"loss": 2.847,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.26453333333333334,
|
223 |
+
"grad_norm": 7.656341925867144,
|
224 |
+
"learning_rate": 1.4913616938342726e-05,
|
225 |
+
"loss": 3.0907,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.2730666666666667,
|
230 |
+
"grad_norm": 6.324242877501844,
|
231 |
+
"learning_rate": 1.5051499783199059e-05,
|
232 |
+
"loss": 2.3467,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.2816,
|
237 |
+
"grad_norm": 7.606313101162739,
|
238 |
+
"learning_rate": 1.5185139398778874e-05,
|
239 |
+
"loss": 2.5292,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.29013333333333335,
|
244 |
+
"grad_norm": 8.553792493849265,
|
245 |
+
"learning_rate": 1.531478917042255e-05,
|
246 |
+
"loss": 2.4547,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2986666666666667,
|
251 |
+
"grad_norm": 8.483368703272543,
|
252 |
+
"learning_rate": 1.5440680443502753e-05,
|
253 |
+
"loss": 2.1956,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3072,
|
258 |
+
"grad_norm": 8.364739352838077,
|
259 |
+
"learning_rate": 1.5563025007672873e-05,
|
260 |
+
"loss": 1.8552,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3157333333333333,
|
265 |
+
"grad_norm": 9.37663682000104,
|
266 |
+
"learning_rate": 1.5682017240669948e-05,
|
267 |
+
"loss": 1.9228,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.32426666666666665,
|
272 |
+
"grad_norm": 9.823047193440066,
|
273 |
+
"learning_rate": 1.57978359661681e-05,
|
274 |
+
"loss": 1.7033,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.3328,
|
279 |
+
"grad_norm": 9.692618512955894,
|
280 |
+
"learning_rate": 1.591064607026499e-05,
|
281 |
+
"loss": 1.3768,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3413333333333333,
|
286 |
+
"grad_norm": 9.08889021911031,
|
287 |
+
"learning_rate": 1.6020599913279622e-05,
|
288 |
+
"loss": 1.3015,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.34986666666666666,
|
293 |
+
"grad_norm": 8.081534221516058,
|
294 |
+
"learning_rate": 1.6127838567197353e-05,
|
295 |
+
"loss": 0.9228,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3584,
|
300 |
+
"grad_norm": 6.238638048950311,
|
301 |
+
"learning_rate": 1.6232492903979005e-05,
|
302 |
+
"loss": 0.7267,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.36693333333333333,
|
307 |
+
"grad_norm": 3.4058036861773604,
|
308 |
+
"learning_rate": 1.6334684555795865e-05,
|
309 |
+
"loss": 0.5875,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.37546666666666667,
|
314 |
+
"grad_norm": 2.079163829467713,
|
315 |
+
"learning_rate": 1.6434526764861872e-05,
|
316 |
+
"loss": 0.6355,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.384,
|
321 |
+
"grad_norm": 1.5597487833024746,
|
322 |
+
"learning_rate": 1.6532125137753435e-05,
|
323 |
+
"loss": 0.5106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.39253333333333335,
|
328 |
+
"grad_norm": 2.491689602375256,
|
329 |
+
"learning_rate": 1.662757831681574e-05,
|
330 |
+
"loss": 0.6454,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.4010666666666667,
|
335 |
+
"grad_norm": 2.010880438195854,
|
336 |
+
"learning_rate": 1.672097857935717e-05,
|
337 |
+
"loss": 0.4757,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4096,
|
342 |
+
"grad_norm": 1.9452805114322096,
|
343 |
+
"learning_rate": 1.681241237375587e-05,
|
344 |
+
"loss": 0.4133,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.41813333333333336,
|
349 |
+
"grad_norm": 1.7620848552306103,
|
350 |
+
"learning_rate": 1.6901960800285137e-05,
|
351 |
+
"loss": 0.4004,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4266666666666667,
|
356 |
+
"grad_norm": 1.278224489774809,
|
357 |
+
"learning_rate": 1.6989700043360187e-05,
|
358 |
+
"loss": 0.3523,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4352,
|
363 |
+
"grad_norm": 1.6151354758303231,
|
364 |
+
"learning_rate": 1.7075701760979363e-05,
|
365 |
+
"loss": 0.4317,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.4437333333333333,
|
370 |
+
"grad_norm": 1.3451396055695035,
|
371 |
+
"learning_rate": 1.716003343634799e-05,
|
372 |
+
"loss": 0.3474,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.45226666666666665,
|
377 |
+
"grad_norm": 1.6814977782362666,
|
378 |
+
"learning_rate": 1.724275869600789e-05,
|
379 |
+
"loss": 0.3706,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.4608,
|
384 |
+
"grad_norm": 1.1682442432688667,
|
385 |
+
"learning_rate": 1.7323937598229687e-05,
|
386 |
+
"loss": 0.3488,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.4693333333333333,
|
391 |
+
"grad_norm": 0.8839814540462471,
|
392 |
+
"learning_rate": 1.7403626894942437e-05,
|
393 |
+
"loss": 0.293,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.47786666666666666,
|
398 |
+
"grad_norm": 0.7974304806295485,
|
399 |
+
"learning_rate": 1.7481880270062003e-05,
|
400 |
+
"loss": 0.2717,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.4864,
|
405 |
+
"grad_norm": 0.6232203657585239,
|
406 |
+
"learning_rate": 1.7558748556724913e-05,
|
407 |
+
"loss": 0.1741,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.49493333333333334,
|
412 |
+
"grad_norm": 0.6850688604563008,
|
413 |
+
"learning_rate": 1.763427993562937e-05,
|
414 |
+
"loss": 0.228,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5034666666666666,
|
419 |
+
"grad_norm": 0.5923826384300431,
|
420 |
+
"learning_rate": 1.7708520116421443e-05,
|
421 |
+
"loss": 0.2131,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.512,
|
426 |
+
"grad_norm": 0.489754430485032,
|
427 |
+
"learning_rate": 1.7781512503836432e-05,
|
428 |
+
"loss": 0.165,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5205333333333333,
|
433 |
+
"grad_norm": 0.5280940052395061,
|
434 |
+
"learning_rate": 1.7853298350107667e-05,
|
435 |
+
"loss": 0.1658,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.5290666666666667,
|
440 |
+
"grad_norm": 0.4750905992036739,
|
441 |
+
"learning_rate": 1.7923916894982537e-05,
|
442 |
+
"loss": 0.1438,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.5376,
|
447 |
+
"grad_norm": 0.4162998392722401,
|
448 |
+
"learning_rate": 1.7993405494535815e-05,
|
449 |
+
"loss": 0.1555,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.5461333333333334,
|
454 |
+
"grad_norm": 0.26863266246370443,
|
455 |
+
"learning_rate": 1.806179973983887e-05,
|
456 |
+
"loss": 0.1323,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.5546666666666666,
|
461 |
+
"grad_norm": 0.26534221125601215,
|
462 |
+
"learning_rate": 1.8129133566428553e-05,
|
463 |
+
"loss": 0.1671,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.5632,
|
468 |
+
"grad_norm": 0.2548662962257576,
|
469 |
+
"learning_rate": 1.8195439355418686e-05,
|
470 |
+
"loss": 0.1308,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.5717333333333333,
|
475 |
+
"grad_norm": 0.18045394638578796,
|
476 |
+
"learning_rate": 1.8260748027008263e-05,
|
477 |
+
"loss": 0.1262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.5802666666666667,
|
482 |
+
"grad_norm": 0.17070388073612064,
|
483 |
+
"learning_rate": 1.8325089127062364e-05,
|
484 |
+
"loss": 0.1192,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.5888,
|
489 |
+
"grad_norm": 0.1531381679244776,
|
490 |
+
"learning_rate": 1.8388490907372553e-05,
|
491 |
+
"loss": 0.1274,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5973333333333334,
|
496 |
+
"grad_norm": 0.18196434993687946,
|
497 |
+
"learning_rate": 1.8450980400142568e-05,
|
498 |
+
"loss": 0.1375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6058666666666667,
|
503 |
+
"grad_norm": 0.15324416972951205,
|
504 |
+
"learning_rate": 1.8512583487190752e-05,
|
505 |
+
"loss": 0.1599,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6144,
|
510 |
+
"grad_norm": 0.10884462064503801,
|
511 |
+
"learning_rate": 1.857332496431268e-05,
|
512 |
+
"loss": 0.1041,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.6229333333333333,
|
517 |
+
"grad_norm": 0.12915133528192668,
|
518 |
+
"learning_rate": 1.8633228601204555e-05,
|
519 |
+
"loss": 0.1406,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6314666666666666,
|
524 |
+
"grad_norm": 0.12553425699952878,
|
525 |
+
"learning_rate": 1.8692317197309763e-05,
|
526 |
+
"loss": 0.1256,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.64,
|
531 |
+
"grad_norm": 0.11976960918968543,
|
532 |
+
"learning_rate": 1.8750612633916997e-05,
|
533 |
+
"loss": 0.1144,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.6485333333333333,
|
538 |
+
"grad_norm": 0.115805998298789,
|
539 |
+
"learning_rate": 1.8808135922807914e-05,
|
540 |
+
"loss": 0.1528,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.6570666666666667,
|
545 |
+
"grad_norm": 0.10325948496697443,
|
546 |
+
"learning_rate": 1.8864907251724818e-05,
|
547 |
+
"loss": 0.1044,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.6656,
|
552 |
+
"grad_norm": 0.09595064346541006,
|
553 |
+
"learning_rate": 1.8920946026904802e-05,
|
554 |
+
"loss": 0.1534,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.6741333333333334,
|
559 |
+
"grad_norm": 0.08796742845240496,
|
560 |
+
"learning_rate": 1.8976270912904414e-05,
|
561 |
+
"loss": 0.1155,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.6826666666666666,
|
566 |
+
"grad_norm": 0.08218991738379527,
|
567 |
+
"learning_rate": 1.9030899869919434e-05,
|
568 |
+
"loss": 0.1311,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.6912,
|
573 |
+
"grad_norm": 0.08290815261109215,
|
574 |
+
"learning_rate": 1.9084850188786497e-05,
|
575 |
+
"loss": 0.11,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.6997333333333333,
|
580 |
+
"grad_norm": 0.0794132180176064,
|
581 |
+
"learning_rate": 1.9138138523837165e-05,
|
582 |
+
"loss": 0.1135,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.7082666666666667,
|
587 |
+
"grad_norm": 0.06934410705255296,
|
588 |
+
"learning_rate": 1.919078092376074e-05,
|
589 |
+
"loss": 0.109,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7168,
|
594 |
+
"grad_norm": 0.09000563031870593,
|
595 |
+
"learning_rate": 1.9242792860618813e-05,
|
596 |
+
"loss": 0.12,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.7253333333333334,
|
601 |
+
"grad_norm": 0.1134042277879818,
|
602 |
+
"learning_rate": 1.929418925714293e-05,
|
603 |
+
"loss": 0.1223,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.7338666666666667,
|
608 |
+
"grad_norm": 0.09118764690233076,
|
609 |
+
"learning_rate": 1.9344984512435673e-05,
|
610 |
+
"loss": 0.1459,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.7424,
|
615 |
+
"grad_norm": 0.07873016754353963,
|
616 |
+
"learning_rate": 1.9395192526186183e-05,
|
617 |
+
"loss": 0.1422,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.7509333333333333,
|
622 |
+
"grad_norm": 0.1796495874463076,
|
623 |
+
"learning_rate": 1.9444826721501687e-05,
|
624 |
+
"loss": 0.1291,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7594666666666666,
|
629 |
+
"grad_norm": 0.0679589944174269,
|
630 |
+
"learning_rate": 1.9493900066449125e-05,
|
631 |
+
"loss": 0.108,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.768,
|
636 |
+
"grad_norm": 0.08174688574235538,
|
637 |
+
"learning_rate": 1.9542425094393246e-05,
|
638 |
+
"loss": 0.1081,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.7765333333333333,
|
643 |
+
"grad_norm": 0.057137370501406756,
|
644 |
+
"learning_rate": 1.9590413923210934e-05,
|
645 |
+
"loss": 0.0934,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.7850666666666667,
|
650 |
+
"grad_norm": 0.06578111924908255,
|
651 |
+
"learning_rate": 1.9637878273455555e-05,
|
652 |
+
"loss": 0.1085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.7936,
|
657 |
+
"grad_norm": 0.08945990540906254,
|
658 |
+
"learning_rate": 1.968482948553935e-05,
|
659 |
+
"loss": 0.1747,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.8021333333333334,
|
664 |
+
"grad_norm": 0.06183863311044229,
|
665 |
+
"learning_rate": 1.9731278535996986e-05,
|
666 |
+
"loss": 0.1136,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.8106666666666666,
|
671 |
+
"grad_norm": 0.05777899602544702,
|
672 |
+
"learning_rate": 1.9777236052888476e-05,
|
673 |
+
"loss": 0.0984,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8192,
|
678 |
+
"grad_norm": 0.08130851607693534,
|
679 |
+
"learning_rate": 1.9822712330395683e-05,
|
680 |
+
"loss": 0.187,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.8277333333333333,
|
685 |
+
"grad_norm": 0.06426546202002927,
|
686 |
+
"learning_rate": 1.986771734266245e-05,
|
687 |
+
"loss": 0.1296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.8362666666666667,
|
692 |
+
"grad_norm": 0.069692313707994,
|
693 |
+
"learning_rate": 1.991226075692495e-05,
|
694 |
+
"loss": 0.1404,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.8448,
|
699 |
+
"grad_norm": 0.05494542266886729,
|
700 |
+
"learning_rate": 1.9956351945975496e-05,
|
701 |
+
"loss": 0.116,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8533333333333334,
|
706 |
+
"grad_norm": 0.07571686966840627,
|
707 |
+
"learning_rate": 1.9999999999999998e-05,
|
708 |
+
"loss": 0.1539,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.8618666666666667,
|
713 |
+
"grad_norm": 0.054351059117603705,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.1037,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.8704,
|
720 |
+
"grad_norm": 0.06531899611551092,
|
721 |
+
"learning_rate": 2e-05,
|
722 |
+
"loss": 0.0827,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8789333333333333,
|
727 |
+
"grad_norm": 0.06131678646504652,
|
728 |
+
"learning_rate": 2e-05,
|
729 |
+
"loss": 0.1266,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8874666666666666,
|
734 |
+
"grad_norm": 0.06850220540661824,
|
735 |
+
"learning_rate": 2e-05,
|
736 |
+
"loss": 0.1456,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.896,
|
741 |
+
"grad_norm": 0.05806908951252483,
|
742 |
+
"learning_rate": 2e-05,
|
743 |
+
"loss": 0.0954,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.9045333333333333,
|
748 |
+
"grad_norm": 0.06503642452033717,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.1417,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.9130666666666667,
|
755 |
+
"grad_norm": 0.050486271853277066,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.0959,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9216,
|
762 |
+
"grad_norm": 0.07746063813802379,
|
763 |
+
"learning_rate": 2e-05,
|
764 |
+
"loss": 0.1256,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.9301333333333334,
|
769 |
+
"grad_norm": 0.051231172380840004,
|
770 |
+
"learning_rate": 2e-05,
|
771 |
+
"loss": 0.1116,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.9386666666666666,
|
776 |
+
"grad_norm": 0.056296443557859455,
|
777 |
+
"learning_rate": 2e-05,
|
778 |
+
"loss": 0.1056,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.9472,
|
783 |
+
"grad_norm": 0.05058663240713958,
|
784 |
+
"learning_rate": 2e-05,
|
785 |
+
"loss": 0.0971,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.9557333333333333,
|
790 |
+
"grad_norm": 0.05532886570130611,
|
791 |
+
"learning_rate": 2e-05,
|
792 |
+
"loss": 0.1086,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.9642666666666667,
|
797 |
+
"grad_norm": 0.05327811326654907,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0989,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.9728,
|
804 |
+
"grad_norm": 0.05663279364147864,
|
805 |
+
"learning_rate": 2e-05,
|
806 |
+
"loss": 0.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.9813333333333333,
|
811 |
+
"grad_norm": 0.04930904541225805,
|
812 |
+
"learning_rate": 2e-05,
|
813 |
+
"loss": 0.0887,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.9898666666666667,
|
818 |
+
"grad_norm": 0.06096947951115022,
|
819 |
+
"learning_rate": 2e-05,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.9984,
|
825 |
+
"grad_norm": 0.050092322361182495,
|
826 |
+
"learning_rate": 2e-05,
|
827 |
+
"loss": 0.0931,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.0069333333333332,
|
832 |
+
"grad_norm": 0.04980408443758999,
|
833 |
+
"learning_rate": 2e-05,
|
834 |
+
"loss": 0.0955,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0154666666666667,
|
839 |
+
"grad_norm": 0.051183082721834305,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.1049,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.024,
|
846 |
+
"grad_norm": 0.04332220265802814,
|
847 |
+
"learning_rate": 2e-05,
|
848 |
+
"loss": 0.0983,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.0325333333333333,
|
853 |
+
"grad_norm": 0.07211731499677299,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.1386,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.0410666666666666,
|
860 |
+
"grad_norm": 0.06550870223740553,
|
861 |
+
"learning_rate": 2e-05,
|
862 |
+
"loss": 0.1334,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.0496,
|
867 |
+
"grad_norm": 0.05331839690767287,
|
868 |
+
"learning_rate": 2e-05,
|
869 |
+
"loss": 0.1014,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.0581333333333334,
|
874 |
+
"grad_norm": 0.05227685628767905,
|
875 |
+
"learning_rate": 2e-05,
|
876 |
+
"loss": 0.1098,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0666666666666667,
|
881 |
+
"grad_norm": 0.07641693882491171,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.1127,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0752,
|
888 |
+
"grad_norm": 0.052835367770791786,
|
889 |
+
"learning_rate": 2e-05,
|
890 |
+
"loss": 0.1231,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.0837333333333334,
|
895 |
+
"grad_norm": 0.07520329755025788,
|
896 |
+
"learning_rate": 2e-05,
|
897 |
+
"loss": 0.085,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.0922666666666667,
|
902 |
+
"grad_norm": 0.07670066152157425,
|
903 |
+
"learning_rate": 2e-05,
|
904 |
+
"loss": 0.1071,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.1008,
|
909 |
+
"grad_norm": 0.052832906560645154,
|
910 |
+
"learning_rate": 2e-05,
|
911 |
+
"loss": 0.1093,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.1093333333333333,
|
916 |
+
"grad_norm": 0.06573889037311398,
|
917 |
+
"learning_rate": 2e-05,
|
918 |
+
"loss": 0.1193,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.1178666666666666,
|
923 |
+
"grad_norm": 0.05175471296566334,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.1184,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1264,
|
930 |
+
"grad_norm": 0.05912231419793496,
|
931 |
+
"learning_rate": 2e-05,
|
932 |
+
"loss": 0.1154,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.1349333333333333,
|
937 |
+
"grad_norm": 0.04899140475981105,
|
938 |
+
"learning_rate": 2e-05,
|
939 |
+
"loss": 0.0957,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.1434666666666666,
|
944 |
+
"grad_norm": 0.05939916939142137,
|
945 |
+
"learning_rate": 2e-05,
|
946 |
+
"loss": 0.0979,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.152,
|
951 |
+
"grad_norm": 0.0516819217599706,
|
952 |
+
"learning_rate": 2e-05,
|
953 |
+
"loss": 0.0834,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.1605333333333334,
|
958 |
+
"grad_norm": 0.05456440346454737,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.1183,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.1690666666666667,
|
965 |
+
"grad_norm": 0.059906464476343235,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.1048,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.1776,
|
972 |
+
"grad_norm": 0.0720112680204319,
|
973 |
+
"learning_rate": 2e-05,
|
974 |
+
"loss": 0.1168,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.1861333333333333,
|
979 |
+
"grad_norm": 0.04940202805828527,
|
980 |
+
"learning_rate": 2e-05,
|
981 |
+
"loss": 0.0948,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.1946666666666665,
|
986 |
+
"grad_norm": 0.060088609545130046,
|
987 |
+
"learning_rate": 2e-05,
|
988 |
+
"loss": 0.0952,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.2032,
|
993 |
+
"grad_norm": 0.04694761423612446,
|
994 |
+
"learning_rate": 2e-05,
|
995 |
+
"loss": 0.0717,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.2117333333333333,
|
1000 |
+
"grad_norm": 0.05628581562512457,
|
1001 |
+
"learning_rate": 2e-05,
|
1002 |
+
"loss": 0.1062,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.2202666666666666,
|
1007 |
+
"grad_norm": 0.06876420990437652,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.1218,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2288000000000001,
|
1014 |
+
"grad_norm": 0.058774700501610655,
|
1015 |
+
"learning_rate": 2e-05,
|
1016 |
+
"loss": 0.1125,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.2373333333333334,
|
1021 |
+
"grad_norm": 0.061855922064341186,
|
1022 |
+
"learning_rate": 2e-05,
|
1023 |
+
"loss": 0.1295,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.2458666666666667,
|
1028 |
+
"grad_norm": 0.0813047704730138,
|
1029 |
+
"learning_rate": 2e-05,
|
1030 |
+
"loss": 0.1165,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.2544,
|
1035 |
+
"grad_norm": 0.061374000305305446,
|
1036 |
+
"learning_rate": 2e-05,
|
1037 |
+
"loss": 0.1094,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.2629333333333332,
|
1042 |
+
"grad_norm": 0.055537169110833,
|
1043 |
+
"learning_rate": 2e-05,
|
1044 |
+
"loss": 0.1054,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.2714666666666667,
|
1049 |
+
"grad_norm": 0.04423248714119304,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0841,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.28,
|
1056 |
+
"grad_norm": 0.049931966607835034,
|
1057 |
+
"learning_rate": 2e-05,
|
1058 |
+
"loss": 0.0961,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.2885333333333333,
|
1063 |
+
"grad_norm": 0.06178656953298769,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.0854,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.2970666666666666,
|
1070 |
+
"grad_norm": 0.05783812343287897,
|
1071 |
+
"learning_rate": 2e-05,
|
1072 |
+
"loss": 0.1141,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.3056,
|
1077 |
+
"grad_norm": 0.048955120400167584,
|
1078 |
+
"learning_rate": 2e-05,
|
1079 |
+
"loss": 0.0947,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.3141333333333334,
|
1084 |
+
"grad_norm": 0.12270174746806978,
|
1085 |
+
"learning_rate": 2e-05,
|
1086 |
+
"loss": 0.1553,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.3226666666666667,
|
1091 |
+
"grad_norm": 0.06928026959973474,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.1274,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3312,
|
1098 |
+
"grad_norm": 0.04756100666105405,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 0.0893,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.3397333333333332,
|
1105 |
+
"grad_norm": 0.056054951338196934,
|
1106 |
+
"learning_rate": 2e-05,
|
1107 |
+
"loss": 0.0831,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.3482666666666667,
|
1112 |
+
"grad_norm": 0.0516990471964239,
|
1113 |
+
"learning_rate": 2e-05,
|
1114 |
+
"loss": 0.0883,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.3568,
|
1119 |
+
"grad_norm": 0.06011650542069954,
|
1120 |
+
"learning_rate": 2e-05,
|
1121 |
+
"loss": 0.0938,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.3653333333333333,
|
1126 |
+
"grad_norm": 0.051831307951873976,
|
1127 |
+
"learning_rate": 2e-05,
|
1128 |
+
"loss": 0.1019,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.3738666666666668,
|
1133 |
+
"grad_norm": 0.0544902702048936,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0906,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.3824,
|
1140 |
+
"grad_norm": 0.06057617032526,
|
1141 |
+
"learning_rate": 2e-05,
|
1142 |
+
"loss": 0.1206,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.3909333333333334,
|
1147 |
+
"grad_norm": 0.07288058025189605,
|
1148 |
+
"learning_rate": 2e-05,
|
1149 |
+
"loss": 0.1175,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.3994666666666666,
|
1154 |
+
"grad_norm": 0.05639043792084219,
|
1155 |
+
"learning_rate": 2e-05,
|
1156 |
+
"loss": 0.1031,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.408,
|
1161 |
+
"grad_norm": 0.0586469408837505,
|
1162 |
+
"learning_rate": 2e-05,
|
1163 |
+
"loss": 0.1143,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.4165333333333332,
