jadechoghari
commited on
add files - PR (with the other config PR)- check description
Browse filesThis PR allows anyone to easily load the model wiht transformers.
Instead of requiring users to manually clone the model and place it in the folder
Now anyone could easily use the model with transofmrers as such:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("Vision-CAIR/LongVU_Qwen2_7B", trust_remote_code=True)
```
try it out ! with "jadechoghari/LongVU_Qwen2_7B") instead :)
also linked in this issue: https://github.com/Vision-CAIR/LongVU/issues/5
will be updating the other model, however they're ready here: https://huggingface.co/models?sort=trending&search=LongVU+jad
- cambrian_arch.py +1712 -0
- multimodal_encoder_builder.py +368 -0
- multimodal_projector_builder.py +52 -0
- vision_sampler.py +566 -0
cambrian_arch.py
ADDED
@@ -0,0 +1,1712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import math
|
17 |
+
import random
|
18 |
+
from abc import ABC, abstractmethod
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
# define the constants
|
25 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
26 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
27 |
+
|
28 |
+
LOGDIR = "."
|
29 |
+
|
30 |
+
# Model Constants
|
31 |
+
IGNORE_INDEX = -100
|
32 |
+
IMAGE_TOKEN_INDEX = -200
|
33 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
34 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
35 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
36 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
37 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
38 |
+
|
39 |
+
from .multimodal_encoder_builder import build_vision_tower_aux_list
|
40 |
+
from .multimodal_projector_builder import build_vision_projector
|
41 |
+
from .vision_sampler import VisionTokenSampler
|
42 |
+
|
43 |
+
IS_XLA_AVAILABLE = False
|
44 |
+
|
45 |
+
|
46 |
+
class CambrianMetaModel:
|
47 |
+
|
48 |
+
def __init__(self, config):
|
49 |
+
super(CambrianMetaModel, self).__init__(config)
|
50 |
+
|
51 |
+
if hasattr(config, "mm_vision_tower_aux_list"):
|
52 |
+
|
53 |
+
projector_type = getattr(config, "mm_projector_type", "linear")
|
54 |
+
if projector_type == "sva":
|
55 |
+
|
56 |
+
vision_hidden_size = config.vision_hidden_size
|
57 |
+
num_query_group = config.num_query_group
|
58 |
+
query_num_list = config.query_num_list
|
59 |
+
connector_only = config.connector_only
|
60 |
+
connector_depth = config.connector_depth
|
61 |
+
self.vision_tower_aux_list = build_vision_tower_aux_list(
|
62 |
+
config, delay_load=True
|
63 |
+
)
|
64 |
+
self.mm_projector = nn.Sequential(
|
65 |
+
nn.Linear(vision_hidden_size * num_query_group, config.hidden_size),
|
66 |
+
nn.GELU(),
|
67 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
68 |
+
)
|
69 |
+
|
70 |
+
image_token_len = config.image_token_len
|
71 |
+
vision_tower_aux_token_len_list = (
|
72 |
+
self.config.mm_vision_tower_aux_token_len_list
|
73 |
+
)
|
74 |
+
cross_att_token_len_list = [
|
75 |
+
int(vision_tower_aux_token_len**0.5) // int(image_token_len**0.5)
|
76 |
+
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
|
77 |
+
]
|
78 |
+
|
79 |
+
for aux_i, vision_tower_aux in enumerate(self.vision_tower_aux_list):
