File size: 11,993 Bytes
4185b7c e76fca0 4185b7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
library_name: pytorch
tags:
- esrgan
- image-super-resolution
- gan
license: mit
---
## ESRGAN (Enhanced SRGAN) [:rocket: [BasicSR](https://github.com/xinntao/BasicSR)] [[Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN)]
:sparkles: **New Updates.**
We have extended ESRGAN to [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN), which is a **more practical algorithm for real-world image restoration**. For example, it can also remove annoying JPEG compression artifacts. <br> You are recommended to have a try :smiley:
In the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo,
- You can still use the original ESRGAN model or your re-trained ESRGAN model. [The model zoo in Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN#european_castle-model-zoo).
- We provide a more handy inference script, which supports 1) **tile** inference; 2) images with **alpha channel**; 3) **gray** images; 4) **16-bit** images.
- We also provide a **Windows executable file** RealESRGAN-ncnn-vulkan for easier use without installing the environment. This executable file also includes the original ESRGAN model.
- The full training codes are also released in the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo.
Welcome to open issues or open discussions in the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo.
- If you have any question, you can open an issue in the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo.
- If you have any good ideas or demands, please open an issue/discussion in the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo to let me know.
- If you have some images that Real-ESRGAN could not well restored, please also open an issue/discussion in the [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) repo. I will record it (but I cannot guarantee to resolve it😛).
Here are some examples for Real-ESRGAN:
<p align="center">
<img src="https://raw.githubusercontent.com/xinntao/Real-ESRGAN/master/assets/teaser.jpg">
</p>
:book: Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
> [[Paper](https://arxiv.org/abs/2107.10833)] <br>
> [Xintao Wang](https://xinntao.github.io/), Liangbin Xie, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) <br>
> Applied Research Center (ARC), Tencent PCG<br>
> Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
-----
As there may be some repos have dependency on this ESRGAN repo, we will not modify this ESRGAN repo (especially the codes).
The following is the original README:
#### The training codes are in :rocket: [BasicSR](https://github.com/xinntao/BasicSR). This repo only provides simple testing codes, pretrained models and the network interpolation demo.
[BasicSR](https://github.com/xinntao/BasicSR) is an **open source** image and video super-resolution toolbox based on PyTorch (will extend to more restoration tasks in the future). <br>
It includes methods such as **EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR**, etc. It now also supports **StyleGAN2**.
### Enhanced Super-Resolution Generative Adversarial Networks
By Xintao Wang, [Ke Yu](https://yuke93.github.io/), Shixiang Wu, [Jinjin Gu](http://www.jasongt.com/), Yihao Liu, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ&hl=en), [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao/), [Chen Change Loy](http://personal.ie.cuhk.edu.hk/~ccloy/)
We won the first place in [PIRM2018-SR competition](https://www.pirm2018.org/PIRM-SR.html) (region 3) and got the best perceptual index.
The paper is accepted to [ECCV2018 PIRM Workshop](https://pirm2018.org/).
:triangular_flag_on_post: Add [Frequently Asked Questions](https://github.com/xinntao/ESRGAN/blob/master/QA.md).
> For instance,
> 1. How to reproduce your results in the PIRM18-SR Challenge (with low perceptual index)?
> 2. How do you get the perceptual index in your ESRGAN paper?
#### BibTeX
@InProceedings{wang2018esrgan,
author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
month = {September},
year = {2018}
}
<p align="center">
<img src="figures/baboon.jpg">
</p>
The **RRDB_PSNR** PSNR_oriented model trained with DF2K dataset (a merged dataset with [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) and [Flickr2K](http://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (proposed in [EDSR](https://github.com/LimBee/NTIRE2017))) is also able to achive high PSNR performance.
| <sub>Method</sub> | <sub>Training dataset</sub> | <sub>Set5</sub> | <sub>Set14</sub> | <sub>BSD100</sub> | <sub>Urban100</sub> | <sub>Manga109</sub> |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| <sub>[SRCNN](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)</sub>| <sub>291</sub>| <sub>30.48/0.8628</sub> |<sub>27.50/0.7513</sub>|<sub>26.90/0.7101</sub>|<sub>24.52/0.7221</sub>|<sub>27.58/0.8555</sub>|
| <sub>[EDSR](https://github.com/thstkdgus35/EDSR-PyTorch)</sub> | <sub>DIV2K</sub> | <sub>32.46/0.8968</sub> | <sub>28.80/0.7876</sub> | <sub>27.71/0.7420</sub> | <sub>26.64/0.8033</sub> | <sub>31.02/0.9148</sub> |
| <sub>[RCAN](https://github.com/yulunzhang/RCAN)</sub> | <sub>DIV2K</sub> | <sub>32.63/0.9002</sub> | <sub>28.87/0.7889</sub> | <sub>27.77/0.7436</sub> | <sub>26.82/ 0.8087</sub>| <sub>31.22/ 0.9173</sub>|
|<sub>RRDB(ours)</sub>| <sub>DF2K</sub>| <sub>**32.73/0.9011**</sub> |<sub>**28.99/0.7917**</sub> |<sub>**27.85/0.7455**</sub> |<sub>**27.03/0.8153**</sub> |<sub>**31.66/0.9196**</sub>|
## Quick Test
#### Dependencies
- Python 3
- [PyTorch >= 1.0](https://pytorch.org/) (CUDA version >= 7.5 if installing with CUDA. [More details](https://pytorch.org/get-started/previous-versions/))
- Python packages: pip install numpy opencv-python
### Test models
1. Clone this github repo.
git clone https://github.com/xinntao/ESRGAN
cd ESRGAN
2. Place your own **low-resolution images** in ./LR folder. (There are two sample images - baboon and comic).
3. Download pretrained models from [Google Drive](https://drive.google.com/drive/u/0/folders/17VYV_SoZZesU6mbxz2dMAIccSSlqLecY) or [Baidu Drive](https://pan.baidu.com/s/1-Lh6ma-wXzfH8NqeBtPaFQ). Place the models in ./models. We provide two models with high perceptual quality and high PSNR performance (see [model list](https://github.com/xinntao/ESRGAN/tree/master/models)).