|
1168 |
+
"grad_norm": 0.059243429040783904,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.0838,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.4250666666666667,
|
1175 |
+
"grad_norm": 0.0621476448363388,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.1032,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4336,
|
1182 |
+
"grad_norm": 0.06083867682720169,
|
1183 |
+
"learning_rate": 2e-05,
|
1184 |
+
"loss": 0.1119,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.4421333333333333,
|
1189 |
+
"grad_norm": 0.09583165335305677,
|
1190 |
+
"learning_rate": 2e-05,
|
1191 |
+
"loss": 0.1028,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.4506666666666668,
|
1196 |
+
"grad_norm": 0.06411638581314043,
|
1197 |
+
"learning_rate": 2e-05,
|
1198 |
+
"loss": 0.1181,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.4592,
|
1203 |
+
"grad_norm": 0.05632977234908945,
|
1204 |
+
"learning_rate": 2e-05,
|
1205 |
+
"loss": 0.1055,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.4677333333333333,
|
1210 |
+
"grad_norm": 0.05666068971337413,
|
1211 |
+
"learning_rate": 2e-05,
|
1212 |
+
"loss": 0.1116,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.4762666666666666,
|
1217 |
+
"grad_norm": 0.04502062723807536,
|
1218 |
+
"learning_rate": 2e-05,
|
1219 |
+
"loss": 0.0588,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.4848,
|
1224 |
+
"grad_norm": 0.05916500176868301,
|
1225 |
+
"learning_rate": 2e-05,
|
1226 |
+
"loss": 0.0949,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4933333333333334,
|
1231 |
+
"grad_norm": 0.056484273808864845,
|
1232 |
+
"learning_rate": 2e-05,
|
1233 |
+
"loss": 0.0948,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.5018666666666667,
|
1238 |
+
"grad_norm": 0.06652084448571674,
|
1239 |
+
"learning_rate": 2e-05,
|
1240 |
+
"loss": 0.1086,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5104,
|
1245 |
+
"grad_norm": 0.05400238078068516,
|
1246 |
+
"learning_rate": 2e-05,
|
1247 |
+
"loss": 0.0919,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.5189333333333335,
|
1252 |
+
"grad_norm": 0.04979579743346662,
|
1253 |
+
"learning_rate": 2e-05,
|
1254 |
+
"loss": 0.0879,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.5274666666666668,
|
1259 |
+
"grad_norm": 0.06876105414733971,
|
1260 |
+
"learning_rate": 2e-05,
|
1261 |
+
"loss": 0.1162,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.536,
|
1266 |
+
"grad_norm": 0.05633262015499721,
|
1267 |
+
"learning_rate": 2e-05,
|
1268 |
+
"loss": 0.1142,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.5445333333333333,
|
1273 |
+
"grad_norm": 0.0599508967519892,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.1073,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.5530666666666666,
|
1280 |
+
"grad_norm": 0.058912170976454126,
|
1281 |
+
"learning_rate": 2e-05,
|
1282 |
+
"loss": 0.1102,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.5615999999999999,
|
1287 |
+
"grad_norm": 0.05361414988566254,
|
1288 |
+
"learning_rate": 2e-05,
|
1289 |
+
"loss": 0.0885,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.5701333333333334,
|
1294 |
+
"grad_norm": 0.04517277847384077,
|
1295 |
+
"learning_rate": 2e-05,
|
1296 |
+
"loss": 0.0763,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.5786666666666667,
|
1301 |
+
"grad_norm": 0.05551553662051771,
|
1302 |
+
"learning_rate": 2e-05,
|
1303 |
+
"loss": 0.0877,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.5872000000000002,
|
1308 |
+
"grad_norm": 0.05814223969236194,
|
1309 |
+
"learning_rate": 2e-05,
|
1310 |
+
"loss": 0.1044,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.5957333333333334,
|
1315 |
+
"grad_norm": 0.05710054166191597,
|
1316 |
+
"learning_rate": 2e-05,
|
1317 |
+
"loss": 0.0962,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6042666666666667,
|
1322 |
+
"grad_norm": 0.054744343932104075,
|
1323 |
+
"learning_rate": 2e-05,
|
1324 |
+
"loss": 0.0873,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.6128,
|
1329 |
+
"grad_norm": 0.051145521687090995,
|
1330 |
+
"learning_rate": 2e-05,
|
1331 |
+
"loss": 0.0855,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.6213333333333333,
|
1336 |
+
"grad_norm": 0.05414658860737789,
|
1337 |
+
"learning_rate": 2e-05,
|
1338 |
+
"loss": 0.0872,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.6298666666666666,
|
1343 |
+
"grad_norm": 0.05084744595533029,
|
1344 |
+
"learning_rate": 2e-05,
|
1345 |
+
"loss": 0.0891,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6383999999999999,
|
1350 |
+
"grad_norm": 0.0567070082820597,
|
1351 |
+
"learning_rate": 2e-05,
|
1352 |
+
"loss": 0.0965,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.6469333333333334,
|
1357 |
+
"grad_norm": 0.0494785311411315,
|
1358 |
+
"learning_rate": 2e-05,
|
1359 |
+
"loss": 0.0941,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.6554666666666666,
|
1364 |
+
"grad_norm": 0.062341158530385396,
|
1365 |
+
"learning_rate": 2e-05,
|
1366 |
+
"loss": 0.1154,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.6640000000000001,
|
1371 |
+
"grad_norm": 0.059888336716275685,
|
1372 |
+
"learning_rate": 2e-05,
|
1373 |
+
"loss": 0.1037,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.6725333333333334,
|
1378 |
+
"grad_norm": 0.07346562318829057,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.1329,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.6810666666666667,
|
1385 |
+
"grad_norm": 0.0792360016934733,
|
1386 |
+
"learning_rate": 2e-05,
|
1387 |
+
"loss": 0.1392,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.6896,
|
1392 |
+
"grad_norm": 0.0800342963229883,
|
1393 |
+
"learning_rate": 2e-05,
|
1394 |
+
"loss": 0.1199,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.6981333333333333,
|
1399 |
+
"grad_norm": 0.06848045933195548,
|
1400 |
+
"learning_rate": 2e-05,
|
1401 |
+
"loss": 0.0998,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.7066666666666666,
|
1406 |
+
"grad_norm": 0.05743199019316764,
|
1407 |
+
"learning_rate": 2e-05,
|
1408 |
+
"loss": 0.0811,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.7151999999999998,
|
1413 |
+
"grad_norm": 0.07170531168284446,
|
1414 |
+
"learning_rate": 2e-05,
|
1415 |
+
"loss": 0.1079,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.7237333333333333,
|
1420 |
+
"grad_norm": 0.05772905481368506,
|
1421 |
+
"learning_rate": 2e-05,
|
1422 |
+
"loss": 0.0844,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.7322666666666666,
|
1427 |
+
"grad_norm": 0.07504946014098464,
|
1428 |
+
"learning_rate": 2e-05,
|
1429 |
+
"loss": 0.1257,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7408000000000001,
|
1434 |
+
"grad_norm": 0.06450179819785838,
|
1435 |
+
"learning_rate": 2e-05,
|
1436 |
+
"loss": 0.1104,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.7493333333333334,
|
1441 |
+
"grad_norm": 0.06595445965110332,
|
1442 |
+
"learning_rate": 2e-05,
|
1443 |
+
"loss": 0.093,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.7578666666666667,
|
1448 |
+
"grad_norm": 0.07203558121131749,
|
1449 |
+
"learning_rate": 2e-05,
|
1450 |
+
"loss": 0.1117,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.7664,
|
1455 |
+
"grad_norm": 0.05954646782409283,
|
1456 |
+
"learning_rate": 2e-05,
|
1457 |
+
"loss": 0.0729,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.7749333333333333,
|
1462 |
+
"grad_norm": 0.06624894584410884,
|
1463 |
+
"learning_rate": 2e-05,
|
1464 |
+
"loss": 0.0998,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.7834666666666665,
|
1469 |
+
"grad_norm": 0.06888562028256219,
|
1470 |
+
"learning_rate": 2e-05,
|
1471 |
+
"loss": 0.1398,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.792,
|
1476 |
+
"grad_norm": 0.061224088077794406,
|
1477 |
+
"learning_rate": 2e-05,
|
1478 |
+
"loss": 0.1112,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.8005333333333333,
|
1483 |
+
"grad_norm": 0.06857358883856608,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.1293,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.8090666666666668,
|
1490 |
+
"grad_norm": 0.06177352416779139,
|
1491 |
+
"learning_rate": 2e-05,
|
1492 |
+
"loss": 0.0884,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.8176,
|
1497 |
+
"grad_norm": 0.08324567429925228,
|
1498 |
+
"learning_rate": 2e-05,
|
1499 |
+
"loss": 0.1127,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.8261333333333334,
|
1504 |
+
"grad_norm": 0.06771677297787752,
|
1505 |
+
"learning_rate": 2e-05,
|
1506 |
+
"loss": 0.089,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.8346666666666667,
|
1511 |
+
"grad_norm": 0.07055754809472485,
|
1512 |
+
"learning_rate": 2e-05,
|
1513 |
+
"loss": 0.1206,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8432,
|
1518 |
+
"grad_norm": 0.05856797724392531,
|
1519 |
+
"learning_rate": 2e-05,
|
1520 |
+
"loss": 0.0893,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.8517333333333332,
|
1525 |
+
"grad_norm": 0.07555286129801597,
|
1526 |
+
"learning_rate": 2e-05,
|
1527 |
+
"loss": 0.0913,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.8602666666666665,
|
1532 |
+
"grad_norm": 0.09242462538643775,
|
1533 |
+
"learning_rate": 2e-05,
|
1534 |
+
"loss": 0.1241,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.8688,
|
1539 |
+
"grad_norm": 0.06550805537088374,
|
1540 |
+
"learning_rate": 2e-05,
|
1541 |
+
"loss": 0.0819,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.8773333333333333,
|
1546 |
+
"grad_norm": 0.06016048263236861,
|
1547 |
+
"learning_rate": 2e-05,
|
1548 |
+
"loss": 0.0955,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.8858666666666668,
|
1553 |
+
"grad_norm": 0.06856661106001445,
|
1554 |
+
"learning_rate": 2e-05,
|
1555 |
+
"loss": 0.1132,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.8944,
|
1560 |
+
"grad_norm": 0.06383306455000529,
|
1561 |
+
"learning_rate": 2e-05,
|
1562 |
+
"loss": 0.1086,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.9029333333333334,
|
1567 |
+
"grad_norm": 0.07240472757239624,
|
1568 |
+
"learning_rate": 2e-05,
|
1569 |
+
"loss": 0.0863,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.9114666666666666,
|
1574 |
+
"grad_norm": 0.07845654471077741,
|
1575 |
+
"learning_rate": 2e-05,
|
1576 |
+
"loss": 0.1284,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.92,
|
1581 |
+
"grad_norm": 0.07192185833649212,
|
1582 |
+
"learning_rate": 2e-05,
|
1583 |
+
"loss": 0.1101,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.9285333333333332,
|
1588 |
+
"grad_norm": 0.06390598005596872,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.0917,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.9370666666666667,
|
1595 |
+
"grad_norm": 0.06306138712432224,
|
1596 |
+
"learning_rate": 2e-05,
|
1597 |
+
"loss": 0.0936,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.9456,
|
1602 |
+
"grad_norm": 0.06771381941296478,
|
1603 |
+
"learning_rate": 2e-05,
|
1604 |
+
"loss": 0.0936,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.9541333333333335,
|
1609 |
+
"grad_norm": 0.05899006803461524,
|
1610 |
+
"learning_rate": 2e-05,
|
1611 |
+
"loss": 0.0782,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.9626666666666668,
|
1616 |
+
"grad_norm": 0.07426956281950735,
|
1617 |
+
"learning_rate": 2e-05,
|
1618 |
+
"loss": 0.1095,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.9712,
|
1623 |
+
"grad_norm": 0.06567534902293475,
|
1624 |
+
"learning_rate": 2e-05,
|
1625 |
+
"loss": 0.0956,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.9797333333333333,
|
1630 |
+
"grad_norm": 0.07430395142282198,
|
1631 |
+
"learning_rate": 2e-05,
|
1632 |
+
"loss": 0.0957,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.9882666666666666,
|
1637 |
+
"grad_norm": 0.05834447367264806,
|
1638 |
+
"learning_rate": 2e-05,
|
1639 |
+
"loss": 0.0767,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.9968,
|
1644 |
+
"grad_norm": 0.07137090413877054,
|
1645 |
+
"learning_rate": 2e-05,
|
1646 |
+
"loss": 0.0821,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.005333333333333,
|
1651 |
+
"grad_norm": 0.07797914240805551,
|
1652 |
+
"learning_rate": 2e-05,
|
1653 |
+
"loss": 0.1175,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.0138666666666665,
|
1658 |
+
"grad_norm": 0.09335648879374187,
|
1659 |
+
"learning_rate": 2e-05,
|
1660 |
+
"loss": 0.1632,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.0224,
|
1665 |
+
"grad_norm": 0.08280719749100944,
|
1666 |
+
"learning_rate": 2e-05,
|
1667 |
+
"loss": 0.115,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.0309333333333335,
|
1672 |
+
"grad_norm": 0.08956213539053312,
|
1673 |
+
"learning_rate": 2e-05,
|
1674 |
+
"loss": 0.109,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.0394666666666668,
|
1679 |
+
"grad_norm": 0.08849786687188893,
|
1680 |
+
"learning_rate": 2e-05,
|
1681 |
+
"loss": 0.1234,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.048,
|
1686 |
+
"grad_norm": 0.16956065138312856,
|
1687 |
+
"learning_rate": 2e-05,
|
1688 |
+
"loss": 0.1055,
|
1689 |
+
"step": 240
|
1690 |
+
}
|
1691 |
+
],
|
1692 |
+
"logging_steps": 1,
|
1693 |
+
"max_steps": 351,
|
1694 |
+
"num_input_tokens_seen": 0,
|
1695 |
+
"num_train_epochs": 3,
|
1696 |
+
"save_steps": 20,
|
1697 |
+
"stateful_callbacks": {
|
1698 |
+
"TrainerControl": {
|
1699 |
+
"args": {
|
1700 |
+
"should_epoch_stop": false,
|
1701 |
+
"should_evaluate": false,
|
1702 |
+
"should_log": false,
|
1703 |
+
"should_save": true,
|
1704 |
+
"should_training_stop": false
|
1705 |
+
},
|
1706 |
+
"attributes": {}
|
1707 |
+
}
|
1708 |
+
},
|
1709 |
+
"total_flos": 3.4262663119891333e+18,
|
1710 |
+
"train_batch_size": 16,
|
1711 |
+
"trial_name": null,
|
1712 |
+
"trial_params": null
|
1713 |
+
}
|
checkpoint-240/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
|
3 |
+
size 6840
|
checkpoint-240/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-260/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../ckpts/Meta-Llama-3-8B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-260/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"q_proj",
|
26 |
+
"lm_head",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"up_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-260/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eec3bb4f61fc37676975013d46cc5e10f8d9a4b327e7ac49c4d0638301be3de0
|
3 |
+
size 1138856856
|
checkpoint-260/global_step260/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56b0e33a2082f3838f1e171c77e1243d6f245ca1af4e631b50d6a771d4657e80
|
3 |
+
size 528781328
|
checkpoint-260/global_step260/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2feae52818e8eefd4438e8c94312d2a2181070edb069f9c232d0ad7481fe86c6
|
3 |
+
size 199905337
|
checkpoint-260/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step260
|
checkpoint-260/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df5336a6bdf866da6f2d48b2de7a869897f2fbda5c5e2f70f21996192cb79dbd
|
3 |
+
size 14244
|
checkpoint-260/trainer_state.json
ADDED
@@ -0,0 +1,1853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.2186666666666666,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 260,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008533333333333334,
|
13 |
+
"grad_norm": 100.21848203113535,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.1962,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.017066666666666667,
|
20 |
+
"grad_norm": 96.43006188910957,
|
21 |
+
"learning_rate": 3.0102999566398115e-06,
|
22 |
+
"loss": 6.9414,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0256,
|
27 |
+
"grad_norm": 97.35803466618715,
|
28 |
+
"learning_rate": 4.771212547196624e-06,
|
29 |
+
"loss": 7.0102,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.034133333333333335,
|
34 |
+
"grad_norm": 95.14837816372646,
|
35 |
+
"learning_rate": 6.020599913279623e-06,
|
36 |
+
"loss": 6.5295,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.042666666666666665,
|
41 |
+
"grad_norm": 91.76544275692784,
|
42 |
+
"learning_rate": 6.989700043360187e-06,
|
43 |
+
"loss": 6.4806,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0512,
|
48 |
+
"grad_norm": 84.4494318688335,
|
49 |
+
"learning_rate": 7.781512503836437e-06,
|
50 |
+
"loss": 6.4194,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05973333333333333,
|
55 |
+
"grad_norm": 71.37977490595638,
|
56 |
+
"learning_rate": 8.450980400142568e-06,
|
57 |
+
"loss": 5.4953,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06826666666666667,
|
62 |
+
"grad_norm": 49.31153456754566,
|
63 |
+
"learning_rate": 9.030899869919434e-06,
|
64 |
+
"loss": 5.4123,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0768,
|
69 |
+
"grad_norm": 20.37296364560341,
|
70 |
+
"learning_rate": 9.542425094393249e-06,
|
71 |
+
"loss": 5.2334,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08533333333333333,
|
76 |
+
"grad_norm": 7.968467079076881,
|
77 |
+
"learning_rate": 9.999999999999999e-06,
|
78 |
+
"loss": 5.0282,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09386666666666667,
|
83 |
+
"grad_norm": 3.559446532055649,
|
84 |
+
"learning_rate": 1.041392685158225e-05,
|
85 |
+
"loss": 4.612,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1024,
|
90 |
+
"grad_norm": 3.5528846947995674,
|
91 |
+
"learning_rate": 1.0791812460476248e-05,
|
92 |
+
"loss": 4.9475,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.11093333333333333,
|
97 |
+
"grad_norm": 3.541968897471334,
|
98 |
+
"learning_rate": 1.1139433523068365e-05,
|
99 |
+
"loss": 4.2777,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.11946666666666667,
|
104 |
+
"grad_norm": 3.54718070036198,
|
105 |
+
"learning_rate": 1.1461280356782378e-05,
|
106 |
+
"loss": 4.3507,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.128,
|
111 |
+
"grad_norm": 3.8632334830606747,
|
112 |
+
"learning_rate": 1.1760912590556813e-05,
|
113 |
+
"loss": 4.5364,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.13653333333333334,
|
118 |
+
"grad_norm": 3.6637424744054004,
|
119 |
+
"learning_rate": 1.2041199826559246e-05,
|
120 |
+
"loss": 3.9672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.14506666666666668,
|
125 |
+
"grad_norm": 3.919802904818311,
|
126 |
+
"learning_rate": 1.230448921378274e-05,
|
127 |
+
"loss": 4.0618,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1536,
|
132 |
+
"grad_norm": 4.71904950738746,
|
133 |
+
"learning_rate": 1.2552725051033058e-05,
|
134 |
+
"loss": 4.6656,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16213333333333332,
|
139 |
+
"grad_norm": 4.6656317698690835,
|
140 |
+
"learning_rate": 1.2787536009528288e-05,
|
141 |
+
"loss": 4.1131,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.17066666666666666,
|
146 |
+
"grad_norm": 5.145138692367417,
|
147 |
+
"learning_rate": 1.301029995663981e-05,
|
148 |
+
"loss": 4.0989,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1792,
|
153 |
+
"grad_norm": 5.923538014759818,
|
154 |
+
"learning_rate": 1.3222192947339192e-05,
|
155 |
+
"loss": 4.4991,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.18773333333333334,
|
160 |
+
"grad_norm": 5.941056962941364,
|
161 |
+
"learning_rate": 1.3424226808222062e-05,
|
162 |
+
"loss": 4.0836,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.19626666666666667,
|
167 |
+
"grad_norm": 6.171026012117947,
|
168 |
+
"learning_rate": 1.3617278360175927e-05,
|
169 |
+
"loss": 3.6861,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2048,
|
174 |
+
"grad_norm": 7.130542138930838,
|
175 |
+
"learning_rate": 1.380211241711606e-05,
|
176 |
+
"loss": 4.0958,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.21333333333333335,
|
181 |
+
"grad_norm": 7.328837606110418,
|
182 |
+
"learning_rate": 1.3979400086720374e-05,
|
183 |
+
"loss": 3.9524,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.22186666666666666,
|
188 |
+
"grad_norm": 6.923489005711429,
|
189 |
+
"learning_rate": 1.4149733479708178e-05,
|
190 |
+
"loss": 3.6062,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2304,
|
195 |
+
"grad_norm": 6.409498926059221,
|
196 |
+
"learning_rate": 1.4313637641589872e-05,
|
197 |
+
"loss": 3.2034,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.23893333333333333,
|
202 |
+
"grad_norm": 5.781628405584682,
|
203 |
+
"learning_rate": 1.4471580313422191e-05,
|
204 |
+
"loss": 2.8158,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.24746666666666667,
|
209 |
+
"grad_norm": 6.2927590068243315,
|
210 |
+
"learning_rate": 1.4623979978989559e-05,
|
211 |
+
"loss": 2.9803,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.256,
|
216 |
+
"grad_norm": 6.103844678630006,
|
217 |
+
"learning_rate": 1.4771212547196623e-05,
|
218 |
+
"loss": 2.847,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.26453333333333334,
|
223 |
+
"grad_norm": 7.656341925867144,
|
224 |
+
"learning_rate": 1.4913616938342726e-05,
|
225 |
+
"loss": 3.0907,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.2730666666666667,
|
230 |
+
"grad_norm": 6.324242877501844,
|
231 |
+
"learning_rate": 1.5051499783199059e-05,
|
232 |
+
"loss": 2.3467,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.2816,
|
237 |
+
"grad_norm": 7.606313101162739,
|
238 |
+
"learning_rate": 1.5185139398778874e-05,
|
239 |
+
"loss": 2.5292,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.29013333333333335,
|
244 |
+
"grad_norm": 8.553792493849265,
|
245 |
+
"learning_rate": 1.531478917042255e-05,
|
246 |
+
"loss": 2.4547,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2986666666666667,
|
251 |
+
"grad_norm": 8.483368703272543,
|
252 |
+
"learning_rate": 1.5440680443502753e-05,
|
253 |
+
"loss": 2.1956,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3072,
|
258 |
+
"grad_norm": 8.364739352838077,
|
259 |
+
"learning_rate": 1.5563025007672873e-05,
|
260 |
+
"loss": 1.8552,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3157333333333333,
|
265 |
+
"grad_norm": 9.37663682000104,
|
266 |
+
"learning_rate": 1.5682017240669948e-05,
|
267 |
+
"loss": 1.9228,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.32426666666666665,
|
272 |
+
"grad_norm": 9.823047193440066,
|
273 |
+
"learning_rate": 1.57978359661681e-05,
|
274 |
+
"loss": 1.7033,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.3328,
|
279 |
+
"grad_norm": 9.692618512955894,
|
280 |
+
"learning_rate": 1.591064607026499e-05,
|
281 |
+
"loss": 1.3768,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3413333333333333,
|
286 |
+
"grad_norm": 9.08889021911031,
|
287 |
+
"learning_rate": 1.6020599913279622e-05,
|
288 |
+
"loss": 1.3015,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.34986666666666666,
|
293 |
+
"grad_norm": 8.081534221516058,
|
294 |
+
"learning_rate": 1.6127838567197353e-05,
|
295 |
+
"loss": 0.9228,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3584,
|
300 |
+
"grad_norm": 6.238638048950311,
|
301 |
+
"learning_rate": 1.6232492903979005e-05,
|
302 |
+
"loss": 0.7267,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.36693333333333333,
|
307 |
+
"grad_norm": 3.4058036861773604,
|
308 |
+
"learning_rate": 1.6334684555795865e-05,
|
309 |
+
"loss": 0.5875,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.37546666666666667,
|
314 |
+
"grad_norm": 2.079163829467713,
|
315 |
+
"learning_rate": 1.6434526764861872e-05,
|
316 |
+
"loss": 0.6355,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.384,
|
321 |
+
"grad_norm": 1.5597487833024746,
|
322 |
+
"learning_rate": 1.6532125137753435e-05,
|
323 |
+
"loss": 0.5106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.39253333333333335,
|
328 |
+
"grad_norm": 2.491689602375256,
|
329 |
+
"learning_rate": 1.662757831681574e-05,
|
330 |
+
"loss": 0.6454,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.4010666666666667,
|
335 |
+
"grad_norm": 2.010880438195854,
|
336 |
+
"learning_rate": 1.672097857935717e-05,
|
337 |
+
"loss": 0.4757,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4096,
|
342 |
+
"grad_norm": 1.9452805114322096,
|
343 |
+
"learning_rate": 1.681241237375587e-05,
|
344 |
+
"loss": 0.4133,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.41813333333333336,
|
349 |
+
"grad_norm": 1.7620848552306103,
|
350 |
+
"learning_rate": 1.6901960800285137e-05,
|
351 |
+
"loss": 0.4004,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4266666666666667,