|
80 |
+
setattr(
|
81 |
+
self,
|
82 |
+
"mm_projector_aux_{}".format(aux_i),
|
83 |
+
nn.Sequential(
|
84 |
+
nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
|
85 |
+
nn.GELU(),
|
86 |
+
nn.Linear(vision_hidden_size, vision_hidden_size),
|
87 |
+
nn.LayerNorm(vision_hidden_size),
|
88 |
+
),
|
89 |
+
)
|
90 |
+
|
91 |
+
for query_group_i in range(num_query_group):
|
92 |
+
cross_att_token_len_list = [
|
93 |
+
int(vision_tower_aux_token_len**0.5)
|
94 |
+
// int(query_num_list[query_group_i] ** 0.5)
|
95 |
+
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
|
96 |
+
]
|
97 |
+
setattr(
|
98 |
+
self,
|
99 |
+
"vision_sampler_{}".format(query_group_i),
|
100 |
+
VisionTokenSampler(
|
101 |
+
vision_hidden_size,
|
102 |
+
vision_hidden_size,
|
103 |
+
[vision_hidden_size] * len(self.vision_tower_aux_list),
|
104 |
+
cross_att_token_len_list,
|
105 |
+
vision_hidden_size,
|
106 |
+
connector_depth,
|
107 |
+
),
|
108 |
+
)
|
109 |
+
|
110 |
+
if not connector_only:
|
111 |
+
num_of_vision_sampler_layers = (
|
112 |
+
config.num_of_vision_sampler_layers
|
113 |
+
) = config.num_of_vision_sampler_layers
|
114 |
+
config.start_of_vision_sampler_layers = (
|
115 |
+
config.start_of_vision_sampler_layers
|
116 |
+
)
|
117 |
+
config.stride_of_vision_sampler_layers = (
|
118 |
+
config.stride_of_vision_sampler_layers
|
119 |
+
)
|
120 |
+
cross_att_token_len_list = [
|
121 |
+
int(vision_tower_aux_token_len**0.5)
|
122 |
+
// int(image_token_len**0.5)
|
123 |
+
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
|
124 |
+
]
|
125 |
+
self.vision_sampler_layers = nn.ModuleList(
|
126 |
+
[
|
127 |
+
VisionTokenSampler(
|
128 |
+
config.hidden_size,
|
129 |
+
vision_hidden_size,
|
130 |
+
[vision_hidden_size] * len(self.vision_tower_aux_list),
|
131 |
+
cross_att_token_len_list,
|
132 |
+
vision_hidden_size,
|
133 |
+
1,
|
134 |
+
)
|
135 |
+
for layer_idx in range(0, num_of_vision_sampler_layers)
|
136 |
+
]
|
137 |
+
)
|
138 |
+
|
139 |
+
self.vision_query = nn.Parameter(
|
140 |
+
torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
|
141 |
+
)
|
142 |
+
|
143 |
+
self.image_newline = nn.Parameter(
|
144 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
145 |
+
)
|
146 |
+
|
147 |
+
self.frame_pos = torch.stack(
|
148 |
+
[
|
149 |
+
1
|
150 |
+
/ torch.pow(
|
151 |
+
torch.tensor(10000),
|
152 |
+
torch.tensor(2 * (hid_j // 2) / config.hidden_size),
|
153 |
+
)
|
154 |
+
for hid_j in range(config.hidden_size)
|
155 |
+
]
|
156 |
+
)
|
157 |
+
|
158 |
+
else:
|
159 |
+
self.vision_tower_aux_list = build_vision_tower_aux_list(
|
160 |
+
config, delay_load=True
|
161 |
+
)
|
162 |
+
config.mm_hidden_size = sum(
|
163 |
+
[
|
164 |
+
vision_tower_aux.hidden_size
|
165 |
+
for vision_tower_aux in self.vision_tower_aux_list
|
166 |
+
]
|
167 |
+
)
|
168 |
+
self.mm_projector = build_vision_projector(config)
|
169 |
+
self.image_newline = nn.Parameter(
|
170 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
171 |
+
)
|
172 |
+
|
173 |
+
def get_frame_pos(self, time_range):
|
174 |
+
frame_pos = self.frame_pos.reshape(1, -1) * time_range.reshape(-1, 1).to(
|
175 |
+
self.frame_pos.device
|
176 |
+
)
|
177 |
+
