VitaliiVrublevskyi
commited on
Commit
·
c9c564f
1
Parent(s):
ca43712
update model card README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,6 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: Llama-2-7b-hf-finetuned-mrpc-v0.4
|
12 |
results: []
|
13 |
-
library_name: peft
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -20,9 +19,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- F1: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -38,27 +37,16 @@ More information needed
|
|
38 |
|
39 |
## Training procedure
|
40 |
|
41 |
-
|
42 |
-
The following `bitsandbytes` quantization config was used during training:
|
43 |
-
- load_in_8bit: True
|
44 |
-
- load_in_4bit: False
|
45 |
-
- llm_int8_threshold: 6.0
|
46 |
-
- llm_int8_skip_modules: None
|
47 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
48 |
-
- llm_int8_has_fp16_weight: False
|
49 |
-
- bnb_4bit_quant_type: fp4
|
50 |
-
- bnb_4bit_use_double_quant: False
|
51 |
-
- bnb_4bit_compute_dtype: float32
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 1.
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- num_epochs:
|
62 |
|
63 |
### Training results
|
64 |
|
@@ -84,21 +72,30 @@ The following hyperparameters were used during training:
|
|
84 |
| 0.2371 | 18.0 | 4140 | 0.8456 | 0.8912 | 0.3963 |
|
85 |
| 0.2371 | 19.0 | 4370 | 0.8578 | 0.8964 | 0.3865 |
|
86 |
| 0.2211 | 20.0 | 4600 | 0.8505 | 0.8928 | 0.4165 |
|
87 |
-
| 0.2211 | 21.0 | 4830 | 0.
|
88 |
-
| 0.2136 | 22.0 | 5060 | 0.
|
89 |
-
| 0.2136 | 23.0 | 5290 | 0.
|
90 |
-
| 0.1774 | 24.0 | 5520 | 0.
|
91 |
-
| 0.1774 | 25.0 | 5750 | 0.
|
92 |
-
| 0.1774 | 26.0 | 5980 | 0.
|
93 |
-
| 0.1521 | 27.0 | 6210 | 0.
|
94 |
-
| 0.1521 | 28.0 | 6440 | 0.
|
95 |
-
| 0.134 | 29.0 | 6670 | 0.
|
96 |
-
| 0.134 | 30.0 | 6900 | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
### Framework versions
|
100 |
|
101 |
-
- PEFT 0.4.0
|
102 |
- Transformers 4.31.0
|
103 |
- Pytorch 2.0.1+cu118
|
104 |
- Datasets 2.14.5
|
|
|
10 |
model-index:
|
11 |
- name: Llama-2-7b-hf-finetuned-mrpc-v0.4
|
12 |
results: []
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6354
|
23 |
+
- Accuracy: 0.8701
|
24 |
+
- F1: 0.9062
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
37 |
|
38 |
## Training procedure
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 1.2800000000000003e-05
|
44 |
- train_batch_size: 16
|
45 |
- eval_batch_size: 16
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 40
|
50 |
|
51 |
### Training results
|
52 |
|
|
|
72 |
| 0.2371 | 18.0 | 4140 | 0.8456 | 0.8912 | 0.3963 |
|
73 |
| 0.2371 | 19.0 | 4370 | 0.8578 | 0.8964 | 0.3865 |
|
74 |
| 0.2211 | 20.0 | 4600 | 0.8505 | 0.8928 | 0.4165 |
|
75 |
+
| 0.2211 | 21.0 | 4830 | 0.8456 | 0.8901 | 0.4070 |
|
76 |
+
| 0.2136 | 22.0 | 5060 | 0.8578 | 0.8972 | 0.4090 |
|
77 |
+
| 0.2136 | 23.0 | 5290 | 0.8578 | 0.8961 | 0.4328 |
|
78 |
+
| 0.1774 | 24.0 | 5520 | 0.8382 | 0.8791 | 0.4602 |
|
79 |
+
| 0.1774 | 25.0 | 5750 | 0.8627 | 0.9018 | 0.4551 |
|
80 |
+
| 0.1774 | 26.0 | 5980 | 0.8505 | 0.8920 | 0.4677 |
|
81 |
+
| 0.1521 | 27.0 | 6210 | 0.8578 | 0.8953 | 0.4854 |
|
82 |
+
| 0.1521 | 28.0 | 6440 | 0.8505 | 0.8932 | 0.5064 |
|
83 |
+
| 0.134 | 29.0 | 6670 | 0.8603 | 0.8988 | 0.4971 |
|
84 |
+
| 0.134 | 30.0 | 6900 | 0.8676 | 0.9046 | 0.4717 |
|
85 |
+
| 0.1298 | 31.0 | 7130 | 0.5216 | 0.8652 | 0.8998 |
|
86 |
+
| 0.1298 | 32.0 | 7360 | 0.5339 | 0.8578 | 0.8979 |
|
87 |
+
| 0.1233 | 33.0 | 7590 | 0.5533 | 0.8627 | 0.8993 |
|
88 |
+
| 0.1233 | 34.0 | 7820 | 0.5526 | 0.875 | 0.9084 |
|
89 |
+
| 0.1094 | 35.0 | 8050 | 0.6027 | 0.8725 | 0.9068 |
|
90 |
+
| 0.1094 | 36.0 | 8280 | 0.6441 | 0.8652 | 0.9037 |
|
91 |
+
| 0.0906 | 37.0 | 8510 | 0.6289 | 0.8554 | 0.8929 |
|
92 |
+
| 0.0906 | 38.0 | 8740 | 0.6213 | 0.8676 | 0.9039 |
|
93 |
+
| 0.0906 | 39.0 | 8970 | 0.6585 | 0.8603 | 0.8977 |
|
94 |
+
| 0.0842 | 40.0 | 9200 | 0.6354 | 0.8701 | 0.9062 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
98 |
|
|
|
99 |
- Transformers 4.31.0
|
100 |
- Pytorch 2.0.1+cu118
|
101 |
- Datasets 2.14.5
|