|
356 |
+
"grad_norm": 1.278224489774809,
|
357 |
+
"learning_rate": 1.6989700043360187e-05,
|
358 |
+
"loss": 0.3523,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4352,
|
363 |
+
"grad_norm": 1.6151354758303231,
|
364 |
+
"learning_rate": 1.7075701760979363e-05,
|
365 |
+
"loss": 0.4317,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.4437333333333333,
|
370 |
+
"grad_norm": 1.3451396055695035,
|
371 |
+
"learning_rate": 1.716003343634799e-05,
|
372 |
+
"loss": 0.3474,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.45226666666666665,
|
377 |
+
"grad_norm": 1.6814977782362666,
|
378 |
+
"learning_rate": 1.724275869600789e-05,
|
379 |
+
"loss": 0.3706,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.4608,
|
384 |
+
"grad_norm": 1.1682442432688667,
|
385 |
+
"learning_rate": 1.7323937598229687e-05,
|
386 |
+
"loss": 0.3488,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.4693333333333333,
|
391 |
+
"grad_norm": 0.8839814540462471,
|
392 |
+
"learning_rate": 1.7403626894942437e-05,
|
393 |
+
"loss": 0.293,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.47786666666666666,
|
398 |
+
"grad_norm": 0.7974304806295485,
|
399 |
+
"learning_rate": 1.7481880270062003e-05,
|
400 |
+
"loss": 0.2717,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.4864,
|
405 |
+
"grad_norm": 0.6232203657585239,
|
406 |
+
"learning_rate": 1.7558748556724913e-05,
|
407 |
+
"loss": 0.1741,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.49493333333333334,
|
412 |
+
"grad_norm": 0.6850688604563008,
|
413 |
+
"learning_rate": 1.763427993562937e-05,
|
414 |
+
"loss": 0.228,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5034666666666666,
|
419 |
+
"grad_norm": 0.5923826384300431,
|
420 |
+
"learning_rate": 1.7708520116421443e-05,
|
421 |
+
"loss": 0.2131,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.512,
|
426 |
+
"grad_norm": 0.489754430485032,
|
427 |
+
"learning_rate": 1.7781512503836432e-05,
|
428 |
+
"loss": 0.165,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5205333333333333,
|
433 |
+
"grad_norm": 0.5280940052395061,
|
434 |
+
"learning_rate": 1.7853298350107667e-05,
|
435 |
+
"loss": 0.1658,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.5290666666666667,
|
440 |
+
"grad_norm": 0.4750905992036739,
|
441 |
+
"learning_rate": 1.7923916894982537e-05,
|
442 |
+
"loss": 0.1438,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.5376,
|
447 |
+
"grad_norm": 0.4162998392722401,
|
448 |
+
"learning_rate": 1.7993405494535815e-05,
|
449 |
+
"loss": 0.1555,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.5461333333333334,
|
454 |
+
"grad_norm": 0.26863266246370443,
|
455 |
+
"learning_rate": 1.806179973983887e-05,
|
456 |
+
"loss": 0.1323,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.5546666666666666,
|
461 |
+
"grad_norm": 0.26534221125601215,
|
462 |
+
"learning_rate": 1.8129133566428553e-05,
|
463 |
+
"loss": 0.1671,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.5632,
|
468 |
+
"grad_norm": 0.2548662962257576,
|
469 |
+
"learning_rate": 1.8195439355418686e-05,
|
470 |
+
"loss": 0.1308,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.5717333333333333,
|
475 |
+
"grad_norm": 0.18045394638578796,
|
476 |
+
"learning_rate": 1.8260748027008263e-05,
|
477 |
+
"loss": 0.1262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.5802666666666667,
|
482 |
+
"grad_norm": 0.17070388073612064,
|
483 |
+
"learning_rate": 1.8325089127062364e-05,
|
484 |
+
"loss": 0.1192,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.5888,
|
489 |
+
"grad_norm": 0.1531381679244776,
|
490 |
+
"learning_rate": 1.8388490907372553e-05,
|
491 |
+
"loss": 0.1274,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5973333333333334,
|
496 |
+
"grad_norm": 0.18196434993687946,
|
497 |
+
"learning_rate": 1.8450980400142568e-05,
|
498 |
+
"loss": 0.1375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6058666666666667,
|
503 |
+
"grad_norm": 0.15324416972951205,
|
504 |
+
"learning_rate": 1.8512583487190752e-05,
|
505 |
+
"loss": 0.1599,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6144,
|
510 |
+
"grad_norm": 0.10884462064503801,
|
511 |
+
"learning_rate": 1.857332496431268e-05,
|
512 |
+
"loss": 0.1041,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.6229333333333333,
|
517 |
+
"grad_norm": 0.12915133528192668,
|
518 |
+
"learning_rate": 1.8633228601204555e-05,
|
519 |
+
"loss": 0.1406,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6314666666666666,
|
524 |
+
"grad_norm": 0.12553425699952878,
|
525 |
+
"learning_rate": 1.8692317197309763e-05,
|
526 |
+
"loss": 0.1256,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.64,
|
531 |
+
"grad_norm": 0.11976960918968543,
|
532 |
+
"learning_rate": 1.8750612633916997e-05,
|
533 |
+
"loss": 0.1144,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.6485333333333333,
|
538 |
+
"grad_norm": 0.115805998298789,
|
539 |
+
"learning_rate": 1.8808135922807914e-05,
|
540 |
+
"loss": 0.1528,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.6570666666666667,
|
545 |
+
"grad_norm": 0.10325948496697443,
|
546 |
+
"learning_rate": 1.8864907251724818e-05,
|
547 |
+
"loss": 0.1044,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.6656,
|
552 |
+
"grad_norm": 0.09595064346541006,
|
553 |
+
"learning_rate": 1.8920946026904802e-05,
|
554 |
+
"loss": 0.1534,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.6741333333333334,
|
559 |
+
"grad_norm": 0.08796742845240496,
|
560 |
+
"learning_rate": 1.8976270912904414e-05,
|
561 |
+
"loss": 0.1155,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.6826666666666666,
|
566 |
+
"grad_norm": 0.08218991738379527,
|
567 |
+
"learning_rate": 1.9030899869919434e-05,
|
568 |
+
"loss": 0.1311,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.6912,
|
573 |
+
"grad_norm": 0.08290815261109215,
|
574 |
+
"learning_rate": 1.9084850188786497e-05,
|
575 |
+
"loss": 0.11,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.6997333333333333,
|
580 |
+
"grad_norm": 0.0794132180176064,
|
581 |
+
"learning_rate": 1.9138138523837165e-05,
|
582 |
+
"loss": 0.1135,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.7082666666666667,
|
587 |
+
"grad_norm": 0.06934410705255296,
|
588 |
+
"learning_rate": 1.919078092376074e-05,
|
589 |
+
"loss": 0.109,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7168,
|
594 |
+
"grad_norm": 0.09000563031870593,
|
595 |
+
"learning_rate": 1.9242792860618813e-05,
|
596 |
+
"loss": 0.12,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.7253333333333334,
|
601 |
+
"grad_norm": 0.1134042277879818,
|
602 |
+
"learning_rate": 1.929418925714293e-05,
|
603 |
+
"loss": 0.1223,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.7338666666666667,
|
608 |
+
"grad_norm": 0.09118764690233076,
|
609 |
+
"learning_rate": 1.9344984512435673e-05,
|
610 |
+
"loss": 0.1459,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.7424,
|
615 |
+
"grad_norm": 0.07873016754353963,
|
616 |
+
"learning_rate": 1.9395192526186183e-05,
|
617 |
+
"loss": 0.1422,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.7509333333333333,
|
622 |
+
"grad_norm": 0.1796495874463076,
|
623 |
+
"learning_rate": 1.9444826721501687e-05,
|
624 |
+
"loss": 0.1291,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7594666666666666,
|
629 |
+
"grad_norm": 0.0679589944174269,
|
630 |
+
"learning_rate": 1.9493900066449125e-05,
|
631 |
+
"loss": 0.108,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.768,
|
636 |
+
"grad_norm": 0.08174688574235538,
|
637 |
+
"learning_rate": 1.9542425094393246e-05,
|
638 |
+
"loss": 0.1081,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.7765333333333333,
|
643 |
+
"grad_norm": 0.057137370501406756,
|
644 |
+
"learning_rate": 1.9590413923210934e-05,
|
645 |
+
"loss": 0.0934,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.7850666666666667,
|
650 |
+
"grad_norm": 0.06578111924908255,
|
651 |
+
"learning_rate": 1.9637878273455555e-05,
|
652 |
+
"loss": 0.1085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.7936,
|
657 |
+
"grad_norm": 0.08945990540906254,
|
658 |
+
"learning_rate": 1.968482948553935e-05,
|
659 |
+
"loss": 0.1747,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.8021333333333334,
|
664 |
+
"grad_norm": 0.06183863311044229,
|
665 |
+
"learning_rate": 1.9731278535996986e-05,
|
666 |
+
"loss": 0.1136,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.8106666666666666,
|
671 |
+
"grad_norm": 0.05777899602544702,
|
672 |
+
"learning_rate": 1.9777236052888476e-05,
|
673 |
+
"loss": 0.0984,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8192,
|
678 |
+
"grad_norm": 0.08130851607693534,
|
679 |
+
"learning_rate": 1.9822712330395683e-05,
|
680 |
+
"loss": 0.187,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.8277333333333333,
|
685 |
+
"grad_norm": 0.06426546202002927,
|
686 |
+
"learning_rate": 1.986771734266245e-05,
|
687 |
+
"loss": 0.1296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.8362666666666667,
|
692 |
+
"grad_norm": 0.069692313707994,
|
693 |
+
"learning_rate": 1.991226075692495e-05,
|
694 |
+
"loss": 0.1404,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.8448,
|
699 |
+
"grad_norm": 0.05494542266886729,
|
700 |
+
"learning_rate": 1.9956351945975496e-05,
|
701 |
+
"loss": 0.116,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8533333333333334,
|
706 |
+
"grad_norm": 0.07571686966840627,
|
707 |
+
"learning_rate": 1.9999999999999998e-05,
|
708 |
+
"loss": 0.1539,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.8618666666666667,
|
713 |
+
"grad_norm": 0.054351059117603705,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.1037,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.8704,
|
720 |
+
"grad_norm": 0.06531899611551092,
|
721 |
+
"learning_rate": 2e-05,
|
722 |
+
"loss": 0.0827,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8789333333333333,
|
727 |
+
"grad_norm": 0.06131678646504652,
|
728 |
+
"learning_rate": 2e-05,
|
729 |
+
"loss": 0.1266,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8874666666666666,
|
734 |
+
"grad_norm": 0.06850220540661824,
|
735 |
+
"learning_rate": 2e-05,
|
736 |
+
"loss": 0.1456,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.896,
|
741 |
+
"grad_norm": 0.05806908951252483,
|
742 |
+
"learning_rate": 2e-05,
|
743 |
+
"loss": 0.0954,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.9045333333333333,
|
748 |
+
"grad_norm": 0.06503642452033717,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.1417,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.9130666666666667,
|
755 |
+
"grad_norm": 0.050486271853277066,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.0959,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9216,
|
762 |
+
"grad_norm": 0.07746063813802379,
|
763 |
+
"learning_rate": 2e-05,
|
764 |
+
"loss": 0.1256,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.9301333333333334,
|
769 |
+
"grad_norm": 0.051231172380840004,
|
770 |
+
"learning_rate": 2e-05,
|
771 |
+
"loss": 0.1116,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.9386666666666666,
|
776 |
+
"grad_norm": 0.056296443557859455,
|
777 |
+
"learning_rate": 2e-05,
|
778 |
+
"loss": 0.1056,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.9472,
|
783 |
+
"grad_norm": 0.05058663240713958,
|
784 |
+
"learning_rate": 2e-05,
|
785 |
+
"loss": 0.0971,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.9557333333333333,
|
790 |
+
"grad_norm": 0.05532886570130611,
|
791 |
+
"learning_rate": 2e-05,
|
792 |
+
"loss": 0.1086,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.9642666666666667,
|
797 |
+
"grad_norm": 0.05327811326654907,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0989,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.9728,
|
804 |
+
"grad_norm": 0.05663279364147864,
|
805 |
+
"learning_rate": 2e-05,
|
806 |
+
"loss": 0.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.9813333333333333,
|
811 |
+
"grad_norm": 0.04930904541225805,
|
812 |
+
"learning_rate": 2e-05,
|
813 |
+
"loss": 0.0887,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.9898666666666667,
|
818 |
+
"grad_norm": 0.06096947951115022,
|
819 |
+
"learning_rate": 2e-05,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.9984,
|
825 |
+
"grad_norm": 0.050092322361182495,
|
826 |
+
"learning_rate": 2e-05,
|
827 |
+
"loss": 0.0931,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.0069333333333332,
|
832 |
+
"grad_norm": 0.04980408443758999,
|
833 |
+
"learning_rate": 2e-05,
|
834 |
+
"loss": 0.0955,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0154666666666667,
|
839 |
+
"grad_norm": 0.051183082721834305,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.1049,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.024,
|
846 |
+
"grad_norm": 0.04332220265802814,
|
847 |
+
"learning_rate": 2e-05,
|
848 |
+
"loss": 0.0983,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.0325333333333333,
|
853 |
+
"grad_norm": 0.07211731499677299,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.1386,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.0410666666666666,
|
860 |
+
"grad_norm": 0.06550870223740553,
|
861 |
+
"learning_rate": 2e-05,
|
862 |
+
"loss": 0.1334,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.0496,
|
867 |
+
"grad_norm": 0.05331839690767287,
|
868 |
+
"learning_rate": 2e-05,
|
869 |
+
"loss": 0.1014,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.0581333333333334,
|
874 |
+
"grad_norm": 0.05227685628767905,
|
875 |
+
"learning_rate": 2e-05,
|
876 |
+
"loss": 0.1098,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0666666666666667,
|
881 |
+
"grad_norm": 0.07641693882491171,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.1127,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0752,
|
888 |
+
"grad_norm": 0.052835367770791786,
|
889 |
+
"learning_rate": 2e-05,
|
890 |
+
"loss": 0.1231,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.0837333333333334,
|
895 |
+
"grad_norm": 0.07520329755025788,
|
896 |
+
"learning_rate": 2e-05,
|
897 |
+
"loss": 0.085,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.0922666666666667,
|
902 |
+
"grad_norm": 0.07670066152157425,
|
903 |
+
"learning_rate": 2e-05,
|
904 |
+
"loss": 0.1071,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.1008,
|
909 |
+
"grad_norm": 0.052832906560645154,
|
910 |
+
"learning_rate": 2e-05,
|
911 |
+
"loss": 0.1093,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.1093333333333333,
|
916 |
+
"grad_norm": 0.06573889037311398,
|
917 |
+
"learning_rate": 2e-05,
|
918 |
+
"loss": 0.1193,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.1178666666666666,
|
923 |
+
"grad_norm": 0.05175471296566334,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.1184,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1264,
|
930 |
+
"grad_norm": 0.05912231419793496,
|
931 |
+
"learning_rate": 2e-05,
|
932 |
+
"loss": 0.1154,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.1349333333333333,
|
937 |
+
"grad_norm": 0.04899140475981105,
|
938 |
+
"learning_rate": 2e-05,
|
939 |
+
"loss": 0.0957,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.1434666666666666,
|
944 |
+
"grad_norm": 0.05939916939142137,
|
945 |
+
"learning_rate": 2e-05,
|
946 |
+
"loss": 0.0979,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.152,
|
951 |
+
"grad_norm": 0.0516819217599706,
|
952 |
+
"learning_rate": 2e-05,
|
953 |
+
"loss": 0.0834,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.1605333333333334,
|
958 |
+
"grad_norm": 0.05456440346454737,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.1183,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.1690666666666667,
|
965 |
+
"grad_norm": 0.059906464476343235,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.1048,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.1776,
|
972 |
+
"grad_norm": 0.0720112680204319,
|
973 |
+
"learning_rate": 2e-05,
|
974 |
+
"loss": 0.1168,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.1861333333333333,
|
979 |
+
"grad_norm": 0.04940202805828527,
|
980 |
+
"learning_rate": 2e-05,
|
981 |
+
"loss": 0.0948,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.1946666666666665,
|
986 |
+
"grad_norm": 0.060088609545130046,
|
987 |
+
"learning_rate": 2e-05,
|
988 |
+
"loss": 0.0952,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.2032,
|
993 |
+
"grad_norm": 0.04694761423612446,
|
994 |
+
"learning_rate": 2e-05,
|
995 |
+
"loss": 0.0717,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.2117333333333333,
|
1000 |
+
"grad_norm": 0.05628581562512457,
|
1001 |
+
"learning_rate": 2e-05,
|
1002 |
+
"loss": 0.1062,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.2202666666666666,
|
1007 |
+
"grad_norm": 0.06876420990437652,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.1218,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2288000000000001,
|
1014 |
+
"grad_norm": 0.058774700501610655,
|
1015 |
+
"learning_rate": 2e-05,
|
1016 |
+
"loss": 0.1125,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.2373333333333334,
|
1021 |
+
"grad_norm": 0.061855922064341186,
|
1022 |
+
"learning_rate": 2e-05,
|
1023 |
+
"loss": 0.1295,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.2458666666666667,
|
1028 |
+
"grad_norm": 0.0813047704730138,
|
1029 |
+
"learning_rate": 2e-05,
|
1030 |
+
"loss": 0.1165,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.2544,
|
1035 |
+
"grad_norm": 0.061374000305305446,
|
1036 |
+
"learning_rate": 2e-05,
|
1037 |
+
"loss": 0.1094,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.2629333333333332,
|
1042 |
+
"grad_norm": 0.055537169110833,
|
1043 |
+
"learning_rate": 2e-05,
|
1044 |
+
"loss": 0.1054,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.2714666666666667,
|
1049 |
+
"grad_norm": 0.04423248714119304,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0841,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.28,
|
1056 |
+
"grad_norm": 0.049931966607835034,
|
1057 |
+
"learning_rate": 2e-05,
|
1058 |
+
"loss": 0.0961,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.2885333333333333,
|
1063 |
+
"grad_norm": 0.06178656953298769,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.0854,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.2970666666666666,
|
1070 |
+
"grad_norm": 0.05783812343287897,
|
1071 |
+
"learning_rate": 2e-05,
|
1072 |
+
"loss": 0.1141,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.3056,
|
1077 |
+
"grad_norm": 0.048955120400167584,
|
1078 |
+
"learning_rate": 2e-05,
|
1079 |
+
"loss": 0.0947,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.3141333333333334,
|
1084 |
+
"grad_norm": 0.12270174746806978,
|
1085 |
+
"learning_rate": 2e-05,
|
1086 |
+
"loss": 0.1553,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.3226666666666667,
|
1091 |
+
"grad_norm": 0.06928026959973474,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.1274,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3312,
|
1098 |
+
"grad_norm": 0.04756100666105405,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 0.0893,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.3397333333333332,
|
1105 |
+
"grad_norm": 0.056054951338196934,
|
1106 |
+
"learning_rate": 2e-05,
|
1107 |
+
"loss": 0.0831,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.3482666666666667,
|
1112 |
+
"grad_norm": 0.0516990471964239,
|
1113 |
+
"learning_rate": 2e-05,
|
1114 |
+
"loss": 0.0883,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.3568,
|
1119 |
+
"grad_norm": 0.06011650542069954,
|
1120 |
+
"learning_rate": 2e-05,
|
1121 |
+
"loss": 0.0938,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.3653333333333333,
|
1126 |
+
"grad_norm": 0.051831307951873976,
|
1127 |
+
"learning_rate": 2e-05,
|
1128 |
+
"loss": 0.1019,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.3738666666666668,
|
1133 |
+
"grad_norm": 0.0544902702048936,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0906,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.3824,
|
1140 |
+
"grad_norm": 0.06057617032526,
|
1141 |
+
"learning_rate": 2e-05,
|
1142 |
+
"loss": 0.1206,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.3909333333333334,
|
1147 |
+
"grad_norm": 0.07288058025189605,
|
1148 |
+
"learning_rate": 2e-05,
|
1149 |
+
"loss": 0.1175,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.3994666666666666,
|
1154 |
+
"grad_norm": 0.05639043792084219,
|
1155 |
+
"learning_rate": 2e-05,
|
1156 |
+
"loss": 0.1031,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.408,
|
1161 |
+
"grad_norm": 0.0586469408837505,
|
1162 |
+
"learning_rate": 2e-05,
|
1163 |
+
"loss": 0.1143,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.4165333333333332,
|
1168 |
+
"grad_norm": 0.059243429040783904,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.0838,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.4250666666666667,
|
1175 |
+
"grad_norm": 0.0621476448363388,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.1032,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4336,
|
1182 |
+
"grad_norm": 0.06083867682720169,
|
1183 |
+
"learning_rate": 2e-05,
|
1184 |
+
"loss": 0.1119,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.4421333333333333,
|
1189 |
+
"grad_norm": 0.09583165335305677,
|
1190 |
+
"learning_rate": 2e-05,
|
1191 |
+
"loss": 0.1028,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.4506666666666668,
|
1196 |
+
"grad_norm": 0.06411638581314043,
|
1197 |
+
"learning_rate": 2e-05,
|
1198 |
+
"loss": 0.1181,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.4592,
|
1203 |
+
"grad_norm": 0.05632977234908945,
|
1204 |
+
"learning_rate": 2e-05,
|
1205 |
+
"loss": 0.1055,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.4677333333333333,
|
1210 |
+
"grad_norm": 0.05666068971337413,
|
1211 |
+
"learning_rate": 2e-05,
|
1212 |
+
"loss": 0.1116,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.4762666666666666,
|
1217 |
+
"grad_norm": 0.04502062723807536,
|
1218 |
+
"learning_rate": 2e-05,
|
1219 |
+
"loss": 0.0588,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.4848,
|
1224 |
+
"grad_norm": 0.05916500176868301,
|
1225 |
+
"learning_rate": 2e-05,
|
1226 |
+
"loss": 0.0949,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4933333333333334,
|
1231 |
+
"grad_norm": 0.056484273808864845,
|
1232 |
+
"learning_rate": 2e-05,
|
1233 |
+
"loss": 0.0948,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.5018666666666667,
|
1238 |
+
"grad_norm": 0.06652084448571674,
|
1239 |
+
"learning_rate": 2e-05,
|
1240 |
+
"loss": 0.1086,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5104,
|
1245 |
+
"grad_norm": 0.05400238078068516,
|
1246 |
+
"learning_rate": 2e-05,
|
1247 |
+
"loss": 0.0919,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.5189333333333335,
|
1252 |
+
"grad_norm": 0.04979579743346662,
|
1253 |
+
"learning_rate": 2e-05,
|
1254 |
+
"loss": 0.0879,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.5274666666666668,
|
1259 |
+
"grad_norm": 0.06876105414733971,
|
1260 |
+
"learning_rate": 2e-05,
|
1261 |
+
"loss": 0.1162,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.536,
|
1266 |
+
"grad_norm": 0.05633262015499721,
|
1267 |
+
"learning_rate": 2e-05,
|
1268 |
+
"loss": 0.1142,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.5445333333333333,
|
1273 |
+
"grad_norm": 0.0599508967519892,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.1073,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.5530666666666666,
|
1280 |
+
"grad_norm": 0.058912170976454126,
|
1281 |
+
"learning_rate": 2e-05,
|
1282 |
+
"loss": 0.1102,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.5615999999999999,
|
1287 |
+
"grad_norm": 0.05361414988566254,
|
1288 |
+
"learning_rate": 2e-05,
|
1289 |
+
"loss": 0.0885,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.5701333333333334,
|
1294 |
+
"grad_norm": 0.04517277847384077,
|
1295 |
+
"learning_rate": 2e-05,
|
1296 |
+
"loss": 0.0763,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.5786666666666667,
|
1301 |
+
"grad_norm": 0.05551553662051771,
|
1302 |
+
"learning_rate": 2e-05,
|
1303 |
+
"loss": 0.0877,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.5872000000000002,
|
1308 |
+
"grad_norm": 0.05814223969236194,
|
1309 |
+
"learning_rate": 2e-05,