frame_pos[:, 0::2] = torch.sin(frame_pos[:, 0::2])
|
178 |
+
frame_pos[:, 1::2] = torch.cos(frame_pos[:, 0::2])
|
179 |
+
frame_pos = frame_pos.unsqueeze(1)
|
180 |
+
return frame_pos
|
181 |
+
|
182 |
+
# def get_vision_tower(self):
|
183 |
+
# vision_tower = getattr(self, 'vision_tower', None)
|
184 |
+
# if type(vision_tower) is list:
|
185 |
+
# vision_tower = vision_tower[0]
|
186 |
+
# return vision_tower
|
187 |
+
|
188 |
+
def get_vision_tower_aux_list(self):
|
189 |
+
vision_tower_aux_list = getattr(self, "vision_tower_aux_list", None)
|
190 |
+
return vision_tower_aux_list
|
191 |
+
|
192 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
193 |
+
# vision_tower = model_args.vision_tower
|
194 |
+
num_query_group = model_args.num_query_group
|
195 |
+
query_num_list = model_args.query_num_list
|
196 |
+
vision_hidden_size = model_args.vision_hidden_size
|
197 |
+
vision_tower_aux_list = model_args.vision_tower_aux_list
|
198 |
+
vision_tower_aux_token_len_list = model_args.vision_tower_aux_token_len_list
|
199 |
+
image_token_len = model_args.image_token_len
|
200 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
201 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
202 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
203 |
+
connector_only = model_args.connector_only
|
204 |
+
connector_depth = model_args.connector_depth
|
205 |
+
|
206 |
+
# self.config.mm_vision_tower = vision_tower
|
207 |
+
self.config.image_token_len = image_token_len
|
208 |
+
self.config.num_query_group = num_query_group
|
209 |
+
self.config.query_num_list = query_num_list
|
210 |
+
assert num_query_group == len(query_num_list)
|
211 |
+
self.config.connector_depth = connector_depth
|
212 |
+
self.config.mm_vision_tower_aux_list = vision_tower_aux_list
|
213 |
+
self.config.mm_vision_tower_aux_token_len_list = vision_tower_aux_token_len_list
|
214 |
+
self.config.connector_only = connector_only
|
215 |
+
self.config.highres_connect = model_args.highres_connect
|
216 |
+
self.config.highres = model_args.highres
|
217 |
+
self.config.frame_pos = model_args.frame_pos
|
218 |
+
self.config.lowres_token = model_args.lowres_token
|
219 |
+
self.config.connect_layer = model_args.connect_layer
|
220 |
+
self.config.dino_threshold = getattr(model_args, "dino_threshold", 0.83)
|
221 |
+
self.config.drop_threshold = getattr(model_args, "drop_threshold", 0.6)
|
222 |
+
self.config.is_image_newline = getattr(model_args, "is_image_newline", True)
|
223 |
+
|
224 |
+
if self.get_vision_tower_aux_list() is None:
|
225 |
+
vision_tower_aux_list = build_vision_tower_aux_list(model_args)
|
226 |
+
if model_args.unfreeze_mm_vision_tower:
|
227 |
+
self.vision_tower_aux_list = nn.ModuleList(vision_tower_aux_list)
|
228 |
+
else:
|
229 |
+
self.vision_tower_aux_list = vision_tower_aux_list
|
230 |
+
else:
|
231 |
+
vision_tower_aux_list = self.vision_tower_aux_list
|
232 |
+
for vision_tower_aux in vision_tower_aux_list:
|
233 |
+
vision_tower_aux.load_model()
|
234 |
+
|
235 |
+
self.config.use_mm_proj = True
|
236 |
+
self.config.mm_projector_type = getattr(
|
237 |
+
model_args, "mm_projector_type", "linear"
|
238 |
+
)
|
239 |
+
self.config.vision_hidden_size = vision_hidden_size
|
