VitaliiVrublevskyi commited on
Commit
c82d77d
·
1 Parent(s): e3de374

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -21
README.md CHANGED
@@ -10,7 +10,6 @@ metrics:
10
  model-index:
11
  - name: Llama-2-7b-hf-finetuned-mrpc-v0.4
12
  results: []
13
- library_name: peft
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -20,9 +19,9 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.4165
24
- - Accuracy: 0.8505
25
- - F1: 0.8928
26
 
27
  ## Model description
28
 
@@ -38,17 +37,6 @@ More information needed
38
 
39
  ## Training procedure
40
 
41
-
42
- The following `bitsandbytes` quantization config was used during training:
43
- - load_in_8bit: True
44
- - load_in_4bit: False
45
- - llm_int8_threshold: 6.0
46
- - llm_int8_skip_modules: None
47
- - llm_int8_enable_fp32_cpu_offload: False
48
- - llm_int8_has_fp16_weight: False
49
- - bnb_4bit_quant_type: fp4
50
- - bnb_4bit_use_double_quant: False
51
- - bnb_4bit_compute_dtype: float32
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
@@ -58,7 +46,7 @@ The following hyperparameters were used during training:
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
- - num_epochs: 20
62
 
63
  ### Training results
64
 
@@ -80,15 +68,24 @@ The following hyperparameters were used during training:
80
  | 0.2799 | 14.0 | 3220 | 0.8456 | 0.8881 | 0.3873 |
81
  | 0.2799 | 15.0 | 3450 | 0.8529 | 0.8940 | 0.3939 |
82
  | 0.2511 | 16.0 | 3680 | 0.8431 | 0.8877 | 0.4018 |
83
- | 0.2511 | 17.0 | 3910 | 0.3969 | 0.8529 | 0.8947 |
84
- | 0.2371 | 18.0 | 4140 | 0.3963 | 0.8456 | 0.8912 |
85
- | 0.2371 | 19.0 | 4370 | 0.3865 | 0.8578 | 0.8964 |
86
- | 0.2211 | 20.0 | 4600 | 0.4165 | 0.8505 | 0.8928 |
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
  ### Framework versions
90
 
91
- - PEFT 0.4.0
92
  - Transformers 4.31.0
93
  - Pytorch 2.0.1+cu118
94
  - Datasets 2.14.5
 
10
  model-index:
11
  - name: Llama-2-7b-hf-finetuned-mrpc-v0.4
12
  results: []
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
19
 
20
  This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.4717
23
+ - Accuracy: 0.8676
24
+ - F1: 0.9046
25
 
26
  ## Model description
27
 
 
37
 
38
  ## Training procedure
39
 
 
 
 
 
 
 
 
 
 
 
 
40
  ### Training hyperparameters
41
 
42
  The following hyperparameters were used during training:
 
46
  - seed: 42
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: linear
49
+ - num_epochs: 30
50
 
51
  ### Training results
52
 
 
68
  | 0.2799 | 14.0 | 3220 | 0.8456 | 0.8881 | 0.3873 |
69
  | 0.2799 | 15.0 | 3450 | 0.8529 | 0.8940 | 0.3939 |
70
  | 0.2511 | 16.0 | 3680 | 0.8431 | 0.8877 | 0.4018 |
71
+ | 0.2511 | 17.0 | 3910 | 0.8529 | 0.8947 | 0.3969 |
72
+ | 0.2371 | 18.0 | 4140 | 0.8456 | 0.8912 | 0.3963 |
73
+ | 0.2371 | 19.0 | 4370 | 0.8578 | 0.8964 | 0.3865 |
74
+ | 0.2211 | 20.0 | 4600 | 0.8505 | 0.8928 | 0.4165 |
75
+ | 0.2211 | 21.0 | 4830 | 0.4070 | 0.8456 | 0.8901 |
76
+ | 0.2136 | 22.0 | 5060 | 0.4090 | 0.8578 | 0.8972 |
77
+ | 0.2136 | 23.0 | 5290 | 0.4328 | 0.8578 | 0.8961 |
78
+ | 0.1774 | 24.0 | 5520 | 0.4602 | 0.8382 | 0.8791 |
79
+ | 0.1774 | 25.0 | 5750 | 0.4551 | 0.8627 | 0.9018 |
80
+ | 0.1774 | 26.0 | 5980 | 0.4677 | 0.8505 | 0.8920 |
81
+ | 0.1521 | 27.0 | 6210 | 0.4854 | 0.8578 | 0.8953 |
82
+ | 0.1521 | 28.0 | 6440 | 0.5064 | 0.8505 | 0.8932 |
83
+ | 0.134 | 29.0 | 6670 | 0.4971 | 0.8603 | 0.8988 |
84
+ | 0.134 | 30.0 | 6900 | 0.4717 | 0.8676 | 0.9046 |
85
 
86
 
87
  ### Framework versions
88
 
 
89
  - Transformers 4.31.0
90
  - Pytorch 2.0.1+cu118
91
  - Datasets 2.14.5