YixuanWeng
commited on
Commit
·
1ce2d2c
1
Parent(s):
095eca9
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multilingual SimCSE
|
2 |
+
|
3 |
+
#### A contrastive learning model using parallel language pair training
|
4 |
+
|
5 |
+
##### By using parallel sentence pairs in different languages, the text is mapped to the same vector space for pre-training similar to Simcse
|
6 |
+
|
7 |
+
##### Firstly, the [mDeBERTa](https://huggingface.co/microsoft/mdeberta-v3-base) model is used to load the pre-training parameters, and then the pre-training is carried out based on the [CCMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/CCMatrix) data set.
|
8 |
+
|
9 |
+
##### Training data: 100 million parallel pairs
|
10 |
+
|
11 |
+
##### Taining equipment: 4 * 3090
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
## Pipline Code
|
16 |
+
|
17 |
+
```
|
18 |
+
from transformers import AutoModel,AutoTokenizer
|
19 |
+
|
20 |
+
model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE')
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE')
|
22 |
+
|
23 |
+
word1 = tokenizer('Hello,world.',return_tensors='pt')
|
24 |
+
word2 = tokenizer('你好,世界',return_tensors='pt')
|
25 |
+
out1 = model(**word1).last_hidden_state.mean(1)
|
26 |
+
out2 = model(**word2).last_hidden_state.mean(1)
|
27 |
+
print(F.cosine_similarity(out1,out2))
|
28 |
+
----------------------------------------------------
|
29 |
+
tensor([0.8758], grad_fn=<DivBackward0>)
|
30 |
+
```
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
## Train Code
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
```
|
39 |
+
from transformers import AutoModel,AutoTokenizer,AdamW
|
40 |
+
|
41 |
+
model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE')
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE')
|
43 |
+
optimizer = AdamW(model.parameters(),lr=1e-5)
|
44 |
+
|
45 |
+
def compute_loss(y_pred, t=0.05, device="cuda"):
|
46 |
+
idxs = torch.arange(0, y_pred.shape[0], device=device)
|
47 |
+
y_true = idxs + 1 - idxs % 2 * 2
|
48 |
+
similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2)
|
49 |
+
similarities = similarities - torch.eye(y_pred.shape[0], device=device) * 1e12
|
50 |
+
similarities = similarities / t
|
51 |
+
loss = F.cross_entropy(similarities, y_true)
|
52 |
+
return torch.mean(loss)
|
53 |
+
|
54 |
+
wordlist = [['Hello,world','你好,世界'],['Pensa che il bianco rappresenti la purezza.','Он думает, что белые символизируют чистоту.']]
|
55 |
+
|
56 |
+
input_ids, attention_mask, token_type_ids = [], [], []
|
57 |
+
for x in wordlist:
|
58 |
+
text1 = tokenizer(x[0], padding='max_length', truncation=True, max_length=512)
|
59 |
+
input_ids.append(text1['input_ids'])
|
60 |
+
attention_mask.append(text1['attention_mask'])
|
61 |
+
text2 = tokenizer(x[1], padding='max_length', truncation=True, max_length=512)
|
62 |
+
input_ids.append(text2['input_ids'])
|
63 |
+
attention_mask.append(text2['attention_mask'])
|
64 |
+
|
65 |
+
input_ids = torch.tensor(input_ids,device=device)
|
66 |
+
attention_mask = torch.tensor(attention_mask,device=device)
|
67 |
+
|
68 |
+
output = model(input_ids=input_ids,attention_mask=attention_mask)
|
69 |
+
output = output.last_hidden_state.mean(1)
|
70 |
+
loss = compute_loss(output)
|
71 |
+
loss.backward()
|
72 |
+
|
73 |
+
optimizer.step()
|
74 |
+
optimizer.zero_grad()
|
75 |
+
```
|
76 |
+
|