|
1310 |
+
"loss": 0.1044,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.5957333333333334,
|
1315 |
+
"grad_norm": 0.05710054166191597,
|
1316 |
+
"learning_rate": 2e-05,
|
1317 |
+
"loss": 0.0962,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6042666666666667,
|
1322 |
+
"grad_norm": 0.054744343932104075,
|
1323 |
+
"learning_rate": 2e-05,
|
1324 |
+
"loss": 0.0873,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.6128,
|
1329 |
+
"grad_norm": 0.051145521687090995,
|
1330 |
+
"learning_rate": 2e-05,
|
1331 |
+
"loss": 0.0855,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.6213333333333333,
|
1336 |
+
"grad_norm": 0.05414658860737789,
|
1337 |
+
"learning_rate": 2e-05,
|
1338 |
+
"loss": 0.0872,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.6298666666666666,
|
1343 |
+
"grad_norm": 0.05084744595533029,
|
1344 |
+
"learning_rate": 2e-05,
|
1345 |
+
"loss": 0.0891,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6383999999999999,
|
1350 |
+
"grad_norm": 0.0567070082820597,
|
1351 |
+
"learning_rate": 2e-05,
|
1352 |
+
"loss": 0.0965,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.6469333333333334,
|
1357 |
+
"grad_norm": 0.0494785311411315,
|
1358 |
+
"learning_rate": 2e-05,
|
1359 |
+
"loss": 0.0941,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.6554666666666666,
|
1364 |
+
"grad_norm": 0.062341158530385396,
|
1365 |
+
"learning_rate": 2e-05,
|
1366 |
+
"loss": 0.1154,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.6640000000000001,
|
1371 |
+
"grad_norm": 0.059888336716275685,
|
1372 |
+
"learning_rate": 2e-05,
|
1373 |
+
"loss": 0.1037,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.6725333333333334,
|
1378 |
+
"grad_norm": 0.07346562318829057,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.1329,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.6810666666666667,
|
1385 |
+
"grad_norm": 0.0792360016934733,
|
1386 |
+
"learning_rate": 2e-05,
|
1387 |
+
"loss": 0.1392,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.6896,
|
1392 |
+
"grad_norm": 0.0800342963229883,
|
1393 |
+
"learning_rate": 2e-05,
|
1394 |
+
"loss": 0.1199,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.6981333333333333,
|
1399 |
+
"grad_norm": 0.06848045933195548,
|
1400 |
+
"learning_rate": 2e-05,
|
1401 |
+
"loss": 0.0998,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.7066666666666666,
|
1406 |
+
"grad_norm": 0.05743199019316764,
|
1407 |
+
"learning_rate": 2e-05,
|
1408 |
+
"loss": 0.0811,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.7151999999999998,
|
1413 |
+
"grad_norm": 0.07170531168284446,
|
1414 |
+
"learning_rate": 2e-05,
|
1415 |
+
"loss": 0.1079,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.7237333333333333,
|
1420 |
+
"grad_norm": 0.05772905481368506,
|
1421 |
+
"learning_rate": 2e-05,
|
1422 |
+
"loss": 0.0844,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.7322666666666666,
|
1427 |
+
"grad_norm": 0.07504946014098464,
|
1428 |
+
"learning_rate": 2e-05,
|
1429 |
+
"loss": 0.1257,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7408000000000001,
|
1434 |
+
"grad_norm": 0.06450179819785838,
|
1435 |
+
"learning_rate": 2e-05,
|
1436 |
+
"loss": 0.1104,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.7493333333333334,
|
1441 |
+
"grad_norm": 0.06595445965110332,
|
1442 |
+
"learning_rate": 2e-05,
|
1443 |
+
"loss": 0.093,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.7578666666666667,
|
1448 |
+
"grad_norm": 0.07203558121131749,
|
1449 |
+
"learning_rate": 2e-05,
|
1450 |
+
"loss": 0.1117,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.7664,
|
1455 |
+
"grad_norm": 0.05954646782409283,
|
1456 |
+
"learning_rate": 2e-05,
|
1457 |
+
"loss": 0.0729,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.7749333333333333,
|
1462 |
+
"grad_norm": 0.06624894584410884,
|
1463 |
+
"learning_rate": 2e-05,
|
1464 |
+
"loss": 0.0998,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.7834666666666665,
|
1469 |
+
"grad_norm": 0.06888562028256219,
|
1470 |
+
"learning_rate": 2e-05,
|
1471 |
+
"loss": 0.1398,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.792,
|
1476 |
+
"grad_norm": 0.061224088077794406,
|
1477 |
+
"learning_rate": 2e-05,
|
1478 |
+
"loss": 0.1112,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.8005333333333333,
|
1483 |
+
"grad_norm": 0.06857358883856608,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.1293,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.8090666666666668,
|
1490 |
+
"grad_norm": 0.06177352416779139,
|
1491 |
+
"learning_rate": 2e-05,
|
1492 |
+
"loss": 0.0884,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.8176,
|
1497 |
+
"grad_norm": 0.08324567429925228,
|
1498 |
+
"learning_rate": 2e-05,
|
1499 |
+
"loss": 0.1127,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.8261333333333334,
|
1504 |
+
"grad_norm": 0.06771677297787752,
|
1505 |
+
"learning_rate": 2e-05,
|
1506 |
+
"loss": 0.089,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.8346666666666667,
|
1511 |
+
"grad_norm": 0.07055754809472485,
|
1512 |
+
"learning_rate": 2e-05,
|
1513 |
+
"loss": 0.1206,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8432,
|
1518 |
+
"grad_norm": 0.05856797724392531,
|
1519 |
+
"learning_rate": 2e-05,
|
1520 |
+
"loss": 0.0893,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.8517333333333332,
|
1525 |
+
"grad_norm": 0.07555286129801597,
|
1526 |
+
"learning_rate": 2e-05,
|
1527 |
+
"loss": 0.0913,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.8602666666666665,
|
1532 |
+
"grad_norm": 0.09242462538643775,
|
1533 |
+
"learning_rate": 2e-05,
|
1534 |
+
"loss": 0.1241,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.8688,
|
1539 |
+
"grad_norm": 0.06550805537088374,
|
1540 |
+
"learning_rate": 2e-05,
|
1541 |
+
"loss": 0.0819,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.8773333333333333,
|
1546 |
+
"grad_norm": 0.06016048263236861,
|
1547 |
+
"learning_rate": 2e-05,
|
1548 |
+
"loss": 0.0955,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.8858666666666668,
|
1553 |
+
"grad_norm": 0.06856661106001445,
|
1554 |
+
"learning_rate": 2e-05,
|
1555 |
+
"loss": 0.1132,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.8944,
|
1560 |
+
"grad_norm": 0.06383306455000529,
|
1561 |
+
"learning_rate": 2e-05,
|
1562 |
+
"loss": 0.1086,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.9029333333333334,
|
1567 |
+
"grad_norm": 0.07240472757239624,
|
1568 |
+
"learning_rate": 2e-05,
|
1569 |
+
"loss": 0.0863,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.9114666666666666,
|
1574 |
+
"grad_norm": 0.07845654471077741,
|
1575 |
+
"learning_rate": 2e-05,
|
1576 |
+
"loss": 0.1284,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.92,
|
1581 |
+
"grad_norm": 0.07192185833649212,
|
1582 |
+
"learning_rate": 2e-05,
|
1583 |
+
"loss": 0.1101,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.9285333333333332,
|
1588 |
+
"grad_norm": 0.06390598005596872,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.0917,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.9370666666666667,
|
1595 |
+
"grad_norm": 0.06306138712432224,
|
1596 |
+
"learning_rate": 2e-05,
|
1597 |
+
"loss": 0.0936,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.9456,
|
1602 |
+
"grad_norm": 0.06771381941296478,
|
1603 |
+
"learning_rate": 2e-05,
|
1604 |
+
"loss": 0.0936,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.9541333333333335,
|
1609 |
+
"grad_norm": 0.05899006803461524,
|
1610 |
+
"learning_rate": 2e-05,
|
1611 |
+
"loss": 0.0782,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.9626666666666668,
|
1616 |
+
"grad_norm": 0.07426956281950735,
|
1617 |
+
"learning_rate": 2e-05,
|
1618 |
+
"loss": 0.1095,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.9712,
|
1623 |
+
"grad_norm": 0.06567534902293475,
|
1624 |
+
"learning_rate": 2e-05,
|
1625 |
+
"loss": 0.0956,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.9797333333333333,
|
1630 |
+
"grad_norm": 0.07430395142282198,
|
1631 |
+
"learning_rate": 2e-05,
|
1632 |
+
"loss": 0.0957,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.9882666666666666,
|
1637 |
+
"grad_norm": 0.05834447367264806,
|
1638 |
+
"learning_rate": 2e-05,
|
1639 |
+
"loss": 0.0767,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.9968,
|
1644 |
+
"grad_norm": 0.07137090413877054,
|
1645 |
+
"learning_rate": 2e-05,
|
1646 |
+
"loss": 0.0821,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.005333333333333,
|
1651 |
+
"grad_norm": 0.07797914240805551,
|
1652 |
+
"learning_rate": 2e-05,
|
1653 |
+
"loss": 0.1175,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.0138666666666665,
|
1658 |
+
"grad_norm": 0.09335648879374187,
|
1659 |
+
"learning_rate": 2e-05,
|
1660 |
+
"loss": 0.1632,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.0224,
|
1665 |
+
"grad_norm": 0.08280719749100944,
|
1666 |
+
"learning_rate": 2e-05,
|
1667 |
+
"loss": 0.115,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.0309333333333335,
|
1672 |
+
"grad_norm": 0.08956213539053312,
|
1673 |
+
"learning_rate": 2e-05,
|
1674 |
+
"loss": 0.109,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.0394666666666668,
|
1679 |
+
"grad_norm": 0.08849786687188893,
|
1680 |
+
"learning_rate": 2e-05,
|
1681 |
+
"loss": 0.1234,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.048,
|
1686 |
+
"grad_norm": 0.16956065138312856,
|
1687 |
+
"learning_rate": 2e-05,
|
1688 |
+
"loss": 0.1055,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.0565333333333333,
|
1693 |
+
"grad_norm": 0.07377723133015779,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.1068,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 2.0650666666666666,
|
1700 |
+
"grad_norm": 0.08839651322303756,
|
1701 |
+
"learning_rate": 2e-05,
|
1702 |
+
"loss": 0.0965,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 2.0736,
|
1707 |
+
"grad_norm": 0.10641135540308218,
|
1708 |
+
"learning_rate": 2e-05,
|
1709 |
+
"loss": 0.0887,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 2.082133333333333,
|
1714 |
+
"grad_norm": 0.09370442613891326,
|
1715 |
+
"learning_rate": 2e-05,
|
1716 |
+
"loss": 0.0931,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.0906666666666665,
|
1721 |
+
"grad_norm": 0.08988093042206098,
|
1722 |
+
"learning_rate": 2e-05,
|
1723 |
+
"loss": 0.1201,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.0992,
|
1728 |
+
"grad_norm": 0.07167309696967938,
|
1729 |
+
"learning_rate": 2e-05,
|
1730 |
+
"loss": 0.0747,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 2.1077333333333335,
|
1735 |
+
"grad_norm": 0.08822161286881192,
|
1736 |
+
"learning_rate": 2e-05,
|
1737 |
+
"loss": 0.1044,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 2.1162666666666667,
|
1742 |
+
"grad_norm": 0.08439713613775747,
|
1743 |
+
"learning_rate": 2e-05,
|
1744 |
+
"loss": 0.1063,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 2.1248,
|
1749 |
+
"grad_norm": 0.0942232139678121,
|
1750 |
+
"learning_rate": 2e-05,
|
1751 |
+
"loss": 0.0865,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.1333333333333333,
|
1756 |
+
"grad_norm": 0.1066306844906037,
|
1757 |
+
"learning_rate": 2e-05,
|
1758 |
+
"loss": 0.1198,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.1418666666666666,
|
1763 |
+
"grad_norm": 0.10435492421714423,
|
1764 |
+
"learning_rate": 2e-05,
|
1765 |
+
"loss": 0.0968,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.1504,
|
1770 |
+
"grad_norm": 0.10513719348492025,
|
1771 |
+
"learning_rate": 2e-05,
|
1772 |
+
"loss": 0.1045,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 2.158933333333333,
|
1777 |
+
"grad_norm": 0.12580299248756027,
|
1778 |
+
"learning_rate": 2e-05,
|
1779 |
+
"loss": 0.0941,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 2.167466666666667,
|
1784 |
+
"grad_norm": 0.10265943183351584,
|
1785 |
+
"learning_rate": 2e-05,
|
1786 |
+
"loss": 0.0892,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.176,
|
1791 |
+
"grad_norm": 0.09473119803029131,
|
1792 |
+
"learning_rate": 2e-05,
|
1793 |
+
"loss": 0.0721,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 2.1845333333333334,
|
1798 |
+
"grad_norm": 0.13420988295622846,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.1034,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.1930666666666667,
|
1805 |
+
"grad_norm": 0.11474592330595303,
|
1806 |
+
"learning_rate": 2e-05,
|
1807 |
+
"loss": 0.1095,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.2016,
|
1812 |
+
"grad_norm": 0.12382914500613644,
|
1813 |
+
"learning_rate": 2e-05,
|
1814 |
+
"loss": 0.0947,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.2101333333333333,
|
1819 |
+
"grad_norm": 0.12984065755657193,
|
1820 |
+
"learning_rate": 2e-05,
|
1821 |
+
"loss": 0.0888,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 2.2186666666666666,
|
1826 |
+
"grad_norm": 0.14210964340218168,
|
1827 |
+
"learning_rate": 2e-05,
|
1828 |
+
"loss": 0.105,
|
1829 |
+
"step": 260
|
1830 |
+
}
|
1831 |
+
],
|
1832 |
+
"logging_steps": 1,
|
1833 |
+
"max_steps": 351,
|
1834 |
+
"num_input_tokens_seen": 0,
|
1835 |
+
"num_train_epochs": 3,
|
1836 |
+
"save_steps": 20,
|
1837 |
+
"stateful_callbacks": {
|
1838 |
+
"TrainerControl": {
|
1839 |
+
"args": {
|
1840 |
+
"should_epoch_stop": false,
|
1841 |
+
"should_evaluate": false,
|
1842 |
+
"should_log": false,
|
1843 |
+
"should_save": true,
|
1844 |
+
"should_training_stop": false
|
1845 |
+
},
|
1846 |
+
"attributes": {}
|
1847 |
+
}
|
1848 |
+
},
|
1849 |
+
"total_flos": 3.714350084800905e+18,
|
1850 |
+
"train_batch_size": 16,
|
1851 |
+
"trial_name": null,
|
1852 |
+
"trial_params": null
|
1853 |
+
}
|
checkpoint-260/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
|
3 |
+
size 6840
|
checkpoint-260/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-280/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../ckpts/Meta-Llama-3-8B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-280/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"q_proj",
|
26 |
+
"lm_head",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"up_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-280/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe8296cd05ef57432e2f5d4dc15e109f03b45f45fe3dd67cd03570bae08eef72
|
3 |
+
size 1138856856
|
checkpoint-280/global_step280/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c03dca38a1e33b28a991ecf7289c7ae7d13049de38fe7cf6054a3b590895c68b
|
3 |
+
size 528781328
|
checkpoint-280/global_step280/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc1abf0ef27009f0ab6ba0a4bad28969109ddce84672932573daa1fa147a5a1d
|
3 |
+
size 199905337
|
checkpoint-280/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step280
|
checkpoint-280/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff2e7999b56e8e1e58923b2da20098ae572204c232fe0dde3aa400cf65d3cab
|
3 |
+
size 14244
|
checkpoint-280/trainer_state.json
ADDED
@@ -0,0 +1,1993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.389333333333333,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 280,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008533333333333334,
|
13 |
+
"grad_norm": 100.21848203113535,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.1962,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.017066666666666667,
|
20 |
+
"grad_norm": 96.43006188910957,
|
21 |
+
"learning_rate": 3.0102999566398115e-06,
|
22 |
+
"loss": 6.9414,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0256,
|
27 |
+
"grad_norm": 97.35803466618715,
|
28 |
+
"learning_rate": 4.771212547196624e-06,
|
29 |
+
"loss": 7.0102,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.034133333333333335,
|
34 |
+
"grad_norm": 95.14837816372646,
|
35 |
+
"learning_rate": 6.020599913279623e-06,
|
36 |
+
"loss": 6.5295,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.042666666666666665,
|
41 |
+
"grad_norm": 91.76544275692784,
|
42 |
+
"learning_rate": 6.989700043360187e-06,
|
43 |
+
"loss": 6.4806,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0512,
|
48 |
+
"grad_norm": 84.4494318688335,
|
49 |
+
"learning_rate": 7.781512503836437e-06,
|
50 |
+
"loss": 6.4194,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05973333333333333,
|
55 |
+
"grad_norm": 71.37977490595638,
|
56 |
+
"learning_rate": 8.450980400142568e-06,
|
57 |
+
"loss": 5.4953,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06826666666666667,
|
62 |
+
"grad_norm": 49.31153456754566,
|
63 |
+
"learning_rate": 9.030899869919434e-06,
|
64 |
+
"loss": 5.4123,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0768,
|
69 |
+
"grad_norm": 20.37296364560341,
|
70 |
+
"learning_rate": 9.542425094393249e-06,
|
71 |
+
"loss": 5.2334,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08533333333333333,
|
76 |
+
"grad_norm": 7.968467079076881,
|
77 |
+
"learning_rate": 9.999999999999999e-06,
|
78 |
+
"loss": 5.0282,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09386666666666667,
|
83 |
+
"grad_norm": 3.559446532055649,
|
84 |
+
"learning_rate": 1.041392685158225e-05,
|
85 |
+
"loss": 4.612,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1024,
|
90 |
+
"grad_norm": 3.5528846947995674,
|
91 |
+
"learning_rate": 1.0791812460476248e-05,
|
92 |
+
"loss": 4.9475,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.11093333333333333,
|
97 |
+
"grad_norm": 3.541968897471334,
|
98 |
+
"learning_rate": 1.1139433523068365e-05,
|
99 |
+
"loss": 4.2777,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.11946666666666667,
|
104 |
+
"grad_norm": 3.54718070036198,
|
105 |
+
"learning_rate": 1.1461280356782378e-05,
|
106 |
+
"loss": 4.3507,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.128,
|
111 |
+
"grad_norm": 3.8632334830606747,
|
112 |
+
"learning_rate": 1.1760912590556813e-05,
|
113 |
+
"loss": 4.5364,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.13653333333333334,
|
118 |
+
"grad_norm": 3.6637424744054004,
|
119 |
+
"learning_rate": 1.2041199826559246e-05,
|
120 |
+
"loss": 3.9672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.14506666666666668,
|
125 |
+
"grad_norm": 3.919802904818311,
|
126 |
+
"learning_rate": 1.230448921378274e-05,
|
127 |
+
"loss": 4.0618,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1536,
|
132 |
+
"grad_norm": 4.71904950738746,
|
133 |
+
"learning_rate": 1.2552725051033058e-05,
|
134 |
+
"loss": 4.6656,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16213333333333332,
|
139 |
+
"grad_norm": 4.6656317698690835,
|
140 |
+
"learning_rate": 1.2787536009528288e-05,
|
141 |
+
"loss": 4.1131,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.17066666666666666,
|
146 |
+
"grad_norm": 5.145138692367417,
|
147 |
+
"learning_rate": 1.301029995663981e-05,
|
148 |
+
"loss": 4.0989,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1792,
|
153 |
+
"grad_norm": 5.923538014759818,
|
154 |
+
"learning_rate": 1.3222192947339192e-05,
|
155 |
+
"loss": 4.4991,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.18773333333333334,
|
160 |
+
"grad_norm": 5.941056962941364,
|
161 |
+
"learning_rate": 1.3424226808222062e-05,
|
162 |
+
"loss": 4.0836,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.19626666666666667,
|
167 |
+
"grad_norm": 6.171026012117947,
|
168 |
+
"learning_rate": 1.3617278360175927e-05,
|
169 |
+
"loss": 3.6861,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2048,
|
174 |
+
"grad_norm": 7.130542138930838,
|
175 |
+
"learning_rate": 1.380211241711606e-05,
|
176 |
+
"loss": 4.0958,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.21333333333333335,
|
181 |
+
"grad_norm": 7.328837606110418,
|
182 |
+
"learning_rate": 1.3979400086720374e-05,
|
183 |
+
"loss": 3.9524,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.22186666666666666,
|
188 |
+
"grad_norm": 6.923489005711429,
|
189 |
+
"learning_rate": 1.4149733479708178e-05,
|
190 |
+
"loss": 3.6062,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2304,
|
195 |
+
"grad_norm": 6.409498926059221,
|
196 |
+
"learning_rate": 1.4313637641589872e-05,
|
197 |
+
"loss": 3.2034,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.23893333333333333,
|
202 |
+
"grad_norm": 5.781628405584682,
|
203 |
+
"learning_rate": 1.4471580313422191e-05,
|
204 |
+
"loss": 2.8158,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.24746666666666667,
|
209 |
+
"grad_norm": 6.2927590068243315,
|
210 |
+
"learning_rate": 1.4623979978989559e-05,
|
211 |
+
"loss": 2.9803,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.256,
|
216 |
+
"grad_norm": 6.103844678630006,
|
217 |
+
"learning_rate": 1.4771212547196623e-05,
|
218 |
+
"loss": 2.847,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.26453333333333334,
|
223 |
+
"grad_norm": 7.656341925867144,
|
224 |
+
"learning_rate": 1.4913616938342726e-05,
|
225 |
+
"loss": 3.0907,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.2730666666666667,
|
230 |
+
"grad_norm": 6.324242877501844,
|
231 |
+
"learning_rate": 1.5051499783199059e-05,
|
232 |
+
"loss": 2.3467,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.2816,
|
237 |
+
"grad_norm": 7.606313101162739,
|
238 |
+
"learning_rate": 1.5185139398778874e-05,
|
239 |
+
"loss": 2.5292,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.29013333333333335,
|
244 |
+
"grad_norm": 8.553792493849265,
|
245 |
+
"learning_rate": 1.531478917042255e-05,
|
246 |
+
"loss": 2.4547,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2986666666666667,
|
251 |
+
"grad_norm": 8.483368703272543,
|
252 |
+
"learning_rate": 1.5440680443502753e-05,
|
253 |
+
"loss": 2.1956,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3072,
|
258 |
+
"grad_norm": 8.364739352838077,
|
259 |
+
"learning_rate": 1.5563025007672873e-05,
|
260 |
+
"loss": 1.8552,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3157333333333333,
|
265 |
+
"grad_norm": 9.37663682000104,
|
266 |
+
"learning_rate": 1.5682017240669948e-05,
|
267 |
+
"loss": 1.9228,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.32426666666666665,
|
272 |
+
"grad_norm": 9.823047193440066,
|
273 |
+
"learning_rate": 1.57978359661681e-05,
|
274 |
+
"loss": 1.7033,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.3328,
|
279 |
+
"grad_norm": 9.692618512955894,
|
280 |
+
"learning_rate": 1.591064607026499e-05,
|
281 |
+
"loss": 1.3768,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3413333333333333,
|
286 |
+
"grad_norm": 9.08889021911031,
|
287 |
+
"learning_rate": 1.6020599913279622e-05,
|
288 |
+
"loss": 1.3015,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.34986666666666666,
|
293 |
+
"grad_norm": 8.081534221516058,
|
294 |
+
"learning_rate": 1.6127838567197353e-05,
|
295 |
+
"loss": 0.9228,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3584,
|
300 |
+
"grad_norm": 6.238638048950311,
|
301 |
+
"learning_rate": 1.6232492903979005e-05,
|
302 |
+
"loss": 0.7267,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.36693333333333333,
|
307 |
+
"grad_norm": 3.4058036861773604,
|
308 |
+
"learning_rate": 1.6334684555795865e-05,
|
309 |
+
"loss": 0.5875,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.37546666666666667,
|
314 |
+
"grad_norm": 2.079163829467713,
|
315 |
+
"learning_rate": 1.6434526764861872e-05,
|
316 |
+
"loss": 0.6355,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.384,
|
321 |
+
"grad_norm": 1.5597487833024746,
|
322 |
+
"learning_rate": 1.6532125137753435e-05,
|
323 |
+
"loss": 0.5106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.39253333333333335,
|
328 |
+
"grad_norm": 2.491689602375256,
|
329 |
+
"learning_rate": 1.662757831681574e-05,
|
330 |
+
"loss": 0.6454,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.4010666666666667,
|
335 |
+
"grad_norm": 2.010880438195854,
|
336 |
+
"learning_rate": 1.672097857935717e-05,
|
337 |
+
"loss": 0.4757,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4096,
|
342 |
+
"grad_norm": 1.9452805114322096,
|
343 |
+
"learning_rate": 1.681241237375587e-05,
|
344 |
+
"loss": 0.4133,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.41813333333333336,
|
349 |
+
"grad_norm": 1.7620848552306103,
|
350 |
+
"learning_rate": 1.6901960800285137e-05,
|
351 |
+
"loss": 0.4004,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4266666666666667,
|
356 |
+
"grad_norm": 1.278224489774809,
|
357 |
+
