File size: 2,209 Bytes
473c5e0 87ca2ab 473c5e0 87ca2ab 473c5e0 87ca2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: fairseq
task: text-to-speech
tags:
- fairseq
- audio
- text-to-speech
- multi-speaker
language:
- ar
datasets:
- common_voice
widget:
- text: Hello, this is a test run.
example_title: Hello, this is a test run.
---
# fastspeech2-en-200_speaker-cv4
[FastSpeech 2](https://arxiv.org/abs/2006.04558) text-to-speech model from fairseq S^2 ([paper](https://arxiv.org/abs/2109.06912)/[code](https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis)):
- English
- 200 male/female voices (random speaker when using the widget)
- Trained on [Common Voice v4](https://commonvoice.mozilla.org/en/datasets)
## Usage
```python
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/fastspeech2-en-200_speaker-cv4",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)
text = "Hello, this is a test run."
sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
ipd.Audio(wav, rate=rate)
```
See also [fairseq S^2 example](https://github.com/pytorch/fairseq/blob/main/examples/speech_synthesis/docs/common_voice_example.md).
## Citation
```bibtex
@inproceedings{wang-etal-2021-fairseq,
title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
author = "Wang, Changhan and
Hsu, Wei-Ning and
Adi, Yossi and
Polyak, Adam and
Lee, Ann and
Chen, Peng-Jen and
Gu, Jiatao and
Pino, Juan",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.17",
doi = "10.18653/v1/2021.emnlp-demo.17",
pages = "143--152",
}
``` |