240 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
241 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
242 |
+
|
243 |
+
if getattr(self, "mm_projector", None) is None:
|
244 |
+
|
245 |
+
if self.config.mm_projector_type == "sva":
|
246 |
+
self.mm_projector = nn.Sequential(
|
247 |
+
nn.Linear(
|
248 |
+
vision_hidden_size * num_query_group, self.config.hidden_size
|
249 |
+
),
|
250 |
+
nn.GELU(),
|
251 |
+
nn.Linear(self.config.hidden_size, self.config.hidden_size),
|
252 |
+
)
|
253 |
+
for aux_i, vision_tower_aux in enumerate(vision_tower_aux_list):
|
254 |
+
setattr(
|
255 |
+
self,
|
256 |
+
"mm_projector_aux_{}".format(aux_i),
|
257 |
+
nn.Sequential(
|
258 |
+
nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
|
259 |
+
nn.GELU(),
|
260 |
+
nn.Linear(vision_hidden_size, vision_hidden_size),
|
261 |
+
nn.LayerNorm(vision_hidden_size),
|
262 |
+
),
|
263 |
+
)
|
264 |
+
|
265 |
+
# vision sampler for each group of query as the connector before the LLM
|
266 |
+
for query_group_i in range(num_query_group):
|
267 |
+
cross_att_token_len_list = [
|
268 |
+
int(vision_tower_aux_token_len**0.5)
|
269 |
+
// int(query_num_list[query_group_i] ** 0.5)
|
270 |
+
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
|
271 |
+
]
|
272 |
+
setattr(
|
273 |
+
self,
|
274 |
+
"vision_sampler_{}".format(query_group_i),
|
275 |
+
VisionTokenSampler(
|
276 |
+
vision_hidden_size,
|
277 |
+
vision_hidden_size,
|
278 |
+
[vision_hidden_size] * len(vision_tower_aux_list),
|
279 |
+
cross_att_token_len_list,
|
280 |
+
vision_hidden_size,
|
281 |
+
connector_depth,
|
282 |
+
),
|
283 |
+
)
|
284 |
+
|
285 |
+
# sampler layers within LLM
|
286 |
+
if not connector_only:
|
287 |
+
num_of_vision_sampler_layers = (
|
288 |
+
self.config.num_of_vision_sampler_layers
|
289 |
+
) = model_args.num_of_vision_sampler_layers
|
290 |
+
self.config.start_of_vision_sampler_layers = (
|
291 |
+
model_args.start_of_vision_sampler_layers
|
292 |
+
)
|
293 |
+
self.config.stride_of_vision_sampler_layers = (
|
294 |
+
model_args.stride_of_vision_sampler_layers
|
295 |
+
)
|
296 |
+
cross_att_token_len_list = [
|
297 |
+
int(vision_tower_aux_token_len**0.5)
|
298 |
+
// int(image_token_len**0.5)
|
299 |
+
for vision_tower_aux_token_len in vision_tower_aux_token_len_list
|
300 |
+
]
|
301 |
+
self.vision_sampler_layers = nn.ModuleList(
|
302 |
+
[
|
303 |
+
VisionTokenSampler(
|
304 |
+
self.config.hidden_size,
|
305 |
+
vision_hidden_size,
|
306 |
+
[vision_hidden_size] * len(vision_tower_aux_list),
|
307 |
+
cross_att_token_len_list,
|
308 |
+
vision_hidden_size,
|
309 |
+
1,
|
310 |
+
)
|
311 |
+
for layer_idx in range(0, num_of_vision_sampler_layers)
|
312 |
+
]
|
313 |
+
)
|
314 |
+
vision_embed_std = 1 / torch.sqrt(
|
315 |
+
torch.tensor(vision_hidden_size, dtype=self.dtype)
|
316 |
+
)
|
317 |
+
self.vision_query = nn.Parameter(
|
318 |
+
torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
|
319 |
+
* vision_embed_std
|
320 |
+
)
|
321 |
+
|
322 |
+
embed_std = 1 / torch.sqrt(
|
323 |
+
torch.tensor(self.config.hidden_size, dtype=self.dtype)
|
324 |
+
)
|
325 |
+
self.image_newline = nn.Parameter(
|
326 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
327 |
+
)
|
328 |