"learning_rate": 1.6989700043360187e-05,
|
358 |
+
"loss": 0.3523,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4352,
|
363 |
+
"grad_norm": 1.6151354758303231,
|
364 |
+
"learning_rate": 1.7075701760979363e-05,
|
365 |
+
"loss": 0.4317,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.4437333333333333,
|
370 |
+
"grad_norm": 1.3451396055695035,
|
371 |
+
"learning_rate": 1.716003343634799e-05,
|
372 |
+
"loss": 0.3474,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.45226666666666665,
|
377 |
+
"grad_norm": 1.6814977782362666,
|
378 |
+
"learning_rate": 1.724275869600789e-05,
|
379 |
+
"loss": 0.3706,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.4608,
|
384 |
+
"grad_norm": 1.1682442432688667,
|
385 |
+
"learning_rate": 1.7323937598229687e-05,
|
386 |
+
"loss": 0.3488,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.4693333333333333,
|
391 |
+
"grad_norm": 0.8839814540462471,
|
392 |
+
"learning_rate": 1.7403626894942437e-05,
|
393 |
+
"loss": 0.293,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.47786666666666666,
|
398 |
+
"grad_norm": 0.7974304806295485,
|
399 |
+
"learning_rate": 1.7481880270062003e-05,
|
400 |
+
"loss": 0.2717,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.4864,
|
405 |
+
"grad_norm": 0.6232203657585239,
|
406 |
+
"learning_rate": 1.7558748556724913e-05,
|
407 |
+
"loss": 0.1741,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.49493333333333334,
|
412 |
+
"grad_norm": 0.6850688604563008,
|
413 |
+
"learning_rate": 1.763427993562937e-05,
|
414 |
+
"loss": 0.228,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5034666666666666,
|
419 |
+
"grad_norm": 0.5923826384300431,
|
420 |
+
"learning_rate": 1.7708520116421443e-05,
|
421 |
+
"loss": 0.2131,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.512,
|
426 |
+
"grad_norm": 0.489754430485032,
|
427 |
+
"learning_rate": 1.7781512503836432e-05,
|
428 |
+
"loss": 0.165,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5205333333333333,
|
433 |
+
"grad_norm": 0.5280940052395061,
|
434 |
+
"learning_rate": 1.7853298350107667e-05,
|
435 |
+
"loss": 0.1658,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.5290666666666667,
|
440 |
+
"grad_norm": 0.4750905992036739,
|
441 |
+
"learning_rate": 1.7923916894982537e-05,
|
442 |
+
"loss": 0.1438,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.5376,
|
447 |
+
"grad_norm": 0.4162998392722401,
|
448 |
+
"learning_rate": 1.7993405494535815e-05,
|
449 |
+
"loss": 0.1555,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.5461333333333334,
|
454 |
+
"grad_norm": 0.26863266246370443,
|
455 |
+
"learning_rate": 1.806179973983887e-05,
|
456 |
+
"loss": 0.1323,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.5546666666666666,
|
461 |
+
"grad_norm": 0.26534221125601215,
|
462 |
+
"learning_rate": 1.8129133566428553e-05,
|
463 |
+
"loss": 0.1671,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.5632,
|
468 |
+
"grad_norm": 0.2548662962257576,
|
469 |
+
"learning_rate": 1.8195439355418686e-05,
|
470 |
+
"loss": 0.1308,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.5717333333333333,
|
475 |
+
"grad_norm": 0.18045394638578796,
|
476 |
+
"learning_rate": 1.8260748027008263e-05,
|
477 |
+
"loss": 0.1262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.5802666666666667,
|
482 |
+
"grad_norm": 0.17070388073612064,
|
483 |
+
"learning_rate": 1.8325089127062364e-05,
|
484 |
+
"loss": 0.1192,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.5888,
|
489 |
+
"grad_norm": 0.1531381679244776,
|
490 |
+
"learning_rate": 1.8388490907372553e-05,
|
491 |
+
"loss": 0.1274,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5973333333333334,
|
496 |
+
"grad_norm": 0.18196434993687946,
|
497 |
+
"learning_rate": 1.8450980400142568e-05,
|
498 |
+
"loss": 0.1375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6058666666666667,
|
503 |
+
"grad_norm": 0.15324416972951205,
|
504 |
+
"learning_rate": 1.8512583487190752e-05,
|
505 |
+
"loss": 0.1599,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6144,
|
510 |
+
"grad_norm": 0.10884462064503801,
|
511 |
+
"learning_rate": 1.857332496431268e-05,
|
512 |
+
"loss": 0.1041,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.6229333333333333,
|
517 |
+
"grad_norm": 0.12915133528192668,
|
518 |
+
"learning_rate": 1.8633228601204555e-05,
|
519 |
+
"loss": 0.1406,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6314666666666666,
|
524 |
+
"grad_norm": 0.12553425699952878,
|
525 |
+
"learning_rate": 1.8692317197309763e-05,
|
526 |
+
"loss": 0.1256,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.64,
|
531 |
+
"grad_norm": 0.11976960918968543,
|
532 |
+
"learning_rate": 1.8750612633916997e-05,
|
533 |
+
"loss": 0.1144,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.6485333333333333,
|
538 |
+
"grad_norm": 0.115805998298789,
|
539 |
+
"learning_rate": 1.8808135922807914e-05,
|
540 |
+
"loss": 0.1528,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.6570666666666667,
|
545 |
+
"grad_norm": 0.10325948496697443,
|
546 |
+
"learning_rate": 1.8864907251724818e-05,
|
547 |
+
"loss": 0.1044,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.6656,
|
552 |
+
"grad_norm": 0.09595064346541006,
|
553 |
+
"learning_rate": 1.8920946026904802e-05,
|
554 |
+
"loss": 0.1534,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.6741333333333334,
|
559 |
+
"grad_norm": 0.08796742845240496,
|
560 |
+
"learning_rate": 1.8976270912904414e-05,
|
561 |
+
"loss": 0.1155,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.6826666666666666,
|
566 |
+
"grad_norm": 0.08218991738379527,
|
567 |
+
"learning_rate": 1.9030899869919434e-05,
|
568 |
+
"loss": 0.1311,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.6912,
|
573 |
+
"grad_norm": 0.08290815261109215,
|
574 |
+
"learning_rate": 1.9084850188786497e-05,
|
575 |
+
"loss": 0.11,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.6997333333333333,
|
580 |
+
"grad_norm": 0.0794132180176064,
|
581 |
+
"learning_rate": 1.9138138523837165e-05,
|
582 |
+
"loss": 0.1135,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.7082666666666667,
|
587 |
+
"grad_norm": 0.06934410705255296,
|
588 |
+
"learning_rate": 1.919078092376074e-05,
|
589 |
+
"loss": 0.109,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7168,
|
594 |
+
"grad_norm": 0.09000563031870593,
|
595 |
+
"learning_rate": 1.9242792860618813e-05,
|
596 |
+
"loss": 0.12,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.7253333333333334,
|
601 |
+
"grad_norm": 0.1134042277879818,
|
602 |
+
"learning_rate": 1.929418925714293e-05,
|
603 |
+
"loss": 0.1223,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.7338666666666667,
|
608 |
+
"grad_norm": 0.09118764690233076,
|
609 |
+
"learning_rate": 1.9344984512435673e-05,
|
610 |
+
"loss": 0.1459,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.7424,
|
615 |
+
"grad_norm": 0.07873016754353963,
|
616 |
+
"learning_rate": 1.9395192526186183e-05,
|
617 |
+
"loss": 0.1422,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.7509333333333333,
|
622 |
+
"grad_norm": 0.1796495874463076,
|
623 |
+
"learning_rate": 1.9444826721501687e-05,
|
624 |
+
"loss": 0.1291,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7594666666666666,
|
629 |
+
"grad_norm": 0.0679589944174269,
|
630 |
+
"learning_rate": 1.9493900066449125e-05,
|
631 |
+
"loss": 0.108,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.768,
|
636 |
+
"grad_norm": 0.08174688574235538,
|
637 |
+
"learning_rate": 1.9542425094393246e-05,
|
638 |
+
"loss": 0.1081,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.7765333333333333,
|
643 |
+
"grad_norm": 0.057137370501406756,
|
644 |
+
"learning_rate": 1.9590413923210934e-05,
|
645 |
+
"loss": 0.0934,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.7850666666666667,
|
650 |
+
"grad_norm": 0.06578111924908255,
|
651 |
+
"learning_rate": 1.9637878273455555e-05,
|
652 |
+
"loss": 0.1085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.7936,
|
657 |
+
"grad_norm": 0.08945990540906254,
|
658 |
+
"learning_rate": 1.968482948553935e-05,
|
659 |
+
"loss": 0.1747,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.8021333333333334,
|
664 |
+
"grad_norm": 0.06183863311044229,
|
665 |
+
"learning_rate": 1.9731278535996986e-05,
|
666 |
+
"loss": 0.1136,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.8106666666666666,
|
671 |
+
"grad_norm": 0.05777899602544702,
|
672 |
+
"learning_rate": 1.9777236052888476e-05,
|
673 |
+
"loss": 0.0984,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8192,
|
678 |
+
"grad_norm": 0.08130851607693534,
|
679 |
+
"learning_rate": 1.9822712330395683e-05,
|
680 |
+
"loss": 0.187,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.8277333333333333,
|
685 |
+
"grad_norm": 0.06426546202002927,
|
686 |
+
"learning_rate": 1.986771734266245e-05,
|
687 |
+
"loss": 0.1296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.8362666666666667,
|
692 |
+
"grad_norm": 0.069692313707994,
|
693 |
+
"learning_rate": 1.991226075692495e-05,
|
694 |
+
"loss": 0.1404,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.8448,
|
699 |
+
"grad_norm": 0.05494542266886729,
|
700 |
+
"learning_rate": 1.9956351945975496e-05,
|
701 |
+
"loss": 0.116,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8533333333333334,
|
706 |
+
"grad_norm": 0.07571686966840627,
|
707 |
+
"learning_rate": 1.9999999999999998e-05,
|
708 |
+
"loss": 0.1539,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.8618666666666667,
|
713 |
+
"grad_norm": 0.054351059117603705,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.1037,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.8704,
|
720 |
+
"grad_norm": 0.06531899611551092,
|
721 |
+
"learning_rate": 2e-05,
|
722 |
+
"loss": 0.0827,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8789333333333333,
|
727 |
+
"grad_norm": 0.06131678646504652,
|
728 |
+
"learning_rate": 2e-05,
|
729 |
+
"loss": 0.1266,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8874666666666666,
|
734 |
+
"grad_norm": 0.06850220540661824,
|
735 |
+
"learning_rate": 2e-05,
|
736 |
+
"loss": 0.1456,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.896,
|
741 |
+
"grad_norm": 0.05806908951252483,
|
742 |
+
"learning_rate": 2e-05,
|
743 |
+
"loss": 0.0954,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.9045333333333333,
|
748 |
+
"grad_norm": 0.06503642452033717,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.1417,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.9130666666666667,
|
755 |
+
"grad_norm": 0.050486271853277066,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.0959,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9216,
|
762 |
+
"grad_norm": 0.07746063813802379,
|
763 |
+
"learning_rate": 2e-05,
|
764 |
+
"loss": 0.1256,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.9301333333333334,
|
769 |
+
"grad_norm": 0.051231172380840004,
|
770 |
+
"learning_rate": 2e-05,
|
771 |
+
"loss": 0.1116,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.9386666666666666,
|
776 |
+
"grad_norm": 0.056296443557859455,
|
777 |
+
"learning_rate": 2e-05,
|
778 |
+
"loss": 0.1056,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.9472,
|
783 |
+
"grad_norm": 0.05058663240713958,
|
784 |
+
"learning_rate": 2e-05,
|
785 |
+
"loss": 0.0971,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.9557333333333333,
|
790 |
+
"grad_norm": 0.05532886570130611,
|
791 |
+
"learning_rate": 2e-05,
|
792 |
+
"loss": 0.1086,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.9642666666666667,
|
797 |
+
"grad_norm": 0.05327811326654907,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0989,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.9728,
|
804 |
+
"grad_norm": 0.05663279364147864,
|
805 |
+
"learning_rate": 2e-05,
|
806 |
+
"loss": 0.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.9813333333333333,
|
811 |
+
"grad_norm": 0.04930904541225805,
|
812 |
+
"learning_rate": 2e-05,
|
813 |
+
"loss": 0.0887,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.9898666666666667,
|
818 |
+
"grad_norm": 0.06096947951115022,
|
819 |
+
"learning_rate": 2e-05,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.9984,
|
825 |
+
"grad_norm": 0.050092322361182495,
|
826 |
+
"learning_rate": 2e-05,
|
827 |
+
"loss": 0.0931,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.0069333333333332,
|
832 |
+
"grad_norm": 0.04980408443758999,
|
833 |
+
"learning_rate": 2e-05,
|
834 |
+
"loss": 0.0955,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0154666666666667,
|
839 |
+
"grad_norm": 0.051183082721834305,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.1049,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.024,
|
846 |
+
"grad_norm": 0.04332220265802814,
|
847 |
+
"learning_rate": 2e-05,
|
848 |
+
"loss": 0.0983,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.0325333333333333,
|
853 |
+
"grad_norm": 0.07211731499677299,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.1386,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.0410666666666666,
|
860 |
+
"grad_norm": 0.06550870223740553,
|
861 |
+
"learning_rate": 2e-05,
|
862 |
+
"loss": 0.1334,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.0496,
|
867 |
+
"grad_norm": 0.05331839690767287,
|
868 |
+
"learning_rate": 2e-05,
|
869 |
+
"loss": 0.1014,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.0581333333333334,
|
874 |
+
"grad_norm": 0.05227685628767905,
|
875 |
+
"learning_rate": 2e-05,
|
876 |
+
"loss": 0.1098,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0666666666666667,
|
881 |
+
"grad_norm": 0.07641693882491171,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.1127,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0752,
|
888 |
+
"grad_norm": 0.052835367770791786,
|
889 |
+
"learning_rate": 2e-05,
|
890 |
+
"loss": 0.1231,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.0837333333333334,
|
895 |
+
"grad_norm": 0.07520329755025788,
|
896 |
+
"learning_rate": 2e-05,
|
897 |
+
"loss": 0.085,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.0922666666666667,
|
902 |
+
"grad_norm": 0.07670066152157425,
|
903 |
+
"learning_rate": 2e-05,
|
904 |
+
"loss": 0.1071,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.1008,
|
909 |
+
"grad_norm": 0.052832906560645154,
|
910 |
+
"learning_rate": 2e-05,
|
911 |
+
"loss": 0.1093,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.1093333333333333,
|
916 |
+
"grad_norm": 0.06573889037311398,
|
917 |
+
"learning_rate": 2e-05,
|
918 |
+
"loss": 0.1193,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.1178666666666666,
|
923 |
+
"grad_norm": 0.05175471296566334,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.1184,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1264,
|
930 |
+
"grad_norm": 0.05912231419793496,
|
931 |
+
"learning_rate": 2e-05,
|
932 |
+
"loss": 0.1154,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.1349333333333333,
|
937 |
+
"grad_norm": 0.04899140475981105,
|
938 |
+
"learning_rate": 2e-05,
|
939 |
+
"loss": 0.0957,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.1434666666666666,
|
944 |
+
"grad_norm": 0.05939916939142137,
|
945 |
+
"learning_rate": 2e-05,
|
946 |
+
"loss": 0.0979,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.152,
|
951 |
+
"grad_norm": 0.0516819217599706,
|
952 |
+
"learning_rate": 2e-05,
|
953 |
+
"loss": 0.0834,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.1605333333333334,
|
958 |
+
"grad_norm": 0.05456440346454737,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.1183,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.1690666666666667,
|
965 |
+
"grad_norm": 0.059906464476343235,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.1048,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.1776,
|
972 |
+
"grad_norm": 0.0720112680204319,
|
973 |
+
"learning_rate": 2e-05,
|
974 |
+
"loss": 0.1168,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.1861333333333333,
|
979 |
+
"grad_norm": 0.04940202805828527,
|
980 |
+
"learning_rate": 2e-05,
|
981 |
+
"loss": 0.0948,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.1946666666666665,
|
986 |
+
"grad_norm": 0.060088609545130046,
|
987 |
+
"learning_rate": 2e-05,
|
988 |
+
"loss": 0.0952,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.2032,
|
993 |
+
"grad_norm": 0.04694761423612446,
|
994 |
+
"learning_rate": 2e-05,
|
995 |
+
"loss": 0.0717,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.2117333333333333,
|
1000 |
+
"grad_norm": 0.05628581562512457,
|
1001 |
+
"learning_rate": 2e-05,
|
1002 |
+
"loss": 0.1062,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.2202666666666666,
|
1007 |
+
"grad_norm": 0.06876420990437652,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.1218,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2288000000000001,
|
1014 |
+
"grad_norm": 0.058774700501610655,
|
1015 |
+
"learning_rate": 2e-05,
|
1016 |
+
"loss": 0.1125,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.2373333333333334,
|
1021 |
+
"grad_norm": 0.061855922064341186,
|
1022 |
+
"learning_rate": 2e-05,
|
1023 |
+
"loss": 0.1295,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.2458666666666667,
|
1028 |
+
"grad_norm": 0.0813047704730138,
|
1029 |
+
"learning_rate": 2e-05,
|
1030 |
+
"loss": 0.1165,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.2544,
|
1035 |
+
"grad_norm": 0.061374000305305446,
|
1036 |
+
"learning_rate": 2e-05,
|
1037 |
+
"loss": 0.1094,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.2629333333333332,
|
1042 |
+
"grad_norm": 0.055537169110833,
|
1043 |
+
"learning_rate": 2e-05,
|
1044 |
+
"loss": 0.1054,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.2714666666666667,
|
1049 |
+
"grad_norm": 0.04423248714119304,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0841,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.28,
|
1056 |
+
"grad_norm": 0.049931966607835034,
|
1057 |
+
"learning_rate": 2e-05,
|
1058 |
+
"loss": 0.0961,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.2885333333333333,
|
1063 |
+
"grad_norm": 0.06178656953298769,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.0854,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.2970666666666666,
|
1070 |
+
"grad_norm": 0.05783812343287897,
|
1071 |
+
"learning_rate": 2e-05,
|
1072 |
+
"loss": 0.1141,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.3056,
|
1077 |
+
"grad_norm": 0.048955120400167584,
|
1078 |
+
"learning_rate": 2e-05,
|
1079 |
+
"loss": 0.0947,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.3141333333333334,
|
1084 |
+
"grad_norm": 0.12270174746806978,
|
1085 |
+
"learning_rate": 2e-05,
|
1086 |
+
"loss": 0.1553,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.3226666666666667,
|
1091 |
+
"grad_norm": 0.06928026959973474,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.1274,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3312,
|
1098 |
+
"grad_norm": 0.04756100666105405,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 0.0893,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.3397333333333332,
|
1105 |
+
"grad_norm": 0.056054951338196934,
|
1106 |
+
"learning_rate": 2e-05,
|
1107 |
+
"loss": 0.0831,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.3482666666666667,
|
1112 |
+
"grad_norm": 0.0516990471964239,
|
1113 |
+
"learning_rate": 2e-05,
|
1114 |
+
"loss": 0.0883,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.3568,
|
1119 |
+
"grad_norm": 0.06011650542069954,
|
1120 |
+
"learning_rate": 2e-05,
|
1121 |
+
"loss": 0.0938,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.3653333333333333,
|
1126 |
+
"grad_norm": 0.051831307951873976,
|
1127 |
+
"learning_rate": 2e-05,
|
1128 |
+
"loss": 0.1019,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.3738666666666668,
|
1133 |
+
"grad_norm": 0.0544902702048936,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0906,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.3824,
|
1140 |
+
"grad_norm": 0.06057617032526,
|
1141 |
+
"learning_rate": 2e-05,
|
1142 |
+
"loss": 0.1206,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.3909333333333334,
|
1147 |
+
"grad_norm": 0.07288058025189605,
|
1148 |
+
"learning_rate": 2e-05,
|
1149 |
+
"loss": 0.1175,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.3994666666666666,
|
1154 |
+
"grad_norm": 0.05639043792084219,
|
1155 |
+
"learning_rate": 2e-05,
|
1156 |
+
"loss": 0.1031,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.408,
|
1161 |
+
"grad_norm": 0.0586469408837505,
|
1162 |
+
"learning_rate": 2e-05,
|
1163 |
+
"loss": 0.1143,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.4165333333333332,
|
1168 |
+
"grad_norm": 0.059243429040783904,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.0838,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.4250666666666667,
|
1175 |
+
"grad_norm": 0.0621476448363388,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.1032,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4336,
|
1182 |
+
"grad_norm": 0.06083867682720169,
|
1183 |
+
"learning_rate": 2e-05,
|
1184 |
+
"loss": 0.1119,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.4421333333333333,
|
1189 |
+
"grad_norm": 0.09583165335305677,
|
1190 |
+
"learning_rate": 2e-05,
|
1191 |
+
"loss": 0.1028,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.4506666666666668,
|
1196 |
+
"grad_norm": 0.06411638581314043,
|
1197 |
+
"learning_rate": 2e-05,
|
1198 |
+
"loss": 0.1181,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.4592,
|
1203 |
+
"grad_norm": 0.05632977234908945,
|
1204 |
+
"learning_rate": 2e-05,
|
1205 |
+
"loss": 0.1055,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.4677333333333333,
|
1210 |
+
"grad_norm": 0.05666068971337413,
|
1211 |
+
"learning_rate": 2e-05,
|
1212 |
+
"loss": 0.1116,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.4762666666666666,
|
1217 |
+
"grad_norm": 0.04502062723807536,
|
1218 |
+
"learning_rate": 2e-05,
|
1219 |
+
"loss": 0.0588,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.4848,
|
1224 |
+
"grad_norm": 0.05916500176868301,
|
1225 |
+
"learning_rate": 2e-05,
|
1226 |
+
"loss": 0.0949,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4933333333333334,
|
1231 |
+
"grad_norm": 0.056484273808864845,
|
1232 |
+
"learning_rate": 2e-05,
|
1233 |
+
"loss": 0.0948,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.5018666666666667,
|
1238 |
+
"grad_norm": 0.06652084448571674,
|
1239 |
+
"learning_rate": 2e-05,
|
1240 |
+
"loss": 0.1086,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5104,
|
1245 |
+
"grad_norm": 0.05400238078068516,
|
1246 |
+
"learning_rate": 2e-05,
|
1247 |
+
"loss": 0.0919,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.5189333333333335,
|
1252 |
+
"grad_norm": 0.04979579743346662,
|
1253 |
+
"learning_rate": 2e-05,
|
1254 |
+
"loss": 0.0879,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.5274666666666668,
|
1259 |
+
"grad_norm": 0.06876105414733971,
|
1260 |
+
"learning_rate": 2e-05,
|
1261 |
+
"loss": 0.1162,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.536,
|
1266 |
+
"grad_norm": 0.05633262015499721,
|
1267 |
+
"learning_rate": 2e-05,
|
1268 |
+
"loss": 0.1142,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.5445333333333333,
|
1273 |
+
"grad_norm": 0.0599508967519892,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.1073,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.5530666666666666,
|
1280 |
+
"grad_norm": 0.058912170976454126,
|
1281 |
+
"learning_rate": 2e-05,
|
1282 |
+
"loss": 0.1102,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.5615999999999999,
|
1287 |
+
"grad_norm": 0.05361414988566254,
|
1288 |
+
"learning_rate": 2e-05,
|
1289 |
+
"loss": 0.0885,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.5701333333333334,
|
1294 |
+
"grad_norm": 0.04517277847384077,
|
1295 |
+
"learning_rate": 2e-05,
|
1296 |
+
"loss": 0.0763,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.5786666666666667,
|
1301 |
+
"grad_norm": 0.05551553662051771,
|
1302 |
+
"learning_rate": 2e-05,
|
1303 |
+
"loss": 0.0877,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.5872000000000002,
|
1308 |
+
"grad_norm": 0.05814223969236194,
|
1309 |
+
"learning_rate": 2e-05,
|
1310 |
+
"loss": 0.1044,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.5957333333333334,