4. Run test. We provide ESRGAN model and RRDB_PSNR model and you can config in the test.py.
python test.py
5. The results are in ./results folder.
### Network interpolation demo
You can interpolate the RRDB_ESRGAN and RRDB_PSNR models with alpha in [0, 1].
1. Run python net_interp.py 0.8, where *0.8* is the interpolation parameter and you can change it to any value in [0,1].
2. Run python test.py models/interp_08.pth, where *models/interp_08.pth* is the model path.
<p align="center">
<img height="400" src="figures/43074.gif">
</p>
## Perceptual-driven SR Results
You can download all the resutls from [Google Drive](https://drive.google.com/drive/folders/1iaM-c6EgT1FNoJAOKmDrK7YhEhtlKcLx?usp=sharing). (:heavy_check_mark: included; :heavy_minus_sign: not included; :o: TODO)
HR images can be downloaed from [BasicSR-Datasets](https://github.com/xinntao/BasicSR#datasets).
| Datasets |LR | [*ESRGAN*](https://arxiv.org/abs/1809.00219) | [SRGAN](https://arxiv.org/abs/1609.04802) | [EnhanceNet](http://openaccess.thecvf.com/content_ICCV_2017/papers/Sajjadi_EnhanceNet_Single_Image_ICCV_2017_paper.pdf) | [CX](https://arxiv.org/abs/1803.04626) |
|:---:|:---:|:---:|:---:|:---:|:---:|
| Set5 |:heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
| Set14 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
| BSDS100 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
| [PIRM](https://pirm.github.io/) <br><sup>(val, test)</sup> | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :heavy_check_mark: |
| [OST300](https://arxiv.org/pdf/1804.02815.pdf) |:heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
| urban100 | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
| [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) <br><sup>(val, test)</sup> | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
## ESRGAN
We improve the [SRGAN](https://arxiv.org/abs/1609.04802) from three aspects:
1. adopt a deeper model using Residual-in-Residual Dense Block (RRDB) without batch normalization layers.
2. employ [Relativistic average GAN](https://ajolicoeur.wordpress.com/relativisticgan/) instead of the vanilla GAN.
3. improve the perceptual loss by using the features before activation.
In contrast to SRGAN, which claimed that **deeper models are increasingly difficult to train**, our deeper ESRGAN model shows its superior performance with easy training.
<p align="center">
<img height="120" src="figures/architecture.jpg">
</p>
<p align="center">
<img height="180" src="figures/RRDB.png">
</p>
## Network Interpolation
We propose the **network interpolation strategy** to balance the visual quality and PSNR.
<p align="center">
<img height="500" src="figures/net_interp.jpg">
</p>
We show the smooth animation with the interpolation parameters changing from 0 to 1.
Interestingly, it is observed that the network interpolation strategy provides a smooth control of the RRDB_PSNR model and the fine-tuned ESRGAN model.
<p align="center">
<img height="480" src="figures/81.gif">
   
<img height="480" src="figures/102061.gif">
</p>
## Qualitative Results
PSNR (evaluated on the Y channel) and the perceptual index used in the PIRM-SR challenge are also provided for reference.
<p align="center">
<img src="figures/qualitative_cmp_01.jpg">
</p>
<p align="center">
<img src="figures/qualitative_cmp_02.jpg">
</p>
<p align="center">
<img src="figures/qualitative_cmp_03.jpg">
</p>
<p align="center">
<img src="figures/qualitative_cmp_04.jpg">
</p>
## Ablation Study
Overall visual comparisons for showing the effects of each component in
ESRGAN. Each column represents a model with its configurations in the top.
The red sign indicates the main improvement compared with the previous model.
<p align="center">
<img src="figures/abalation_study.png">
</p>
## BN artifacts
We empirically observe that BN layers tend to bring artifacts. These artifacts,
namely BN artifacts, occasionally appear among iterations and different settings,
violating the needs for a stable performance over training. We find that
the network depth, BN position, training dataset and training loss
have impact on the occurrence of BN artifacts.
<p align="center">
<img src="figures/BN_artifacts.jpg">
</p>
## Useful techniques to train a very deep network
We find that residual scaling and smaller initialization can help to train a very deep network. More details are in the Supplementary File attached in our [paper](https://arxiv.org/abs/1809.00219).
<p align="center">
<img height="250" src="figures/train_deeper_neta.png">
<img height="250" src="figures/train_deeper_netb.png">
</p>
## The influence of training patch size
We observe that training a deeper network benefits from a larger patch size. Moreover, the deeper model achieves more improvement (∼0.12dB) than the shallower one (∼0.04dB) since larger model capacity is capable of taking full advantage of
larger training patch size. (Evaluated on Set5 dataset with RGB channels.)
<p align="center">
<img height="250" src="figures/patch_a.png">
<img height="250" src="figures/patch_b.png">
</p>
|