+
|
329 |
+
else:
|
330 |
+
self.config.mm_hidden_size = sum(
|
331 |
+
[
|
332 |
+
vision_tower_aux.hidden_size
|
333 |
+
for vision_tower_aux in vision_tower_aux_list
|
334 |
+
]
|
335 |
+
)
|
336 |
+
self.mm_projector = build_vision_projector(self.config)
|
337 |
+
embed_std = 1 / torch.sqrt(
|
338 |
+
torch.tensor(self.config.hidden_size, dtype=self.dtype)
|
339 |
+
)
|
340 |
+
self.image_newline = nn.Parameter(
|
341 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
# In case it is frozen by LoRA
|
345 |
+
for p in self.mm_projector.parameters():
|
346 |
+
p.requires_grad = True
|
347 |
+
|
348 |
+
if pretrain_mm_mlp_adapter is not None:
|
349 |
+
mm_projector_weights = torch.load(
|
350 |
+
pretrain_mm_mlp_adapter, map_location="cpu"
|
351 |
+
)
|
352 |
+
|
353 |
+
def get_w(weights, keyword):
|
354 |
+
return {
|
355 |
+
k.split(keyword + ".")[1]: v
|
356 |
+
for k, v in weights.items()
|
357 |
+
if keyword + "." in k
|
358 |
+
}
|
359 |
+
|
360 |
+
self.mm_projector.load_state_dict(
|
361 |
+
get_w(mm_projector_weights, "mm_projector"), strict=True
|
362 |
+
)
|
363 |
+
|
364 |
+
if self.config.mm_projector_type == "sva":
|
365 |
+
for aux_i in range(len(vision_tower_aux_list)):
|
366 |
+
getattr(self, "mm_projector_aux_{}".format(aux_i)).load_state_dict(
|
367 |
+
get_w(
|
368 |
+
mm_projector_weights, "mm_projector_aux_{}".format(aux_i)
|
369 |
+
),
|
370 |
+
strict=True,
|
371 |
+
)
|
372 |
+
|
373 |
+
for query_group_i in range(num_query_group):
|
374 |
+
getattr(
|
375 |
+
self, "vision_sampler_{}".format(query_group_i)
|
376 |
+
).load_state_dict(
|
377 |
+
get_w(
|
378 |
+
mm_projector_weights,
|
379 |
+
"vision_sampler_{}".format(query_group_i),
|
380 |
+
),
|
381 |
+
strict=True,
|
382 |
+
)
|
383 |
+
|
384 |
+
if not connector_only:
|
385 |
+
self.vision_sampler_layers.load_state_dict(
|
386 |
+
get_w(mm_projector_weights, "vision_sampler_layers"),
|
387 |
+
strict=True,
|
388 |
+
)
|
389 |
+
self.vision_query.data = mm_projector_weights["model.vision_query"]
|
390 |
+
self.image_newline.data = mm_projector_weights["model.image_newline"]
|
391 |
+
|
392 |
+
|
393 |
+
def unmask_attention_mask(mask, original_size):
|
394 |
+
original_w, original_h = original_size
|
395 |
+
cur_h, cur_w = mask.shape[1:3]
|
396 |
+
|
397 |
+
original_aspect_ratio = original_w / original_h
|
398 |
+
current_aspect_ratio = cur_w / cur_h
|
399 |
+
|
400 |
+
if original_aspect_ratio > current_aspect_ratio:
|
401 |
+
scale_factor = cur_w / original_w
|
402 |
+
new_height = int(original_h * scale_factor)
|
403 |
+
padding = (cur_h - new_height) // 2
|
404 |
+
if padding > 0:
|
405 |
+
mask[:, :padding, :] = 0
|
406 |
+
mask[:, -padding:, :] = 0
|
407 |
+
return mask
|
408 |
+
else:
|
409 |
+
scale_factor = cur_h / original_h
|
410 |
+
new_width = int(original_w * scale_factor)
|
411 |
+
padding = (cur_w - new_width) // 2
|
412 |
+
if padding > 0:
|
413 |
+
mask[:, :, :padding] = 0
|
414 |
+
mask[:, :, -padding:] = 0
|
415 |
+
return mask
|
416 |
+
|
417 |
+
|
418 |
+
def unpad_image(tensor, original_size):
|
419 |
+
"""
|
420 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
424 |
+
original_size (tuple): The original size of the image (height, width).