|
1315 |
+
"grad_norm": 0.05710054166191597,
|
1316 |
+
"learning_rate": 2e-05,
|
1317 |
+
"loss": 0.0962,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6042666666666667,
|
1322 |
+
"grad_norm": 0.054744343932104075,
|
1323 |
+
"learning_rate": 2e-05,
|
1324 |
+
"loss": 0.0873,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.6128,
|
1329 |
+
"grad_norm": 0.051145521687090995,
|
1330 |
+
"learning_rate": 2e-05,
|
1331 |
+
"loss": 0.0855,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.6213333333333333,
|
1336 |
+
"grad_norm": 0.05414658860737789,
|
1337 |
+
"learning_rate": 2e-05,
|
1338 |
+
"loss": 0.0872,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.6298666666666666,
|
1343 |
+
"grad_norm": 0.05084744595533029,
|
1344 |
+
"learning_rate": 2e-05,
|
1345 |
+
"loss": 0.0891,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6383999999999999,
|
1350 |
+
"grad_norm": 0.0567070082820597,
|
1351 |
+
"learning_rate": 2e-05,
|
1352 |
+
"loss": 0.0965,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.6469333333333334,
|
1357 |
+
"grad_norm": 0.0494785311411315,
|
1358 |
+
"learning_rate": 2e-05,
|
1359 |
+
"loss": 0.0941,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.6554666666666666,
|
1364 |
+
"grad_norm": 0.062341158530385396,
|
1365 |
+
"learning_rate": 2e-05,
|
1366 |
+
"loss": 0.1154,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.6640000000000001,
|
1371 |
+
"grad_norm": 0.059888336716275685,
|
1372 |
+
"learning_rate": 2e-05,
|
1373 |
+
"loss": 0.1037,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.6725333333333334,
|
1378 |
+
"grad_norm": 0.07346562318829057,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.1329,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.6810666666666667,
|
1385 |
+
"grad_norm": 0.0792360016934733,
|
1386 |
+
"learning_rate": 2e-05,
|
1387 |
+
"loss": 0.1392,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.6896,
|
1392 |
+
"grad_norm": 0.0800342963229883,
|
1393 |
+
"learning_rate": 2e-05,
|
1394 |
+
"loss": 0.1199,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.6981333333333333,
|
1399 |
+
"grad_norm": 0.06848045933195548,
|
1400 |
+
"learning_rate": 2e-05,
|
1401 |
+
"loss": 0.0998,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.7066666666666666,
|
1406 |
+
"grad_norm": 0.05743199019316764,
|
1407 |
+
"learning_rate": 2e-05,
|
1408 |
+
"loss": 0.0811,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.7151999999999998,
|
1413 |
+
"grad_norm": 0.07170531168284446,
|
1414 |
+
"learning_rate": 2e-05,
|
1415 |
+
"loss": 0.1079,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.7237333333333333,
|
1420 |
+
"grad_norm": 0.05772905481368506,
|
1421 |
+
"learning_rate": 2e-05,
|
1422 |
+
"loss": 0.0844,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.7322666666666666,
|
1427 |
+
"grad_norm": 0.07504946014098464,
|
1428 |
+
"learning_rate": 2e-05,
|
1429 |
+
"loss": 0.1257,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7408000000000001,
|
1434 |
+
"grad_norm": 0.06450179819785838,
|
1435 |
+
"learning_rate": 2e-05,
|
1436 |
+
"loss": 0.1104,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.7493333333333334,
|
1441 |
+
"grad_norm": 0.06595445965110332,
|
1442 |
+
"learning_rate": 2e-05,
|
1443 |
+
"loss": 0.093,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.7578666666666667,
|
1448 |
+
"grad_norm": 0.07203558121131749,
|
1449 |
+
"learning_rate": 2e-05,
|
1450 |
+
"loss": 0.1117,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.7664,
|
1455 |
+
"grad_norm": 0.05954646782409283,
|
1456 |
+
"learning_rate": 2e-05,
|
1457 |
+
"loss": 0.0729,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.7749333333333333,
|
1462 |
+
"grad_norm": 0.06624894584410884,
|
1463 |
+
"learning_rate": 2e-05,
|
1464 |
+
"loss": 0.0998,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.7834666666666665,
|
1469 |
+
"grad_norm": 0.06888562028256219,
|
1470 |
+
"learning_rate": 2e-05,
|
1471 |
+
"loss": 0.1398,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.792,
|
1476 |
+
"grad_norm": 0.061224088077794406,
|
1477 |
+
"learning_rate": 2e-05,
|
1478 |
+
"loss": 0.1112,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.8005333333333333,
|
1483 |
+
"grad_norm": 0.06857358883856608,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.1293,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.8090666666666668,
|
1490 |
+
"grad_norm": 0.06177352416779139,
|
1491 |
+
"learning_rate": 2e-05,
|
1492 |
+
"loss": 0.0884,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.8176,
|
1497 |
+
"grad_norm": 0.08324567429925228,
|
1498 |
+
"learning_rate": 2e-05,
|
1499 |
+
"loss": 0.1127,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.8261333333333334,
|
1504 |
+
"grad_norm": 0.06771677297787752,
|
1505 |
+
"learning_rate": 2e-05,
|
1506 |
+
"loss": 0.089,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.8346666666666667,
|
1511 |
+
"grad_norm": 0.07055754809472485,
|
1512 |
+
"learning_rate": 2e-05,
|
1513 |
+
"loss": 0.1206,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8432,
|
1518 |
+
"grad_norm": 0.05856797724392531,
|
1519 |
+
"learning_rate": 2e-05,
|
1520 |
+
"loss": 0.0893,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.8517333333333332,
|
1525 |
+
"grad_norm": 0.07555286129801597,
|
1526 |
+
"learning_rate": 2e-05,
|
1527 |
+
"loss": 0.0913,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.8602666666666665,
|
1532 |
+
"grad_norm": 0.09242462538643775,
|
1533 |
+
"learning_rate": 2e-05,
|
1534 |
+
"loss": 0.1241,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.8688,
|
1539 |
+
"grad_norm": 0.06550805537088374,
|
1540 |
+
"learning_rate": 2e-05,
|
1541 |
+
"loss": 0.0819,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.8773333333333333,
|
1546 |
+
"grad_norm": 0.06016048263236861,
|
1547 |
+
"learning_rate": 2e-05,
|
1548 |
+
"loss": 0.0955,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.8858666666666668,
|
1553 |
+
"grad_norm": 0.06856661106001445,
|
1554 |
+
"learning_rate": 2e-05,
|
1555 |
+
"loss": 0.1132,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.8944,
|
1560 |
+
"grad_norm": 0.06383306455000529,
|
1561 |
+
"learning_rate": 2e-05,
|
1562 |
+
"loss": 0.1086,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.9029333333333334,
|
1567 |
+
"grad_norm": 0.07240472757239624,
|
1568 |
+
"learning_rate": 2e-05,
|
1569 |
+
"loss": 0.0863,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.9114666666666666,
|
1574 |
+
"grad_norm": 0.07845654471077741,
|
1575 |
+
"learning_rate": 2e-05,
|
1576 |
+
"loss": 0.1284,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.92,
|
1581 |
+
"grad_norm": 0.07192185833649212,
|
1582 |
+
"learning_rate": 2e-05,
|
1583 |
+
"loss": 0.1101,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.9285333333333332,
|
1588 |
+
"grad_norm": 0.06390598005596872,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.0917,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.9370666666666667,
|
1595 |
+
"grad_norm": 0.06306138712432224,
|
1596 |
+
"learning_rate": 2e-05,
|
1597 |
+
"loss": 0.0936,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.9456,
|
1602 |
+
"grad_norm": 0.06771381941296478,
|
1603 |
+
"learning_rate": 2e-05,
|
1604 |
+
"loss": 0.0936,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.9541333333333335,
|
1609 |
+
"grad_norm": 0.05899006803461524,
|
1610 |
+
"learning_rate": 2e-05,
|
1611 |
+
"loss": 0.0782,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.9626666666666668,
|
1616 |
+
"grad_norm": 0.07426956281950735,
|
1617 |
+
"learning_rate": 2e-05,
|
1618 |
+
"loss": 0.1095,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.9712,
|
1623 |
+
"grad_norm": 0.06567534902293475,
|
1624 |
+
"learning_rate": 2e-05,
|
1625 |
+
"loss": 0.0956,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.9797333333333333,
|
1630 |
+
"grad_norm": 0.07430395142282198,
|
1631 |
+
"learning_rate": 2e-05,
|
1632 |
+
"loss": 0.0957,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.9882666666666666,
|
1637 |
+
"grad_norm": 0.05834447367264806,
|
1638 |
+
"learning_rate": 2e-05,
|
1639 |
+
"loss": 0.0767,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.9968,
|
1644 |
+
"grad_norm": 0.07137090413877054,
|
1645 |
+
"learning_rate": 2e-05,
|
1646 |
+
"loss": 0.0821,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.005333333333333,
|
1651 |
+
"grad_norm": 0.07797914240805551,
|
1652 |
+
"learning_rate": 2e-05,
|
1653 |
+
"loss": 0.1175,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.0138666666666665,
|
1658 |
+
"grad_norm": 0.09335648879374187,
|
1659 |
+
"learning_rate": 2e-05,
|
1660 |
+
"loss": 0.1632,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.0224,
|
1665 |
+
"grad_norm": 0.08280719749100944,
|
1666 |
+
"learning_rate": 2e-05,
|
1667 |
+
"loss": 0.115,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.0309333333333335,
|
1672 |
+
"grad_norm": 0.08956213539053312,
|
1673 |
+
"learning_rate": 2e-05,
|
1674 |
+
"loss": 0.109,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.0394666666666668,
|
1679 |
+
"grad_norm": 0.08849786687188893,
|
1680 |
+
"learning_rate": 2e-05,
|
1681 |
+
"loss": 0.1234,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.048,
|
1686 |
+
"grad_norm": 0.16956065138312856,
|
1687 |
+
"learning_rate": 2e-05,
|
1688 |
+
"loss": 0.1055,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.0565333333333333,
|
1693 |
+
"grad_norm": 0.07377723133015779,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.1068,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 2.0650666666666666,
|
1700 |
+
"grad_norm": 0.08839651322303756,
|
1701 |
+
"learning_rate": 2e-05,
|
1702 |
+
"loss": 0.0965,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 2.0736,
|
1707 |
+
"grad_norm": 0.10641135540308218,
|
1708 |
+
"learning_rate": 2e-05,
|
1709 |
+
"loss": 0.0887,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 2.082133333333333,
|
1714 |
+
"grad_norm": 0.09370442613891326,
|
1715 |
+
"learning_rate": 2e-05,
|
1716 |
+
"loss": 0.0931,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.0906666666666665,
|
1721 |
+
"grad_norm": 0.08988093042206098,
|
1722 |
+
"learning_rate": 2e-05,
|
1723 |
+
"loss": 0.1201,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.0992,
|
1728 |
+
"grad_norm": 0.07167309696967938,
|
1729 |
+
"learning_rate": 2e-05,
|
1730 |
+
"loss": 0.0747,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 2.1077333333333335,
|
1735 |
+
"grad_norm": 0.08822161286881192,
|
1736 |
+
"learning_rate": 2e-05,
|
1737 |
+
"loss": 0.1044,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 2.1162666666666667,
|
1742 |
+
"grad_norm": 0.08439713613775747,
|
1743 |
+
"learning_rate": 2e-05,
|
1744 |
+
"loss": 0.1063,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 2.1248,
|
1749 |
+
"grad_norm": 0.0942232139678121,
|
1750 |
+
"learning_rate": 2e-05,
|
1751 |
+
"loss": 0.0865,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.1333333333333333,
|
1756 |
+
"grad_norm": 0.1066306844906037,
|
1757 |
+
"learning_rate": 2e-05,
|
1758 |
+
"loss": 0.1198,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.1418666666666666,
|
1763 |
+
"grad_norm": 0.10435492421714423,
|
1764 |
+
"learning_rate": 2e-05,
|
1765 |
+
"loss": 0.0968,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.1504,
|
1770 |
+
"grad_norm": 0.10513719348492025,
|
1771 |
+
"learning_rate": 2e-05,
|
1772 |
+
"loss": 0.1045,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 2.158933333333333,
|
1777 |
+
"grad_norm": 0.12580299248756027,
|
1778 |
+
"learning_rate": 2e-05,
|
1779 |
+
"loss": 0.0941,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 2.167466666666667,
|
1784 |
+
"grad_norm": 0.10265943183351584,
|
1785 |
+
"learning_rate": 2e-05,
|
1786 |
+
"loss": 0.0892,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.176,
|
1791 |
+
"grad_norm": 0.09473119803029131,
|
1792 |
+
"learning_rate": 2e-05,
|
1793 |
+
"loss": 0.0721,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 2.1845333333333334,
|
1798 |
+
"grad_norm": 0.13420988295622846,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.1034,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.1930666666666667,
|
1805 |
+
"grad_norm": 0.11474592330595303,
|
1806 |
+
"learning_rate": 2e-05,
|
1807 |
+
"loss": 0.1095,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.2016,
|
1812 |
+
"grad_norm": 0.12382914500613644,
|
1813 |
+
"learning_rate": 2e-05,
|
1814 |
+
"loss": 0.0947,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.2101333333333333,
|
1819 |
+
"grad_norm": 0.12984065755657193,
|
1820 |
+
"learning_rate": 2e-05,
|
1821 |
+
"loss": 0.0888,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 2.2186666666666666,
|
1826 |
+
"grad_norm": 0.14210964340218168,
|
1827 |
+
"learning_rate": 2e-05,
|
1828 |
+
"loss": 0.105,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 2.2272,
|
1833 |
+
"grad_norm": 0.13862185852250883,
|
1834 |
+
"learning_rate": 2e-05,
|
1835 |
+
"loss": 0.0876,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 2.235733333333333,
|
1840 |
+
"grad_norm": 0.17284047904822364,
|
1841 |
+
"learning_rate": 2e-05,
|
1842 |
+
"loss": 0.0935,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.244266666666667,
|
1847 |
+
"grad_norm": 0.1409465306152598,
|
1848 |
+
"learning_rate": 2e-05,
|
1849 |
+
"loss": 0.1032,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.2528,
|
1854 |
+
"grad_norm": 0.15551418258816738,
|
1855 |
+
"learning_rate": 2e-05,
|
1856 |
+
"loss": 0.0871,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.2613333333333334,
|
1861 |
+
"grad_norm": 0.1741617194945442,
|
1862 |
+
"learning_rate": 2e-05,
|
1863 |
+
"loss": 0.098,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 2.2698666666666667,
|
1868 |
+
"grad_norm": 0.18387218423978585,
|
1869 |
+
"learning_rate": 2e-05,
|
1870 |
+
"loss": 0.1168,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 2.2784,
|
1875 |
+
"grad_norm": 0.21744684782545962,
|
1876 |
+
"learning_rate": 2e-05,
|
1877 |
+
"loss": 0.1061,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 2.2869333333333333,
|
1882 |
+
"grad_norm": 0.17372673806896413,
|
1883 |
+
"learning_rate": 2e-05,
|
1884 |
+
"loss": 0.0927,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.2954666666666665,
|
1889 |
+
"grad_norm": 0.20890400134226653,
|
1890 |
+
"learning_rate": 2e-05,
|
1891 |
+
"loss": 0.0874,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.304,
|
1896 |
+
"grad_norm": 0.20279172920289834,
|
1897 |
+
"learning_rate": 2e-05,
|
1898 |
+
"loss": 0.0807,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.3125333333333336,
|
1903 |
+
"grad_norm": 0.23060543242200862,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.0937,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 2.321066666666667,
|
1910 |
+
"grad_norm": 0.2866337268131343,
|
1911 |
+
"learning_rate": 2e-05,
|
1912 |
+
"loss": 0.0886,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.3296,
|
1917 |
+
"grad_norm": 0.3203014162518504,
|
1918 |
+
"learning_rate": 2e-05,
|
1919 |
+
"loss": 0.0741,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 2.3381333333333334,
|
1924 |
+
"grad_norm": 0.2702455454246614,
|
1925 |
+
"learning_rate": 2e-05,
|
1926 |
+
"loss": 0.0692,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 2.3466666666666667,
|
1931 |
+
"grad_norm": 0.30682595841991545,
|
1932 |
+
"learning_rate": 2e-05,
|
1933 |
+
"loss": 0.0733,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.3552,
|
1938 |
+
"grad_norm": 0.2844580109974713,
|
1939 |
+
"learning_rate": 2e-05,
|
1940 |
+
"loss": 0.0979,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.3637333333333332,
|
1945 |
+
"grad_norm": 0.31296149985818705,
|
1946 |
+
"learning_rate": 2e-05,
|
1947 |
+
"loss": 0.093,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 2.3722666666666665,
|
1952 |
+
"grad_norm": 0.24448590086634314,
|
1953 |
+
"learning_rate": 2e-05,
|
1954 |
+
"loss": 0.1078,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 2.3808,
|
1959 |
+
"grad_norm": 0.17626685777153123,
|
1960 |
+
"learning_rate": 2e-05,
|
1961 |
+
"loss": 0.0939,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 2.389333333333333,
|
1966 |
+
"grad_norm": 0.13337416253457104,
|
1967 |
+
"learning_rate": 2e-05,
|
1968 |
+
"loss": 0.0812,
|
1969 |
+
"step": 280
|
1970 |
+
}
|
1971 |
+
],
|
1972 |
+
"logging_steps": 1,
|
1973 |
+
"max_steps": 351,
|
1974 |
+
"num_input_tokens_seen": 0,
|
1975 |
+
"num_train_epochs": 3,
|
1976 |
+
"save_steps": 20,
|
1977 |
+
"stateful_callbacks": {
|
1978 |
+
"TrainerControl": {
|
1979 |
+
"args": {
|
1980 |
+
"should_epoch_stop": false,
|
1981 |
+
"should_evaluate": false,
|
1982 |
+
"should_log": false,
|
1983 |
+
"should_save": true,
|
1984 |
+
"should_training_stop": false
|
1985 |
+
},
|
1986 |
+
"attributes": {}
|
1987 |
+
}
|
1988 |
+
},
|
1989 |
+
"total_flos": 4.004836973419168e+18,
|
1990 |
+
"train_batch_size": 16,
|
1991 |
+
"trial_name": null,
|
1992 |
+
"trial_params": null
|
1993 |
+
}
|
checkpoint-280/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
|
3 |
+
size 6840
|
checkpoint-280/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-300/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../ckpts/Meta-Llama-3-8B-Instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-300/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../ckpts/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"q_proj",
|
26 |
+
"lm_head",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"up_proj",
|
30 |
+
"k_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-300/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a21bde55efc0304e99e5e82e98c55a75914860b89ddab4ffc6669646aa38aa13
|
3 |
+
size 1138856856
|
checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3915aeacc40b0f3920cafe63f8a83b537514f4711d5e9f12886aa2543e2ce4f
|
3 |
+
size 528781328
|
checkpoint-300/global_step300/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92259a465b6d29edb36bf9a1e7975102d5bc390e4d97bf2c72e274d222b5d254
|
3 |
+
size 199905337
|
checkpoint-300/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step300
|
checkpoint-300/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75bbf68b4afb9b24c52daea43d34c43c94c81e77b7a3e07025e50c711c44a449
|
3 |
+
size 14244
|
checkpoint-300/trainer_state.json
ADDED
@@ -0,0 +1,2133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.56,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 300,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008533333333333334,
|
13 |
+
"grad_norm": 100.21848203113535,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.1962,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.017066666666666667,
|
20 |
+
"grad_norm": 96.43006188910957,
|
21 |
+
"learning_rate": 3.0102999566398115e-06,
|
22 |
+
"loss": 6.9414,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0256,
|
27 |
+
"grad_norm": 97.35803466618715,
|
28 |
+
"learning_rate": 4.771212547196624e-06,
|
29 |
+
"loss": 7.0102,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.034133333333333335,
|
34 |
+
"grad_norm": 95.14837816372646,
|
35 |
+
"learning_rate": 6.020599913279623e-06,
|
36 |
+
"loss": 6.5295,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.042666666666666665,
|
41 |
+
"grad_norm": 91.76544275692784,
|
42 |
+
"learning_rate": 6.989700043360187e-06,
|
43 |
+
"loss": 6.4806,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0512,
|
48 |
+
"grad_norm": 84.4494318688335,
|
49 |
+
"learning_rate": 7.781512503836437e-06,
|
50 |
+
"loss": 6.4194,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05973333333333333,
|
55 |
+
"grad_norm": 71.37977490595638,
|
56 |
+
"learning_rate": 8.450980400142568e-06,
|
57 |
+
"loss": 5.4953,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.06826666666666667,
|
62 |
+
"grad_norm": 49.31153456754566,
|
63 |
+
"learning_rate": 9.030899869919434e-06,
|
64 |
+
"loss": 5.4123,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0768,
|
69 |
+
"grad_norm": 20.37296364560341,
|
70 |
+
"learning_rate": 9.542425094393249e-06,
|
71 |
+
"loss": 5.2334,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08533333333333333,
|
76 |
+
"grad_norm": 7.968467079076881,
|
77 |
+
"learning_rate": 9.999999999999999e-06,
|
78 |
+
"loss": 5.0282,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09386666666666667,
|
83 |
+
"grad_norm": 3.559446532055649,
|
84 |
+
"learning_rate": 1.041392685158225e-05,
|
85 |
+
"loss": 4.612,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1024,
|
90 |
+
"grad_norm": 3.5528846947995674,
|
91 |
+
"learning_rate": 1.0791812460476248e-05,
|
92 |
+
"loss": 4.9475,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.11093333333333333,
|
97 |
+
"grad_norm": 3.541968897471334,
|
98 |
+
"learning_rate": 1.1139433523068365e-05,
|
99 |
+
"loss": 4.2777,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.11946666666666667,
|
104 |
+
"grad_norm": 3.54718070036198,
|
105 |
+
"learning_rate": 1.1461280356782378e-05,
|
106 |
+
"loss": 4.3507,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.128,
|
111 |
+
"grad_norm": 3.8632334830606747,
|
112 |
+
"learning_rate": 1.1760912590556813e-05,
|
113 |
+
"loss": 4.5364,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.13653333333333334,
|
118 |
+
"grad_norm": 3.6637424744054004,
|
119 |
+
"learning_rate": 1.2041199826559246e-05,
|
120 |
+
"loss": 3.9672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.14506666666666668,
|
125 |
+
"grad_norm": 3.919802904818311,
|
126 |
+
"learning_rate": 1.230448921378274e-05,
|
127 |
+
"loss": 4.0618,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1536,
|
132 |
+
"grad_norm": 4.71904950738746,
|
133 |
+
"learning_rate": 1.2552725051033058e-05,
|
134 |
+
"loss": 4.6656,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16213333333333332,
|
139 |
+
"grad_norm": 4.6656317698690835,
|
140 |
+
"learning_rate": 1.2787536009528288e-05,
|
141 |
+
"loss": 4.1131,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.17066666666666666,
|
146 |
+
"grad_norm": 5.145138692367417,
|
147 |
+
"learning_rate": 1.301029995663981e-05,
|
148 |
+
"loss": 4.0989,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1792,
|
153 |
+
"grad_norm": 5.923538014759818,
|
154 |
+
"learning_rate": 1.3222192947339192e-05,
|
155 |
+
"loss": 4.4991,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.18773333333333334,
|
160 |
+
"grad_norm": 5.941056962941364,
|
161 |
+
"learning_rate": 1.3424226808222062e-05,
|
162 |
+
"loss": 4.0836,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.19626666666666667,
|
167 |
+
"grad_norm": 6.171026012117947,
|
168 |
+
"learning_rate": 1.3617278360175927e-05,
|
169 |
+
"loss": 3.6861,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2048,
|
174 |
+
"grad_norm": 7.130542138930838,
|
175 |
+
"learning_rate": 1.380211241711606e-05,
|
176 |
+
"loss": 4.0958,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.21333333333333335,
|
181 |
+
"grad_norm": 7.328837606110418,
|
182 |
+
"learning_rate": 1.3979400086720374e-05,
|
183 |
+
"loss": 3.9524,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.22186666666666666,
|
188 |
+
"grad_norm": 6.923489005711429,
|
189 |
+
"learning_rate": 1.4149733479708178e-05,
|
190 |
+
"loss": 3.6062,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2304,
|
195 |
+
"grad_norm": 6.409498926059221,
|
196 |
+
"learning_rate": 1.4313637641589872e-05,
|
197 |
+
"loss": 3.2034,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.23893333333333333,
|
202 |
+
"grad_norm": 5.781628405584682,
|
203 |
+
"learning_rate": 1.4471580313422191e-05,
|
204 |
+
"loss": 2.8158,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.24746666666666667,
|
209 |
+
"grad_norm": 6.2927590068243315,
|
210 |
+
"learning_rate": 1.4623979978989559e-05,
|
211 |
+
"loss": 2.9803,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.256,
|
216 |
+
"grad_norm": 6.103844678630006,
|
217 |
+
"learning_rate": 1.4771212547196623e-05,
|
218 |
+
"loss": 2.847,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.26453333333333334,
|
223 |
+
"grad_norm": 7.656341925867144,
|
224 |
+
"learning_rate": 1.4913616938342726e-05,
|
225 |
+
"loss": 3.0907,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.2730666666666667,
