Vrjb commited on
Commit
7fb92c1
·
verified ·
1 Parent(s): 2c16c9e

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,135 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: nvidia/segformer-b2-finetuned-cityscapes-1024-1024
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: SegFormer_b2
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # SegFormer_b2
18
+
19
+ This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b2-finetuned-cityscapes-1024-1024) on the Cityscapes dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - eval_loss: 0.2516
22
+ - eval_mean_iou: 0.3875
23
+ - eval_mean_accuracy: 0.5066
24
+ - eval_overall_accuracy: 0.9043
25
+ - eval_accuracy_unlabeled: nan
26
+ - eval_accuracy_ego vehicle: nan
27
+ - eval_accuracy_rectification border: nan
28
+ - eval_accuracy_out of roi: nan
29
+ - eval_accuracy_static: nan
30
+ - eval_accuracy_dynamic: nan
31
+ - eval_accuracy_ground: nan
32
+ - eval_accuracy_road: 0.9832
33
+ - eval_accuracy_sidewalk: 0.8421
34
+ - eval_accuracy_parking: nan
35
+ - eval_accuracy_rail track: nan
36
+ - eval_accuracy_building: 0.9158
37
+ - eval_accuracy_wall: 0.0
38
+ - eval_accuracy_fence: 0.0
39
+ - eval_accuracy_guard rail: nan
40
+ - eval_accuracy_bridge: nan
41
+ - eval_accuracy_tunnel: nan
42
+ - eval_accuracy_pole: 0.5362
43
+ - eval_accuracy_polegroup: nan
44
+ - eval_accuracy_traffic light: 0.5814
45
+ - eval_accuracy_traffic sign: 0.7376
46
+ - eval_accuracy_vegetation: 0.9188
47
+ - eval_accuracy_terrain: 0.6737
48
+ - eval_accuracy_sky: 0.9746
49
+ - eval_accuracy_person: 0.7788
50
+ - eval_accuracy_rider: 0.0
51
+ - eval_accuracy_car: 0.9354
52
+ - eval_accuracy_truck: 0.0
53
+ - eval_accuracy_bus: 0.0
54
+ - eval_accuracy_caravan: nan
55
+ - eval_accuracy_trailer: nan
56
+ - eval_accuracy_train: 0.0
57
+ - eval_accuracy_motorcycle: 0.0
58
+ - eval_accuracy_bicycle: 0.7472
59
+ - eval_accuracy_license plate: nan
60
+ - eval_iou_unlabeled: nan
61
+ - eval_iou_ego vehicle: nan
62
+ - eval_iou_rectification border: nan
63
+ - eval_iou_out of roi: nan
64
+ - eval_iou_static: 0.0
65
+ - eval_iou_dynamic: nan
66
+ - eval_iou_ground: nan
67
+ - eval_iou_road: 0.9649
68
+ - eval_iou_sidewalk: 0.7403
69
+ - eval_iou_parking: nan
70
+ - eval_iou_rail track: nan
71
+ - eval_iou_building: 0.8430
72
+ - eval_iou_wall: 0.0
73
+ - eval_iou_fence: 0.0
74
+ - eval_iou_guard rail: nan
75
+ - eval_iou_bridge: nan
76
+ - eval_iou_tunnel: nan
77
+ - eval_iou_pole: 0.3619
78
+ - eval_iou_polegroup: nan
79
+ - eval_iou_traffic light: 0.4506
80
+ - eval_iou_traffic sign: 0.5317
81
+ - eval_iou_vegetation: 0.8647
82
+ - eval_iou_terrain: 0.4610
83
+ - eval_iou_sky: 0.8806
84
+ - eval_iou_person: 0.5967
85
+ - eval_iou_rider: 0.0
86
+ - eval_iou_car: 0.8756
87
+ - eval_iou_truck: 0.0
88
+ - eval_iou_bus: 0.0
89
+ - eval_iou_caravan: nan
90
+ - eval_iou_trailer: nan
91
+ - eval_iou_train: 0.0
92
+ - eval_iou_motorcycle: 0.0
93
+ - eval_iou_bicycle: 0.5665
94
+ - eval_iou_license plate: 0.0
95
+ - eval_runtime: 185.4692
96
+ - eval_samples_per_second: 2.696
97
+ - eval_steps_per_second: 0.674
98
+ - epoch: 20.4301
99
+ - step: 3800
100
+
101
+ ## Model description
102
+
103
+ More information needed
104
+
105
+ ## Intended uses & limitations