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
torch.Tensor: The unpadded image tensor.
|
428 |
+
"""
|
429 |
+
original_width, original_height = original_size
|
430 |
+
current_height, current_width = tensor.shape[1:3]
|
431 |
+
|
432 |
+
original_aspect_ratio = original_width / original_height
|
433 |
+
current_aspect_ratio = current_width / current_height
|
434 |
+
|
435 |
+
if original_aspect_ratio > current_aspect_ratio:
|
436 |
+
scale_factor = current_width / original_width
|
437 |
+
new_height = int(original_height * scale_factor)
|
438 |
+
padding = (current_height - new_height) // 2
|
439 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
440 |
+
# if 0 in unpadded_tensor.shape:
|
441 |
+
# print(f"scale_factor: {scale_factor}, new_height: {new_height}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
|
442 |
+
else:
|
443 |
+
scale_factor = current_height / original_height
|
444 |
+
new_width = int(original_width * scale_factor)
|
445 |
+
padding = (current_width - new_width) // 2
|
446 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
447 |
+
# if 0 in unpadded_tensor.shape:
|
448 |
+
# print(f"scale_factor: {scale_factor}, new_width: {new_width}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
|
449 |
+
|
450 |
+
return unpadded_tensor
|
451 |
+
|
452 |
+
|
453 |
+
class CambrianMetaForCausalLM(ABC):
|
454 |
+
|
455 |
+
@abstractmethod
|
456 |
+
def get_model(self):
|
457 |
+
pass
|
458 |
+
|
459 |
+
# def get_vision_tower(self):
|
460 |
+
# return self.get_model().get_vision_tower()
|
461 |
+
|
462 |
+
def get_vision_tower_aux_list(self):
|
463 |
+
return self.get_model().get_vision_tower_aux_list()
|
464 |
+
|
465 |
+
def rearrange_vision_tower_features_train(
|
466 |
+
self,
|
467 |
+
vision_tower_aux_feature_list,
|
468 |
+
vision_tower_aux_attention_masks_list,
|
469 |
+
query_side_len,
|
470 |
+
):
|
471 |
+
vision_tower_aux_feature_rearranged_list = []
|
472 |
+
vision_tower_aux_attention_masks_rearranged_list = []
|
473 |
+
bs = vision_tower_aux_feature_list[0].shape[0]
|
474 |
+
for vision_tower_aux_feature, vision_tower_aux_attention_masks in zip(
|
475 |
+
vision_tower_aux_feature_list, vision_tower_aux_attention_masks_list
|
476 |
+
):
|
477 |
+
aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
|
478 |
+
assert (aux_height // query_side_len) * query_side_len == aux_height
|
479 |
+
|
480 |
+
reduce_factor = aux_height // query_side_len
|
481 |
+
vision_tower_aux_feature_rearranged = vision_tower_aux_feature.view(
|
482 |
+
bs, query_side_len, reduce_factor, query_side_len, reduce_factor, -1
|
483 |
+
)
|
484 |
+
vision_tower_aux_feature_rearranged = (
|
485 |
+
vision_tower_aux_feature_rearranged.permute(0, 1, 3, 2, 4, 5)
|
486 |
+
.contiguous()
|
487 |
+
.flatten(0, 2)
|
488 |
+