|
230 |
+
"grad_norm": 6.324242877501844,
|
231 |
+
"learning_rate": 1.5051499783199059e-05,
|
232 |
+
"loss": 2.3467,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.2816,
|
237 |
+
"grad_norm": 7.606313101162739,
|
238 |
+
"learning_rate": 1.5185139398778874e-05,
|
239 |
+
"loss": 2.5292,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.29013333333333335,
|
244 |
+
"grad_norm": 8.553792493849265,
|
245 |
+
"learning_rate": 1.531478917042255e-05,
|
246 |
+
"loss": 2.4547,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2986666666666667,
|
251 |
+
"grad_norm": 8.483368703272543,
|
252 |
+
"learning_rate": 1.5440680443502753e-05,
|
253 |
+
"loss": 2.1956,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3072,
|
258 |
+
"grad_norm": 8.364739352838077,
|
259 |
+
"learning_rate": 1.5563025007672873e-05,
|
260 |
+
"loss": 1.8552,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3157333333333333,
|
265 |
+
"grad_norm": 9.37663682000104,
|
266 |
+
"learning_rate": 1.5682017240669948e-05,
|
267 |
+
"loss": 1.9228,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.32426666666666665,
|
272 |
+
"grad_norm": 9.823047193440066,
|
273 |
+
"learning_rate": 1.57978359661681e-05,
|
274 |
+
"loss": 1.7033,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.3328,
|
279 |
+
"grad_norm": 9.692618512955894,
|
280 |
+
"learning_rate": 1.591064607026499e-05,
|
281 |
+
"loss": 1.3768,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3413333333333333,
|
286 |
+
"grad_norm": 9.08889021911031,
|
287 |
+
"learning_rate": 1.6020599913279622e-05,
|
288 |
+
"loss": 1.3015,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.34986666666666666,
|
293 |
+
"grad_norm": 8.081534221516058,
|
294 |
+
"learning_rate": 1.6127838567197353e-05,
|
295 |
+
"loss": 0.9228,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.3584,
|
300 |
+
"grad_norm": 6.238638048950311,
|
301 |
+
"learning_rate": 1.6232492903979005e-05,
|
302 |
+
"loss": 0.7267,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.36693333333333333,
|
307 |
+
"grad_norm": 3.4058036861773604,
|
308 |
+
"learning_rate": 1.6334684555795865e-05,
|
309 |
+
"loss": 0.5875,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.37546666666666667,
|
314 |
+
"grad_norm": 2.079163829467713,
|
315 |
+
"learning_rate": 1.6434526764861872e-05,
|
316 |
+
"loss": 0.6355,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.384,
|
321 |
+
"grad_norm": 1.5597487833024746,
|
322 |
+
"learning_rate": 1.6532125137753435e-05,
|
323 |
+
"loss": 0.5106,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.39253333333333335,
|
328 |
+
"grad_norm": 2.491689602375256,
|
329 |
+
"learning_rate": 1.662757831681574e-05,
|
330 |
+
"loss": 0.6454,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.4010666666666667,
|
335 |
+
"grad_norm": 2.010880438195854,
|
336 |
+
"learning_rate": 1.672097857935717e-05,
|
337 |
+
"loss": 0.4757,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4096,
|
342 |
+
"grad_norm": 1.9452805114322096,
|
343 |
+
"learning_rate": 1.681241237375587e-05,
|
344 |
+
"loss": 0.4133,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.41813333333333336,
|
349 |
+
"grad_norm": 1.7620848552306103,
|
350 |
+
"learning_rate": 1.6901960800285137e-05,
|
351 |
+
"loss": 0.4004,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4266666666666667,
|
356 |
+
"grad_norm": 1.278224489774809,
|
357 |
+
"learning_rate": 1.6989700043360187e-05,
|
358 |
+
"loss": 0.3523,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4352,
|
363 |
+
"grad_norm": 1.6151354758303231,
|
364 |
+
"learning_rate": 1.7075701760979363e-05,
|
365 |
+
"loss": 0.4317,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.4437333333333333,
|
370 |
+
"grad_norm": 1.3451396055695035,
|
371 |
+
"learning_rate": 1.716003343634799e-05,
|
372 |
+
"loss": 0.3474,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.45226666666666665,
|
377 |
+
"grad_norm": 1.6814977782362666,
|
378 |
+
"learning_rate": 1.724275869600789e-05,
|
379 |
+
"loss": 0.3706,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.4608,
|
384 |
+
"grad_norm": 1.1682442432688667,
|
385 |
+
"learning_rate": 1.7323937598229687e-05,
|
386 |
+
"loss": 0.3488,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.4693333333333333,
|
391 |
+
"grad_norm": 0.8839814540462471,
|
392 |
+
"learning_rate": 1.7403626894942437e-05,
|
393 |
+
"loss": 0.293,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.47786666666666666,
|
398 |
+
"grad_norm": 0.7974304806295485,
|
399 |
+
"learning_rate": 1.7481880270062003e-05,
|
400 |
+
"loss": 0.2717,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.4864,
|
405 |
+
"grad_norm": 0.6232203657585239,
|
406 |
+
"learning_rate": 1.7558748556724913e-05,
|
407 |
+
"loss": 0.1741,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.49493333333333334,
|
412 |
+
"grad_norm": 0.6850688604563008,
|
413 |
+
"learning_rate": 1.763427993562937e-05,
|
414 |
+
"loss": 0.228,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5034666666666666,
|
419 |
+
"grad_norm": 0.5923826384300431,
|
420 |
+
"learning_rate": 1.7708520116421443e-05,
|
421 |
+
"loss": 0.2131,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.512,
|
426 |
+
"grad_norm": 0.489754430485032,
|
427 |
+
"learning_rate": 1.7781512503836432e-05,
|
428 |
+
"loss": 0.165,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5205333333333333,
|
433 |
+
"grad_norm": 0.5280940052395061,
|
434 |
+
"learning_rate": 1.7853298350107667e-05,
|
435 |
+
"loss": 0.1658,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.5290666666666667,
|
440 |
+
"grad_norm": 0.4750905992036739,
|
441 |
+
"learning_rate": 1.7923916894982537e-05,
|
442 |
+
"loss": 0.1438,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.5376,
|
447 |
+
"grad_norm": 0.4162998392722401,
|
448 |
+
"learning_rate": 1.7993405494535815e-05,
|
449 |
+
"loss": 0.1555,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.5461333333333334,
|
454 |
+
"grad_norm": 0.26863266246370443,
|
455 |
+
"learning_rate": 1.806179973983887e-05,
|
456 |
+
"loss": 0.1323,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.5546666666666666,
|
461 |
+
"grad_norm": 0.26534221125601215,
|
462 |
+
"learning_rate": 1.8129133566428553e-05,
|
463 |
+
"loss": 0.1671,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.5632,
|
468 |
+
"grad_norm": 0.2548662962257576,
|
469 |
+
"learning_rate": 1.8195439355418686e-05,
|
470 |
+
"loss": 0.1308,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.5717333333333333,
|
475 |
+
"grad_norm": 0.18045394638578796,
|
476 |
+
"learning_rate": 1.8260748027008263e-05,
|
477 |
+
"loss": 0.1262,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.5802666666666667,
|
482 |
+
"grad_norm": 0.17070388073612064,
|
483 |
+
"learning_rate": 1.8325089127062364e-05,
|
484 |
+
"loss": 0.1192,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.5888,
|
489 |
+
"grad_norm": 0.1531381679244776,
|
490 |
+
"learning_rate": 1.8388490907372553e-05,
|
491 |
+
"loss": 0.1274,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.5973333333333334,
|
496 |
+
"grad_norm": 0.18196434993687946,
|
497 |
+
"learning_rate": 1.8450980400142568e-05,
|
498 |
+
"loss": 0.1375,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6058666666666667,
|
503 |
+
"grad_norm": 0.15324416972951205,
|
504 |
+
"learning_rate": 1.8512583487190752e-05,
|
505 |
+
"loss": 0.1599,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6144,
|
510 |
+
"grad_norm": 0.10884462064503801,
|
511 |
+
"learning_rate": 1.857332496431268e-05,
|
512 |
+
"loss": 0.1041,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.6229333333333333,
|
517 |
+
"grad_norm": 0.12915133528192668,
|
518 |
+
"learning_rate": 1.8633228601204555e-05,
|
519 |
+
"loss": 0.1406,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.6314666666666666,
|
524 |
+
"grad_norm": 0.12553425699952878,
|
525 |
+
"learning_rate": 1.8692317197309763e-05,
|
526 |
+
"loss": 0.1256,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.64,
|
531 |
+
"grad_norm": 0.11976960918968543,
|
532 |
+
"learning_rate": 1.8750612633916997e-05,
|
533 |
+
"loss": 0.1144,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.6485333333333333,
|
538 |
+
"grad_norm": 0.115805998298789,
|
539 |
+
"learning_rate": 1.8808135922807914e-05,
|
540 |
+
"loss": 0.1528,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.6570666666666667,
|
545 |
+
"grad_norm": 0.10325948496697443,
|
546 |
+
"learning_rate": 1.8864907251724818e-05,
|
547 |
+
"loss": 0.1044,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.6656,
|
552 |
+
"grad_norm": 0.09595064346541006,
|
553 |
+
"learning_rate": 1.8920946026904802e-05,
|
554 |
+
"loss": 0.1534,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.6741333333333334,
|
559 |
+
"grad_norm": 0.08796742845240496,
|
560 |
+
"learning_rate": 1.8976270912904414e-05,
|
561 |
+
"loss": 0.1155,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.6826666666666666,
|
566 |
+
"grad_norm": 0.08218991738379527,
|
567 |
+
"learning_rate": 1.9030899869919434e-05,
|
568 |
+
"loss": 0.1311,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.6912,
|
573 |
+
"grad_norm": 0.08290815261109215,
|
574 |
+
"learning_rate": 1.9084850188786497e-05,
|
575 |
+
"loss": 0.11,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.6997333333333333,
|
580 |
+
"grad_norm": 0.0794132180176064,
|
581 |
+
"learning_rate": 1.9138138523837165e-05,
|
582 |
+
"loss": 0.1135,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.7082666666666667,
|
587 |
+
"grad_norm": 0.06934410705255296,
|
588 |
+
"learning_rate": 1.919078092376074e-05,
|
589 |
+
"loss": 0.109,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7168,
|
594 |
+
"grad_norm": 0.09000563031870593,
|
595 |
+
"learning_rate": 1.9242792860618813e-05,
|
596 |
+
"loss": 0.12,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.7253333333333334,
|
601 |
+
"grad_norm": 0.1134042277879818,
|
602 |
+
"learning_rate": 1.929418925714293e-05,
|
603 |
+
"loss": 0.1223,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.7338666666666667,
|
608 |
+
"grad_norm": 0.09118764690233076,
|
609 |
+
"learning_rate": 1.9344984512435673e-05,
|
610 |
+
"loss": 0.1459,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.7424,
|
615 |
+
"grad_norm": 0.07873016754353963,
|
616 |
+
"learning_rate": 1.9395192526186183e-05,
|
617 |
+
"loss": 0.1422,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.7509333333333333,
|
622 |
+
"grad_norm": 0.1796495874463076,
|
623 |
+
"learning_rate": 1.9444826721501687e-05,
|
624 |
+
"loss": 0.1291,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.7594666666666666,
|
629 |
+
"grad_norm": 0.0679589944174269,
|
630 |
+
"learning_rate": 1.9493900066449125e-05,
|
631 |
+
"loss": 0.108,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.768,
|
636 |
+
"grad_norm": 0.08174688574235538,
|
637 |
+
"learning_rate": 1.9542425094393246e-05,
|
638 |
+
"loss": 0.1081,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.7765333333333333,
|
643 |
+
"grad_norm": 0.057137370501406756,
|
644 |
+
"learning_rate": 1.9590413923210934e-05,
|
645 |
+
"loss": 0.0934,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.7850666666666667,
|
650 |
+
"grad_norm": 0.06578111924908255,
|
651 |
+
"learning_rate": 1.9637878273455555e-05,
|
652 |
+
"loss": 0.1085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.7936,
|
657 |
+
"grad_norm": 0.08945990540906254,
|
658 |
+
"learning_rate": 1.968482948553935e-05,
|
659 |
+
"loss": 0.1747,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.8021333333333334,
|
664 |
+
"grad_norm": 0.06183863311044229,
|
665 |
+
"learning_rate": 1.9731278535996986e-05,
|
666 |
+
"loss": 0.1136,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.8106666666666666,
|
671 |
+
"grad_norm": 0.05777899602544702,
|
672 |
+
"learning_rate": 1.9777236052888476e-05,
|
673 |
+
"loss": 0.0984,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8192,
|
678 |
+
"grad_norm": 0.08130851607693534,
|
679 |
+
"learning_rate": 1.9822712330395683e-05,
|
680 |
+
"loss": 0.187,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.8277333333333333,
|
685 |
+
"grad_norm": 0.06426546202002927,
|
686 |
+
"learning_rate": 1.986771734266245e-05,
|
687 |
+
"loss": 0.1296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.8362666666666667,
|
692 |
+
"grad_norm": 0.069692313707994,
|
693 |
+
"learning_rate": 1.991226075692495e-05,
|
694 |
+
"loss": 0.1404,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.8448,
|
699 |
+
"grad_norm": 0.05494542266886729,
|
700 |
+
"learning_rate": 1.9956351945975496e-05,
|
701 |
+
"loss": 0.116,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8533333333333334,
|
706 |
+
"grad_norm": 0.07571686966840627,
|
707 |
+
"learning_rate": 1.9999999999999998e-05,
|
708 |
+
"loss": 0.1539,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.8618666666666667,
|
713 |
+
"grad_norm": 0.054351059117603705,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.1037,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.8704,
|
720 |
+
"grad_norm": 0.06531899611551092,
|
721 |
+
"learning_rate": 2e-05,
|
722 |
+
"loss": 0.0827,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8789333333333333,
|
727 |
+
"grad_norm": 0.06131678646504652,
|
728 |
+
"learning_rate": 2e-05,
|
729 |
+
"loss": 0.1266,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.8874666666666666,
|
734 |
+
"grad_norm": 0.06850220540661824,
|
735 |
+
"learning_rate": 2e-05,
|
736 |
+
"loss": 0.1456,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.896,
|
741 |
+
"grad_norm": 0.05806908951252483,
|
742 |
+
"learning_rate": 2e-05,
|
743 |
+
"loss": 0.0954,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.9045333333333333,
|
748 |
+
"grad_norm": 0.06503642452033717,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.1417,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.9130666666666667,
|
755 |
+
"grad_norm": 0.050486271853277066,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.0959,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9216,
|
762 |
+
"grad_norm": 0.07746063813802379,
|
763 |
+
"learning_rate": 2e-05,
|
764 |
+
"loss": 0.1256,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.9301333333333334,
|
769 |
+
"grad_norm": 0.051231172380840004,
|
770 |
+
"learning_rate": 2e-05,
|
771 |
+
"loss": 0.1116,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.9386666666666666,
|
776 |
+
"grad_norm": 0.056296443557859455,
|
777 |
+
"learning_rate": 2e-05,
|
778 |
+
"loss": 0.1056,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.9472,
|
783 |
+
"grad_norm": 0.05058663240713958,
|
784 |
+
"learning_rate": 2e-05,
|
785 |
+
"loss": 0.0971,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.9557333333333333,
|
790 |
+
"grad_norm": 0.05532886570130611,
|
791 |
+
"learning_rate": 2e-05,
|
792 |
+
"loss": 0.1086,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.9642666666666667,
|
797 |
+
"grad_norm": 0.05327811326654907,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0989,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.9728,
|
804 |
+
"grad_norm": 0.05663279364147864,
|
805 |
+
"learning_rate": 2e-05,
|
806 |
+
"loss": 0.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.9813333333333333,
|
811 |
+
"grad_norm": 0.04930904541225805,
|
812 |
+
"learning_rate": 2e-05,
|
813 |
+
"loss": 0.0887,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.9898666666666667,
|
818 |
+
"grad_norm": 0.06096947951115022,
|
819 |
+
"learning_rate": 2e-05,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.9984,
|
825 |
+
"grad_norm": 0.050092322361182495,
|
826 |
+
"learning_rate": 2e-05,
|
827 |
+
"loss": 0.0931,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.0069333333333332,
|
832 |
+
"grad_norm": 0.04980408443758999,
|
833 |
+
"learning_rate": 2e-05,
|
834 |
+
"loss": 0.0955,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.0154666666666667,
|
839 |
+
"grad_norm": 0.051183082721834305,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.1049,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.024,
|
846 |
+
"grad_norm": 0.04332220265802814,
|
847 |
+
"learning_rate": 2e-05,
|
848 |
+
"loss": 0.0983,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.0325333333333333,
|
853 |
+
"grad_norm": 0.07211731499677299,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.1386,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.0410666666666666,
|
860 |
+
"grad_norm": 0.06550870223740553,
|
861 |
+
"learning_rate": 2e-05,
|
862 |
+
"loss": 0.1334,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.0496,
|
867 |
+
"grad_norm": 0.05331839690767287,
|
868 |
+
"learning_rate": 2e-05,
|
869 |
+
"loss": 0.1014,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.0581333333333334,
|
874 |
+
"grad_norm": 0.05227685628767905,
|
875 |
+
"learning_rate": 2e-05,
|
876 |
+
"loss": 0.1098,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0666666666666667,
|
881 |
+
"grad_norm": 0.07641693882491171,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.1127,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0752,
|
888 |
+
"grad_norm": 0.052835367770791786,
|
889 |
+
"learning_rate": 2e-05,
|
890 |
+
"loss": 0.1231,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.0837333333333334,
|
895 |
+
"grad_norm": 0.07520329755025788,
|
896 |
+
"learning_rate": 2e-05,
|
897 |
+
"loss": 0.085,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.0922666666666667,
|
902 |
+
"grad_norm": 0.07670066152157425,
|
903 |
+
"learning_rate": 2e-05,
|
904 |
+
"loss": 0.1071,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.1008,
|
909 |
+
"grad_norm": 0.052832906560645154,
|
910 |
+
"learning_rate": 2e-05,
|
911 |
+
"loss": 0.1093,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.1093333333333333,
|
916 |
+
"grad_norm": 0.06573889037311398,
|
917 |
+
"learning_rate": 2e-05,
|
918 |
+
"loss": 0.1193,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.1178666666666666,
|
923 |
+
"grad_norm": 0.05175471296566334,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.1184,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1264,
|
930 |
+
"grad_norm": 0.05912231419793496,
|
931 |
+
"learning_rate": 2e-05,
|
932 |
+
"loss": 0.1154,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.1349333333333333,
|
937 |
+
"grad_norm": 0.04899140475981105,
|
938 |
+
"learning_rate": 2e-05,
|
939 |
+
"loss": 0.0957,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.1434666666666666,
|
944 |
+
"grad_norm": 0.05939916939142137,
|
945 |
+
"learning_rate": 2e-05,
|
946 |
+
"loss": 0.0979,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.152,
|
951 |
+
"grad_norm": 0.0516819217599706,
|
952 |
+
"learning_rate": 2e-05,
|
953 |
+
"loss": 0.0834,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.1605333333333334,
|
958 |
+
"grad_norm": 0.05456440346454737,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.1183,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.1690666666666667,
|
965 |
+
"grad_norm": 0.059906464476343235,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.1048,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.1776,
|
972 |
+
"grad_norm": 0.0720112680204319,
|
973 |
+
"learning_rate": 2e-05,
|
974 |
+
"loss": 0.1168,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.1861333333333333,
|
979 |
+
"grad_norm": 0.04940202805828527,
|
980 |
+
"learning_rate": 2e-05,
|
981 |
+
"loss": 0.0948,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.1946666666666665,
|
986 |
+
"grad_norm": 0.060088609545130046,
|
987 |
+
"learning_rate": 2e-05,
|
988 |
+
"loss": 0.0952,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.2032,
|
993 |
+
"grad_norm": 0.04694761423612446,
|
994 |
+
"learning_rate": 2e-05,
|
995 |
+
"loss": 0.0717,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.2117333333333333,
|
1000 |
+
"grad_norm": 0.05628581562512457,
|
1001 |
+
"learning_rate": 2e-05,
|
1002 |
+
"loss": 0.1062,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.2202666666666666,
|
1007 |
+
"grad_norm": 0.06876420990437652,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.1218,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2288000000000001,
|
1014 |
+
"grad_norm": 0.058774700501610655,
|
1015 |
+
"learning_rate": 2e-05,
|
1016 |
+
"loss": 0.1125,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.2373333333333334,
|
1021 |
+
"grad_norm": 0.061855922064341186,
|
1022 |
+
"learning_rate": 2e-05,
|
1023 |
+
"loss": 0.1295,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.2458666666666667,
|
1028 |
+
"grad_norm": 0.0813047704730138,
|
1029 |
+
"learning_rate": 2e-05,
|
1030 |
+
"loss": 0.1165,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.2544,
|
1035 |
+
"grad_norm": 0.061374000305305446,
|
1036 |
+
"learning_rate": 2e-05,
|
1037 |
+
"loss": 0.1094,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.2629333333333332,
|
1042 |
+
"grad_norm": 0.055537169110833,
|
1043 |
+
"learning_rate": 2e-05,
|
1044 |
+
"loss": 0.1054,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.2714666666666667,
|
1049 |
+
"grad_norm": 0.04423248714119304,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0841,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.28,
|
1056 |
+
"grad_norm": 0.049931966607835034,
|
1057 |
+
"learning_rate": 2e-05,
|
1058 |
+
"loss": 0.0961,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.2885333333333333,
|
1063 |
+
"grad_norm": 0.06178656953298769,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.0854,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.2970666666666666,
|
1070 |
+
"grad_norm": 0.05783812343287897,
|
1071 |
+
"learning_rate": 2e-05,
|
1072 |
+
"loss": 0.1141,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.3056,
|
1077 |
+
"grad_norm": 0.048955120400167584,
|
1078 |
+
"learning_rate": 2e-05,
|
1079 |
+
"loss": 0.0947,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.3141333333333334,
|
1084 |
+
"grad_norm": 0.12270174746806978,
|
1085 |
+
"learning_rate": 2e-05,
|
1086 |
+
"loss": 0.1553,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.3226666666666667,
|
1091 |
+
"grad_norm": 0.06928026959973474,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.1274,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3312,
|
1098 |
+
"grad_norm": 0.04756100666105405,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 0.0893,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.3397333333333332,
|
1105 |
+
"grad_norm": 0.056054951338196934,
|
1106 |
+
"learning_rate": 2e-05,
|
1107 |
+
"loss": 0.0831,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.3482666666666667,
|
1112 |
+
"grad_norm": 0.0516990471964239,
|
1113 |
+
"learning_rate": 2e-05,
|
1114 |
+
"loss": 0.0883,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.3568,
|
1119 |
+
"grad_norm": 0.06011650542069954,
|
1120 |
+
"learning_rate": 2e-05,
|
1121 |
+
"loss": 0.0938,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.3653333333333333,
|
1126 |
+
"grad_norm": 0.051831307951873976,
|
1127 |
+
"learning_rate": 2e-05,
|
1128 |
+
"loss": 0.1019,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.3738666666666668,
|
1133 |
+
"grad_norm": 0.0544902702048936,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0906,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.3824,
|
1140 |
+
"grad_norm": 0.06057617032526,
|
1141 |
+
"learning_rate": 2e-05,
|
1142 |
+
"loss": 0.1206,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.3909333333333334,
|
1147 |
+
"grad_norm": 0.07288058025189605,
|
1148 |
+
"learning_rate": 2e-05,
|
1149 |
+
"loss": 0.1175,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.3994666666666666,
|
1154 |
+
"grad_norm": 0.05639043792084219,
|
1155 |
+
"learning_rate": 2e-05,
|
1156 |
+
"loss": 0.1031,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.408,
|
1161 |
+
"grad_norm": 0.0586469408837505,
|
1162 |
+
"learning_rate": 2e-05,
|
1163 |
+
"loss": 0.1143,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.4165333333333332,
|
1168 |
+
"grad_norm": 0.059243429040783904,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.0838,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.4250666666666667,
|
1175 |
+