106
+
107
+ More information needed
108
+
109
+ ## Training and evaluation data
110
+
111
+ More information needed
112
+
113
+ ## Training procedure
114
+
115
+ ### Training hyperparameters
116
+
117
+ The following hyperparameters were used during training:
118
+ - learning_rate: 0.0006
119
+ - train_batch_size: 4
120
+ - eval_batch_size: 4
121
+ - seed: 42
122
+ - gradient_accumulation_steps: 4
123
+ - total_train_batch_size: 16
124
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
125
+ - lr_scheduler_type: linear
126
+ - lr_scheduler_warmup_steps: 500
127
+ - num_epochs: 100
128
+ - mixed_precision_training: Native AMP
129
+
130
+ ### Framework versions
131
+
132
+ - Transformers 4.47.1
133
+ - Pytorch 2.5.1+cu121
134
+ - Datasets 3.2.0
135
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b2-finetuned-cityscapes-1024-1024",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 6,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "ego vehicle",
33
+ "2": "rectification border",
34
+ "3": "out of roi",
35
+ "4": "static",
36
+ "5": "dynamic",
37
+ "6": "ground",
38
+ "7": "road",
39
+ "8": "sidewalk",
40
+ "9": "parking",
41
+ "10": "rail track",
42
+ "11": "building",
43
+ "12": "wall",
44
+ "13": "fence",
45
+ "14": "guard rail",
46
+ "15": "bridge",
47
+ "16": "tunnel",
48
+ "17": "pole",
49
+ "18": "polegroup",
50
+ "19": "traffic light",
51
+ "20": "traffic sign",
52
+ "21": "vegetation",
53
+ "22": "terrain",
54
+ "23": "sky",
55
+ "24": "person",
56
+ "25": "rider",
57
+ "26": "car",
58
+ "27": "truck",
59
+ "28": "bus",
60
+ "29": "caravan",
61
+ "30": "trailer",
62
+ "31": "train",
63
+ "32": "motorcycle",
64
+ "33": "bicycle",
65
+ "34": "license plate"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "bicycle": 33,
71
+ "bridge": 15,
72
+ "building": 11,
73
+ "bus": 28,
74
+ "car": 26,
75
+ "caravan": 29,
76
+ "dynamic": 5,
77
+ "ego vehicle": 1,
78
+ "fence": 13,
79
+ "ground": 6,
80
+ "guard rail": 14,
81
+ "license plate": 34,
82
+ "motorcycle": 32,
83
+ "out of roi": 3,
84
+ "parking": 9,
85
+ "person": 24,
86
+ "pole": 17,
87
+ "polegroup": 18,
88
+ "rail track": 10,
89
+ "rectification border": 2,
90
+ "rider": 25,
91
+ "road": 7,
92
+ "sidewalk": 8,
93
+ "sky": 23,
94
+ "static": 4,
95
+ "terrain": 22,
96
+ "traffic light": 19,
97
+ "traffic sign": 20,
98
+ "trailer": 30,
99
+ "train": 31,
100
+ "truck": 27,
101
+ "tunnel": 16,
102
+ "unlabeled": 0,
103
+ "vegetation": 21,
104
+ "wall": 12
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.47.1"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03745fe1a80af6527c60ba6548f3011136ddf885b9b70663c6e6789c511c1120
3
+ size 109545532
runs/Jan04_07-13-05_01b68733b6c5/events.out.tfevents.1735974790.01b68733b6c5.2555.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c220c6329f3463f6853e1d92ad8b78831ab71c762b4e9c16623995cb2185bf09
3
+ size 34122
runs/Jan04_07-27-57_01b68733b6c5/events.out.tfevents.1735975678.01b68733b6c5.20955.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdacf34aca3fc53e8a84bf0712656d0f8e6702bcec196850fa985f4da701596a
3
+ size 981975
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5485eb2e5a4a0d112a0dea770e71d041b00536fc43e987be4e50132be9910ded
3
+ size 5368