.flatten(1, 2)
|
489 |
+
)
|
490 |
+
|
491 |
+
vision_tower_aux_attention_masks_rearranged = (
|
492 |
+
vision_tower_aux_attention_masks.view(
|
493 |
+
bs * query_side_len * query_side_len, reduce_factor * reduce_factor
|
494 |
+
)
|
495 |
+
)
|
496 |
+
|
497 |
+
vision_tower_aux_feature_rearranged_list.append(
|
498 |
+
vision_tower_aux_feature_rearranged
|
499 |
+
)
|
500 |
+
vision_tower_aux_attention_masks_rearranged_list.append(
|
501 |
+
vision_tower_aux_attention_masks_rearranged
|
502 |
+
)
|
503 |
+
return (
|
504 |
+
vision_tower_aux_feature_rearranged_list,
|
505 |
+
vision_tower_aux_attention_masks_rearranged_list,
|
506 |
+
)
|
507 |
+
|
508 |
+
def rearrange_vision_tower_features_inference(
|
509 |
+
self, vision_tower_aux_feature_list, query_side_len, image_sizes, unpad=False
|
510 |
+
):
|
511 |
+
vision_tower_aux_feature_rearranged_list = []
|
512 |
+
vision_tower_aux_attention_masks_rearranged_list = []
|
513 |
+
bs = vision_tower_aux_feature_list[0].shape[0]
|
514 |
+
for vision_tower_aux_feature in vision_tower_aux_feature_list:
|
515 |
+
aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
|
516 |
+
assert (aux_height // query_side_len) * query_side_len == aux_height
|
517 |
+
|
518 |
+
reduce_factor = aux_height // query_side_len
|
519 |
+
|
520 |
+
vision_tower_aux_feature_rearranged = []
|
521 |
+
vision_tower_aux_attention_masks_rearranged = []
|
522 |
+
for batch_i in range(bs):
|
523 |
+
image_size = image_sizes[batch_i]
|
524 |
+
cur_vision_tower_aux_feature = vision_tower_aux_feature[batch_i]
|
525 |
+
|
526 |
+
cur_vision_tower_aux_attention_masks_rearranged = torch.ones(
|
527 |
+
(1, aux_height, aux_width),
|
528 |
+
dtype=torch.bool,
|
529 |
+
device=cur_vision_tower_aux_feature.device,
|
530 |
+
)
|
531 |
+
cur_vision_tower_aux_feature_rearranged = (
|
532 |
+
cur_vision_tower_aux_feature.view(
|
533 |
+
1,
|
534 |
+
query_side_len,
|
535 |
+
reduce_factor,
|
536 |
+
query_side_len,
|
537 |
+
reduce_factor,
|
538 |
+
-1,
|
539 |
+
)
|
540 |
+
)
|
541 |
+
cur_vision_tower_aux_feature_rearranged = (
|
542 |
+
cur_vision_tower_aux_feature_rearranged.permute(
|
543 |
+
0, 1, 3, 2, 4, 5
|
544 |
+
).contiguous()
|
545 |
+
)
|
546 |
+
if unpad:
|
547 |
+
cur_vision_tower_aux_feature_rearranged = unpad_image(
|
548 |
+
cur_vision_tower_aux_feature_rearranged, image_size
|
549 |
+
)
|
550 |
+
cur_vision_tower_aux_feature_rearranged = (
|
551 |
+
cur_vision_tower_aux_feature_rearranged.flatten(0, 2).flatten(1, 2)
|
552 |
+
) # query_side_len*query_side_len X reduce_factor*reduce_factor X C
|
553 |
+
|
554 |
+
cur_vision_tower_aux_attention_masks_rearranged = unmask_attention_mask(
|
555 |
+
cur_vision_tower_aux_attention_masks_rearranged, image_size
|
556 |
+
)
|
557 |
+
cur_vision_tower_aux_attention_masks_rearranged = (