"grad_norm": 0.0621476448363388,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.1032,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4336,
|
1182 |
+
"grad_norm": 0.06083867682720169,
|
1183 |
+
"learning_rate": 2e-05,
|
1184 |
+
"loss": 0.1119,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.4421333333333333,
|
1189 |
+
"grad_norm": 0.09583165335305677,
|
1190 |
+
"learning_rate": 2e-05,
|
1191 |
+
"loss": 0.1028,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.4506666666666668,
|
1196 |
+
"grad_norm": 0.06411638581314043,
|
1197 |
+
"learning_rate": 2e-05,
|
1198 |
+
"loss": 0.1181,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.4592,
|
1203 |
+
"grad_norm": 0.05632977234908945,
|
1204 |
+
"learning_rate": 2e-05,
|
1205 |
+
"loss": 0.1055,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.4677333333333333,
|
1210 |
+
"grad_norm": 0.05666068971337413,
|
1211 |
+
"learning_rate": 2e-05,
|
1212 |
+
"loss": 0.1116,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.4762666666666666,
|
1217 |
+
"grad_norm": 0.04502062723807536,
|
1218 |
+
"learning_rate": 2e-05,
|
1219 |
+
"loss": 0.0588,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.4848,
|
1224 |
+
"grad_norm": 0.05916500176868301,
|
1225 |
+
"learning_rate": 2e-05,
|
1226 |
+
"loss": 0.0949,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4933333333333334,
|
1231 |
+
"grad_norm": 0.056484273808864845,
|
1232 |
+
"learning_rate": 2e-05,
|
1233 |
+
"loss": 0.0948,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.5018666666666667,
|
1238 |
+
"grad_norm": 0.06652084448571674,
|
1239 |
+
"learning_rate": 2e-05,
|
1240 |
+
"loss": 0.1086,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5104,
|
1245 |
+
"grad_norm": 0.05400238078068516,
|
1246 |
+
"learning_rate": 2e-05,
|
1247 |
+
"loss": 0.0919,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.5189333333333335,
|
1252 |
+
"grad_norm": 0.04979579743346662,
|
1253 |
+
"learning_rate": 2e-05,
|
1254 |
+
"loss": 0.0879,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.5274666666666668,
|
1259 |
+
"grad_norm": 0.06876105414733971,
|
1260 |
+
"learning_rate": 2e-05,
|
1261 |
+
"loss": 0.1162,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.536,
|
1266 |
+
"grad_norm": 0.05633262015499721,
|
1267 |
+
"learning_rate": 2e-05,
|
1268 |
+
"loss": 0.1142,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.5445333333333333,
|
1273 |
+
"grad_norm": 0.0599508967519892,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.1073,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.5530666666666666,
|
1280 |
+
"grad_norm": 0.058912170976454126,
|
1281 |
+
"learning_rate": 2e-05,
|
1282 |
+
"loss": 0.1102,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.5615999999999999,
|
1287 |
+
"grad_norm": 0.05361414988566254,
|
1288 |
+
"learning_rate": 2e-05,
|
1289 |
+
"loss": 0.0885,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.5701333333333334,
|
1294 |
+
"grad_norm": 0.04517277847384077,
|
1295 |
+
"learning_rate": 2e-05,
|
1296 |
+
"loss": 0.0763,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.5786666666666667,
|
1301 |
+
"grad_norm": 0.05551553662051771,
|
1302 |
+
"learning_rate": 2e-05,
|
1303 |
+
"loss": 0.0877,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.5872000000000002,
|
1308 |
+
"grad_norm": 0.05814223969236194,
|
1309 |
+
"learning_rate": 2e-05,
|
1310 |
+
"loss": 0.1044,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.5957333333333334,
|
1315 |
+
"grad_norm": 0.05710054166191597,
|
1316 |
+
"learning_rate": 2e-05,
|
1317 |
+
"loss": 0.0962,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6042666666666667,
|
1322 |
+
"grad_norm": 0.054744343932104075,
|
1323 |
+
"learning_rate": 2e-05,
|
1324 |
+
"loss": 0.0873,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.6128,
|
1329 |
+
"grad_norm": 0.051145521687090995,
|
1330 |
+
"learning_rate": 2e-05,
|
1331 |
+
"loss": 0.0855,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.6213333333333333,
|
1336 |
+
"grad_norm": 0.05414658860737789,
|
1337 |
+
"learning_rate": 2e-05,
|
1338 |
+
"loss": 0.0872,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.6298666666666666,
|
1343 |
+
"grad_norm": 0.05084744595533029,
|
1344 |
+
"learning_rate": 2e-05,
|
1345 |
+
"loss": 0.0891,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6383999999999999,
|
1350 |
+
"grad_norm": 0.0567070082820597,
|
1351 |
+
"learning_rate": 2e-05,
|
1352 |
+
"loss": 0.0965,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.6469333333333334,
|
1357 |
+
"grad_norm": 0.0494785311411315,
|
1358 |
+
"learning_rate": 2e-05,
|
1359 |
+
"loss": 0.0941,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.6554666666666666,
|
1364 |
+
"grad_norm": 0.062341158530385396,
|
1365 |
+
"learning_rate": 2e-05,
|
1366 |
+
"loss": 0.1154,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.6640000000000001,
|
1371 |
+
"grad_norm": 0.059888336716275685,
|
1372 |
+
"learning_rate": 2e-05,
|
1373 |
+
"loss": 0.1037,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.6725333333333334,
|
1378 |
+
"grad_norm": 0.07346562318829057,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.1329,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.6810666666666667,
|
1385 |
+
"grad_norm": 0.0792360016934733,
|
1386 |
+
"learning_rate": 2e-05,
|
1387 |
+
"loss": 0.1392,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.6896,
|
1392 |
+
"grad_norm": 0.0800342963229883,
|
1393 |
+
"learning_rate": 2e-05,
|
1394 |
+
"loss": 0.1199,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.6981333333333333,
|
1399 |
+
"grad_norm": 0.06848045933195548,
|
1400 |
+
"learning_rate": 2e-05,
|
1401 |
+
"loss": 0.0998,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.7066666666666666,
|
1406 |
+
"grad_norm": 0.05743199019316764,
|
1407 |
+
"learning_rate": 2e-05,
|
1408 |
+
"loss": 0.0811,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.7151999999999998,
|
1413 |
+
"grad_norm": 0.07170531168284446,
|
1414 |
+
"learning_rate": 2e-05,
|
1415 |
+
"loss": 0.1079,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.7237333333333333,
|
1420 |
+
"grad_norm": 0.05772905481368506,
|
1421 |
+
"learning_rate": 2e-05,
|
1422 |
+
"loss": 0.0844,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.7322666666666666,
|
1427 |
+
"grad_norm": 0.07504946014098464,
|
1428 |
+
"learning_rate": 2e-05,
|
1429 |
+
"loss": 0.1257,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7408000000000001,
|
1434 |
+
"grad_norm": 0.06450179819785838,
|
1435 |
+
"learning_rate": 2e-05,
|
1436 |
+
"loss": 0.1104,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.7493333333333334,
|
1441 |
+
"grad_norm": 0.06595445965110332,
|
1442 |
+
"learning_rate": 2e-05,
|
1443 |
+
"loss": 0.093,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.7578666666666667,
|
1448 |
+
"grad_norm": 0.07203558121131749,
|
1449 |
+
"learning_rate": 2e-05,
|
1450 |
+
"loss": 0.1117,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.7664,
|
1455 |
+
"grad_norm": 0.05954646782409283,
|
1456 |
+
"learning_rate": 2e-05,
|
1457 |
+
"loss": 0.0729,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.7749333333333333,
|
1462 |
+
"grad_norm": 0.06624894584410884,
|
1463 |
+
"learning_rate": 2e-05,
|
1464 |
+
"loss": 0.0998,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.7834666666666665,
|
1469 |
+
"grad_norm": 0.06888562028256219,
|
1470 |
+
"learning_rate": 2e-05,
|
1471 |
+
"loss": 0.1398,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.792,
|
1476 |
+
"grad_norm": 0.061224088077794406,
|
1477 |
+
"learning_rate": 2e-05,
|
1478 |
+
"loss": 0.1112,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.8005333333333333,
|
1483 |
+
"grad_norm": 0.06857358883856608,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.1293,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.8090666666666668,
|
1490 |
+
"grad_norm": 0.06177352416779139,
|
1491 |
+
"learning_rate": 2e-05,
|
1492 |
+
"loss": 0.0884,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.8176,
|
1497 |
+
"grad_norm": 0.08324567429925228,
|
1498 |
+
"learning_rate": 2e-05,
|
1499 |
+
"loss": 0.1127,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.8261333333333334,
|
1504 |
+
"grad_norm": 0.06771677297787752,
|
1505 |
+
"learning_rate": 2e-05,
|
1506 |
+
"loss": 0.089,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.8346666666666667,
|
1511 |
+
"grad_norm": 0.07055754809472485,
|
1512 |
+
"learning_rate": 2e-05,
|
1513 |
+
"loss": 0.1206,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8432,
|
1518 |
+
"grad_norm": 0.05856797724392531,
|
1519 |
+
"learning_rate": 2e-05,
|
1520 |
+
"loss": 0.0893,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.8517333333333332,
|
1525 |
+
"grad_norm": 0.07555286129801597,
|
1526 |
+
"learning_rate": 2e-05,
|
1527 |
+
"loss": 0.0913,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.8602666666666665,
|
1532 |
+
"grad_norm": 0.09242462538643775,
|
1533 |
+
"learning_rate": 2e-05,
|
1534 |
+
"loss": 0.1241,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.8688,
|
1539 |
+
"grad_norm": 0.06550805537088374,
|
1540 |
+
"learning_rate": 2e-05,
|
1541 |
+
"loss": 0.0819,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.8773333333333333,
|
1546 |
+
"grad_norm": 0.06016048263236861,
|
1547 |
+
"learning_rate": 2e-05,
|
1548 |
+
"loss": 0.0955,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.8858666666666668,
|
1553 |
+
"grad_norm": 0.06856661106001445,
|
1554 |
+
"learning_rate": 2e-05,
|
1555 |
+
"loss": 0.1132,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.8944,
|
1560 |
+
"grad_norm": 0.06383306455000529,
|
1561 |
+
"learning_rate": 2e-05,
|
1562 |
+
"loss": 0.1086,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.9029333333333334,
|
1567 |
+
"grad_norm": 0.07240472757239624,
|
1568 |
+
"learning_rate": 2e-05,
|
1569 |
+
"loss": 0.0863,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.9114666666666666,
|
1574 |
+
"grad_norm": 0.07845654471077741,
|
1575 |
+
"learning_rate": 2e-05,
|
1576 |
+
"loss": 0.1284,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.92,
|
1581 |
+
"grad_norm": 0.07192185833649212,
|
1582 |
+
"learning_rate": 2e-05,
|
1583 |
+
"loss": 0.1101,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.9285333333333332,
|
1588 |
+
"grad_norm": 0.06390598005596872,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.0917,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.9370666666666667,
|
1595 |
+
"grad_norm": 0.06306138712432224,
|
1596 |
+
"learning_rate": 2e-05,
|
1597 |
+
"loss": 0.0936,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.9456,
|
1602 |
+
"grad_norm": 0.06771381941296478,
|
1603 |
+
"learning_rate": 2e-05,
|
1604 |
+
"loss": 0.0936,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.9541333333333335,
|
1609 |
+
"grad_norm": 0.05899006803461524,
|
1610 |
+
"learning_rate": 2e-05,
|
1611 |
+
"loss": 0.0782,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.9626666666666668,
|
1616 |
+
"grad_norm": 0.07426956281950735,
|
1617 |
+
"learning_rate": 2e-05,
|
1618 |
+
"loss": 0.1095,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.9712,
|
1623 |
+
"grad_norm": 0.06567534902293475,
|
1624 |
+
"learning_rate": 2e-05,
|
1625 |
+
"loss": 0.0956,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.9797333333333333,
|
1630 |
+
"grad_norm": 0.07430395142282198,
|
1631 |
+
"learning_rate": 2e-05,
|
1632 |
+
"loss": 0.0957,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.9882666666666666,
|
1637 |
+
"grad_norm": 0.05834447367264806,
|
1638 |
+
"learning_rate": 2e-05,
|
1639 |
+
"loss": 0.0767,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.9968,
|
1644 |
+
"grad_norm": 0.07137090413877054,
|
1645 |
+
"learning_rate": 2e-05,
|
1646 |
+
"loss": 0.0821,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.005333333333333,
|
1651 |
+
"grad_norm": 0.07797914240805551,
|
1652 |
+
"learning_rate": 2e-05,
|
1653 |
+
"loss": 0.1175,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.0138666666666665,
|
1658 |
+
"grad_norm": 0.09335648879374187,
|
1659 |
+
"learning_rate": 2e-05,
|
1660 |
+
"loss": 0.1632,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.0224,
|
1665 |
+
"grad_norm": 0.08280719749100944,
|
1666 |
+
"learning_rate": 2e-05,
|
1667 |
+
"loss": 0.115,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.0309333333333335,
|
1672 |
+
"grad_norm": 0.08956213539053312,
|
1673 |
+
"learning_rate": 2e-05,
|
1674 |
+
"loss": 0.109,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.0394666666666668,
|
1679 |
+
"grad_norm": 0.08849786687188893,
|
1680 |
+
"learning_rate": 2e-05,
|
1681 |
+
"loss": 0.1234,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.048,
|
1686 |
+
"grad_norm": 0.16956065138312856,
|
1687 |
+
"learning_rate": 2e-05,
|
1688 |
+
"loss": 0.1055,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.0565333333333333,
|
1693 |
+
"grad_norm": 0.07377723133015779,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.1068,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 2.0650666666666666,
|
1700 |
+
"grad_norm": 0.08839651322303756,
|
1701 |
+
"learning_rate": 2e-05,
|
1702 |
+
"loss": 0.0965,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 2.0736,
|
1707 |
+
"grad_norm": 0.10641135540308218,
|
1708 |
+
"learning_rate": 2e-05,
|
1709 |
+
"loss": 0.0887,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 2.082133333333333,
|
1714 |
+
"grad_norm": 0.09370442613891326,
|
1715 |
+
"learning_rate": 2e-05,
|
1716 |
+
"loss": 0.0931,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.0906666666666665,
|
1721 |
+
"grad_norm": 0.08988093042206098,
|
1722 |
+
"learning_rate": 2e-05,
|
1723 |
+
"loss": 0.1201,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.0992,
|
1728 |
+
"grad_norm": 0.07167309696967938,
|
1729 |
+
"learning_rate": 2e-05,
|
1730 |
+
"loss": 0.0747,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 2.1077333333333335,
|
1735 |
+
"grad_norm": 0.08822161286881192,
|
1736 |
+
"learning_rate": 2e-05,
|
1737 |
+
"loss": 0.1044,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 2.1162666666666667,
|
1742 |
+
"grad_norm": 0.08439713613775747,
|
1743 |
+
"learning_rate": 2e-05,
|
1744 |
+
"loss": 0.1063,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 2.1248,
|
1749 |
+
"grad_norm": 0.0942232139678121,
|
1750 |
+
"learning_rate": 2e-05,
|
1751 |
+
"loss": 0.0865,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.1333333333333333,
|
1756 |
+
"grad_norm": 0.1066306844906037,
|
1757 |
+
"learning_rate": 2e-05,
|
1758 |
+
"loss": 0.1198,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.1418666666666666,
|
1763 |
+
"grad_norm": 0.10435492421714423,
|
1764 |
+
"learning_rate": 2e-05,
|
1765 |
+
"loss": 0.0968,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.1504,
|
1770 |
+
"grad_norm": 0.10513719348492025,
|
1771 |
+
"learning_rate": 2e-05,
|
1772 |
+
"loss": 0.1045,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 2.158933333333333,
|
1777 |
+
"grad_norm": 0.12580299248756027,
|
1778 |
+
"learning_rate": 2e-05,
|
1779 |
+
"loss": 0.0941,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 2.167466666666667,
|
1784 |
+
"grad_norm": 0.10265943183351584,
|
1785 |
+
"learning_rate": 2e-05,
|
1786 |
+
"loss": 0.0892,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.176,
|
1791 |
+
"grad_norm": 0.09473119803029131,
|
1792 |
+
"learning_rate": 2e-05,
|
1793 |
+
"loss": 0.0721,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 2.1845333333333334,
|
1798 |
+
"grad_norm": 0.13420988295622846,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.1034,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.1930666666666667,
|
1805 |
+
"grad_norm": 0.11474592330595303,
|
1806 |
+
"learning_rate": 2e-05,
|
1807 |
+
"loss": 0.1095,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.2016,
|
1812 |
+
"grad_norm": 0.12382914500613644,
|
1813 |
+
"learning_rate": 2e-05,
|
1814 |
+
"loss": 0.0947,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.2101333333333333,
|
1819 |
+
"grad_norm": 0.12984065755657193,
|
1820 |
+
"learning_rate": 2e-05,
|
1821 |
+
"loss": 0.0888,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 2.2186666666666666,
|
1826 |
+
"grad_norm": 0.14210964340218168,
|
1827 |
+
"learning_rate": 2e-05,
|
1828 |
+
"loss": 0.105,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 2.2272,
|
1833 |
+
"grad_norm": 0.13862185852250883,
|
1834 |
+
"learning_rate": 2e-05,
|
1835 |
+
"loss": 0.0876,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 2.235733333333333,
|
1840 |
+
"grad_norm": 0.17284047904822364,
|
1841 |
+
"learning_rate": 2e-05,
|
1842 |
+
"loss": 0.0935,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.244266666666667,
|
1847 |
+
"grad_norm": 0.1409465306152598,
|
1848 |
+
"learning_rate": 2e-05,
|
1849 |
+
"loss": 0.1032,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.2528,
|
1854 |
+
"grad_norm": 0.15551418258816738,
|
1855 |
+
"learning_rate": 2e-05,
|
1856 |
+
"loss": 0.0871,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.2613333333333334,
|
1861 |
+
"grad_norm": 0.1741617194945442,
|
1862 |
+
"learning_rate": 2e-05,
|
1863 |
+
"loss": 0.098,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 2.2698666666666667,
|
1868 |
+
"grad_norm": 0.18387218423978585,
|
1869 |
+
"learning_rate": 2e-05,
|
1870 |
+
"loss": 0.1168,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 2.2784,
|
1875 |
+
"grad_norm": 0.21744684782545962,
|
1876 |
+
"learning_rate": 2e-05,
|
1877 |
+
"loss": 0.1061,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 2.2869333333333333,
|
1882 |
+
"grad_norm": 0.17372673806896413,
|
1883 |
+
"learning_rate": 2e-05,
|
1884 |
+
"loss": 0.0927,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.2954666666666665,
|
1889 |
+
"grad_norm": 0.20890400134226653,
|
1890 |
+
"learning_rate": 2e-05,
|
1891 |
+
"loss": 0.0874,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.304,
|
1896 |
+
"grad_norm": 0.20279172920289834,
|
1897 |
+
"learning_rate": 2e-05,
|
1898 |
+
"loss": 0.0807,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.3125333333333336,
|
1903 |
+
"grad_norm": 0.23060543242200862,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.0937,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 2.321066666666667,
|
1910 |
+
"grad_norm": 0.2866337268131343,
|
1911 |
+
"learning_rate": 2e-05,
|
1912 |
+
"loss": 0.0886,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.3296,
|
1917 |
+
"grad_norm": 0.3203014162518504,
|
1918 |
+
"learning_rate": 2e-05,
|
1919 |
+
"loss": 0.0741,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 2.3381333333333334,
|
1924 |
+
"grad_norm": 0.2702455454246614,
|
1925 |
+
"learning_rate": 2e-05,
|
1926 |
+
"loss": 0.0692,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 2.3466666666666667,
|
1931 |
+
"grad_norm": 0.30682595841991545,
|
1932 |
+
"learning_rate": 2e-05,
|
1933 |
+
"loss": 0.0733,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.3552,
|
1938 |
+
"grad_norm": 0.2844580109974713,
|
1939 |
+
"learning_rate": 2e-05,
|
1940 |
+
"loss": 0.0979,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.3637333333333332,
|
1945 |
+
"grad_norm": 0.31296149985818705,
|
1946 |
+
"learning_rate": 2e-05,
|
1947 |
+
"loss": 0.093,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 2.3722666666666665,
|
1952 |
+
"grad_norm": 0.24448590086634314,
|
1953 |
+
"learning_rate": 2e-05,
|
1954 |
+
"loss": 0.1078,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 2.3808,
|
1959 |
+
"grad_norm": 0.17626685777153123,
|
1960 |
+
"learning_rate": 2e-05,
|
1961 |
+
"loss": 0.0939,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 2.389333333333333,
|
1966 |
+
"grad_norm": 0.13337416253457104,
|
1967 |
+
"learning_rate": 2e-05,
|
1968 |
+
"loss": 0.0812,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 2.397866666666667,
|
1973 |
+
"grad_norm": 0.13083267651254354,
|
1974 |
+
"learning_rate": 2e-05,
|
1975 |
+
"loss": 0.0929,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 2.4064,
|
1980 |
+
"grad_norm": 0.10994823562004175,
|
1981 |
+
"learning_rate": 2e-05,
|
1982 |
+
"loss": 0.098,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 2.4149333333333334,
|
1987 |
+
"grad_norm": 0.11578539664581784,
|
1988 |
+
"learning_rate": 2e-05,
|
1989 |
+
"loss": 0.098,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 2.4234666666666667,
|
1994 |
+
"grad_norm": 0.13153226988739827,
|
1995 |
+
"learning_rate": 2e-05,
|
1996 |
+
"loss": 0.0865,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 2.432,
|
2001 |
+
"grad_norm": 0.14019083181189823,
|
2002 |
+
"learning_rate": 2e-05,
|
2003 |
+
"loss": 0.1058,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 2.440533333333333,
|
2008 |
+
"grad_norm": 0.15458456814813418,
|
2009 |
+
"learning_rate": 2e-05,
|
2010 |
+
"loss": 0.0961,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 2.4490666666666665,
|
2015 |
+
"grad_norm": 0.13535285938076497,
|
2016 |
+
"learning_rate": 2e-05,
|
2017 |
+
"loss": 0.0919,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.4576000000000002,
|
2022 |
+
"grad_norm": 0.13511973312198838,
|
2023 |
+
"learning_rate": 2e-05,
|
2024 |
+
"loss": 0.0917,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.4661333333333335,
|
2029 |
+
"grad_norm": 0.12593494881253786,
|
2030 |
+
"learning_rate": 2e-05,
|
2031 |
+
"loss": 0.0894,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 2.474666666666667,
|
2036 |
+
"grad_norm": 0.11749403519277489,
|
2037 |
+
"learning_rate": 2e-05,
|
2038 |
+
"loss": 0.0701,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 2.4832,
|
2043 |
+
"grad_norm": 0.09252484293260567,
|
2044 |
+
"learning_rate": 2e-05,
|
2045 |
+
"loss": 0.1034,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 2.4917333333333334,
|
2050 |
+
"grad_norm": 0.12694234802279894,
|
2051 |
+
"learning_rate": 2e-05,
|
2052 |
+
"loss": 0.1053,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 2.5002666666666666,
|
2057 |
+
"grad_norm": 0.08086766935276264,
|
2058 |
+
"learning_rate": 2e-05,
|
2059 |
+
"loss": 0.0645,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.5088,
|
2064 |
+
"grad_norm": 0.0761948300276639,
|
2065 |
+
"learning_rate": 2e-05,
|
2066 |
+
"loss": 0.0825,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.517333333333333,
|
2071 |
+
"grad_norm": 0.05469199783697831,
|
2072 |
+
"learning_rate": 2e-05,
|
2073 |
+
"loss": 0.0809,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 2.5258666666666665,
|
2078 |
+
"grad_norm": 0.052391133906216227,
|
2079 |
+
"learning_rate": 2e-05,
|
2080 |
+
"loss": 0.0702,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 2.5343999999999998,
|
2085 |
+
"grad_norm": 0.05612973089592643,
|
2086 |
+
"learning_rate": 2e-05,
|
2087 |
+
"loss": 0.0739,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 2.5429333333333335,
|
2092 |
+
"grad_norm": 0.06163544903262162,
|
2093 |
+
"learning_rate": 2e-05,
|
2094 |
+
"loss": 0.0787,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 2.5514666666666668,
|
2099 |
+
"grad_norm": 0.04805683850668383,
|
2100 |
+
"learning_rate": 2e-05,
|
2101 |
+
"loss": 0.0781,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.56,
|
2106 |
+
"grad_norm": 0.04677194701582553,
|
2107 |
+
"learning_rate": 2e-05,
|
2108 |
+
"loss": 0.0808,
|
2109 |
+
"step": 300
|
2110 |
+
}
|
2111 |
+
],
|
2112 |
+
"logging_steps": 1,
|
2113 |
+
"max_steps": 351,
|
2114 |
+
"num_input_tokens_seen": 0,
|
2115 |
+
"num_train_epochs": 3,
|
2116 |
+
"save_steps": 20,
|
2117 |
+
"stateful_callbacks": {
|
2118 |
+
"TrainerControl": {
|
2119 |
+
"args": {
|
2120 |
+
"should_epoch_stop": false,
|
2121 |
+
"should_evaluate": false,
|
2122 |
+
"should_log": false,
|
2123 |
+
"should_save": true,
|
2124 |
+
"should_training_stop": false
|
2125 |
+
},
|
2126 |
+
"attributes": {}
|
2127 |
+
}
|
2128 |
+
},
|
2129 |
+
"total_flos": 4.2831937920617677e+18,
|
2130 |
+
"train_batch_size": 16,
|
2131 |
+
"trial_name": null,
|
2132 |
+
"trial_params": null
|
2133 |
+
}
|
checkpoint-300/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4edad1da5557fcd52a6da980443588016cead6f0444a3562cfa68029c66a04
|
3 |
+
size 6840
|
checkpoint-300/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|