update pretrain
Browse files- README.md +33 -18
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -3,12 +3,11 @@
|
|
3 |
1. [Introduction](#introduction)
|
4 |
2. [Pretrain model](#models)
|
5 |
3. [Using SimeCSE_Vietnamese with `sentences-transformers`](#sentences-transformers)
|
6 |
-
|
7 |
-
|
8 |
4. [Using SimeCSE_Vietnamese with `transformers`](#transformers)
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
# <a name="introduction"></a> SimeCSE_Vietnamese: Simple Contrastive Learning of Sentence Embeddings with Vietnamese
|
13 |
|
14 |
Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embeddings with Vietnamese :
|
@@ -20,7 +19,7 @@ Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embed
|
|
20 |
## Pre-trained models <a name="models"></a>
|
21 |
|
22 |
|
23 |
-
Model | #params | Arch
|
24 |
---|---|---
|
25 |
[`VoVanPhuc/sup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base) | 135M | base
|
26 |
[`VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base) | 135M | base
|
@@ -31,13 +30,19 @@ Model | #params | Arch.\t
|
|
31 |
|
32 |
### Installation <a name="install1"></a>
|
33 |
- Install `sentence-transformers`:
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
### Example usage <a name="usage1"></a>
|
38 |
|
39 |
```python
|
40 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
41 |
model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
42 |
|
43 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
@@ -52,6 +57,7 @@ sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
52 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
53 |
]
|
54 |
|
|
|
55 |
embeddings = model.encode(sentences)
|
56 |
```
|
57 |
|
@@ -59,16 +65,22 @@ embeddings = model.encode(sentences)
|
|
59 |
|
60 |
### Installation <a name="install2"></a>
|
61 |
- Install `transformers`:
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
### Example usage <a name="usage2"></a>
|
66 |
|
67 |
```python
|
68 |
import torch
|
69 |
from transformers import AutoModel, AutoTokenizer
|
|
|
70 |
|
71 |
-
|
72 |
model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
73 |
|
74 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
@@ -82,7 +94,10 @@ sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
82 |
'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.',
|
83 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
84 |
]
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
with torch.no_grad():
|
88 |
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
|
@@ -94,12 +109,12 @@ with torch.no_grad():
|
|
94 |
## Citation
|
95 |
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
@inproceedings{phobert,
|
105 |
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
|
|
3 |
1. [Introduction](#introduction)
|
4 |
2. [Pretrain model](#models)
|
5 |
3. [Using SimeCSE_Vietnamese with `sentences-transformers`](#sentences-transformers)
|
6 |
+
- [Installation](#install1)
|
7 |
+
- [Example usage](#usage1)
|
8 |
4. [Using SimeCSE_Vietnamese with `transformers`](#transformers)
|
9 |
+
- [Installation](#install2)
|
10 |
+
- [Example usage](#usage2)
|
|
|
11 |
# <a name="introduction"></a> SimeCSE_Vietnamese: Simple Contrastive Learning of Sentence Embeddings with Vietnamese
|
12 |
|
13 |
Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embeddings with Vietnamese :
|
|
|
19 |
## Pre-trained models <a name="models"></a>
|
20 |
|
21 |
|
22 |
+
Model | #params | Arch.
|
23 |
---|---|---
|
24 |
[`VoVanPhuc/sup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base) | 135M | base
|
25 |
[`VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base) | 135M | base
|
|
|
30 |
|
31 |
### Installation <a name="install1"></a>
|
32 |
- Install `sentence-transformers`:
|
33 |
+
|
34 |
+
- `pip install -U sentence-transformers`
|
35 |
+
|
36 |
+
- Install `pyvi` to word segment:
|
37 |
+
|
38 |
+
- `pip install pyvi`
|
39 |
|
40 |
### Example usage <a name="usage1"></a>
|
41 |
|
42 |
```python
|
43 |
from sentence_transformers import SentenceTransformer
|
44 |
+
from pyvi.ViTokenizer import tokenize
|
45 |
+
|
46 |
model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
47 |
|
48 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
|
57 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
58 |
]
|
59 |
|
60 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
61 |
embeddings = model.encode(sentences)
|
62 |
```
|
63 |
|
|
|
65 |
|
66 |
### Installation <a name="install2"></a>
|
67 |
- Install `transformers`:
|
68 |
+
|
69 |
+
- `pip install -U transformers`
|
70 |
+
|
71 |
+
|
72 |
+
- Install `pyvi` to word segment:
|
73 |
+
|
74 |
+
- `pip install pyvi`
|
75 |
|
76 |
### Example usage <a name="usage2"></a>
|
77 |
|
78 |
```python
|
79 |
import torch
|
80 |
from transformers import AutoModel, AutoTokenizer
|
81 |
+
from pyvi.ViTokenizer import tokenize
|
82 |
|
83 |
+
PhobertTokenizer = AutoTokenizer.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
84 |
model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
85 |
|
86 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
|
94 |
'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.',
|
95 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
96 |
]
|
97 |
+
|
98 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
99 |
+
|
100 |
+
inputs = PhobertTokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
101 |
|
102 |
with torch.no_grad():
|
103 |
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
|
|
|
109 |
## Citation
|
110 |
|
111 |
|
112 |
+
@article{gao2021simcse,
|
113 |
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
114 |
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
115 |
+
journal={arXiv preprint arXiv:2104.08821},
|
116 |
+
year={2021}
|
117 |
+
}
|
118 |
|
119 |
@inproceedings{phobert,
|
120 |
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 542443775
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaf34ee269f687df927f23d7c51ae1ef672c9e3efc7b1e2249fef3035f70b70f
|
3 |
size 542443775
|