|
558 |
+
cur_vision_tower_aux_attention_masks_rearranged.view(
|
559 |
+
1, query_side_len, reduce_factor, query_side_len, reduce_factor
|
560 |
+
)
|
561 |
+
.permute(0, 1, 3, 2, 4)
|
562 |
+
.contiguous()
|
563 |
+
)
|
564 |
+
if unpad:
|
565 |
+
cur_vision_tower_aux_attention_masks_rearranged = unpad_image(
|
566 |
+
cur_vision_tower_aux_attention_masks_rearranged, image_size
|
567 |
+
)
|
568 |
+
cur_vision_tower_aux_attention_masks_rearranged = (
|
569 |
+
cur_vision_tower_aux_attention_masks_rearranged.flatten(
|
570 |
+
0, 2
|
571 |
+
).flatten(1, 2)
|
572 |
+
)
|
573 |
+
|
574 |
+
cur_vision_tower_aux_attention_masks_rearranged[
|
575 |
+
cur_vision_tower_aux_attention_masks_rearranged.sum(-1) == 0
|
576 |
+
] = True
|
577 |
+
|
578 |
+
vision_tower_aux_feature_rearranged.append(
|
579 |
+
cur_vision_tower_aux_feature_rearranged
|
580 |
+
)
|
581 |
+
vision_tower_aux_attention_masks_rearranged.append(
|
582 |
+
cur_vision_tower_aux_attention_masks_rearranged
|
583 |
+
)
|
584 |
+
|
585 |
+
vision_tower_aux_feature_rearranged = torch.cat(
|
586 |
+
vision_tower_aux_feature_rearranged, 0
|
587 |
+
)
|
588 |
+
vision_tower_aux_attention_masks_rearranged = torch.cat(
|
589 |
+
vision_tower_aux_attention_masks_rearranged, 0
|
590 |
+
)
|
591 |
+
|
592 |
+
vision_tower_aux_feature_rearranged_list.append(
|
593 |
+
vision_tower_aux_feature_rearranged
|
594 |
+
)
|
595 |
+
vision_tower_aux_attention_masks_rearranged_list.append(
|
596 |
+
vision_tower_aux_attention_masks_rearranged
|
597 |
+
)
|
598 |
+
|
599 |
+
return (
|
600 |
+
vision_tower_aux_feature_rearranged_list,
|
601 |
+
vision_tower_aux_attention_masks_rearranged_list,
|
602 |
+
)
|
603 |
+
|
604 |
+
def encode_images(self, image_aux_list, encode_type=None):
|
605 |
+
vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
|
606 |
+
image_aux_features_list = []
|
607 |
+
chunk_size = 64
|
608 |
+
if encode_type == "dino":
|
609 |
+
image_aux = image_aux_list[-1]
|
610 |
+
vision_tower_aux = vision_tower_aux_list[-1]
|
611 |
+
if image_aux.shape[0] > chunk_size:
|
612 |
+
image_aux_features_chunks = []
|
613 |
+
for start_idx in range(0, image_aux.shape[0], chunk_size):
|
614 |
+
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
|
615 |
+
chunk = image_aux[start_idx:end_idx]
|
616 |
+
image_aux_features_chunk = vision_tower_aux(chunk)
|
617 |
+
image_aux_features_chunks.append(image_aux_features_chunk)
|
618 |
+
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
|
619 |
+
else:
|
620 |
+
image_aux_features = vision_tower_aux(image_aux)
|
621 |
+
return image_aux_features
|
622 |
+
elif encode_type == "siglip":
|
623 |
+
image_aux = image_aux_list[0]
|
624 |
+
vision_tower_aux = vision_tower_aux_list[0]
|
625 |
+
if image_aux.shape[0] > chunk_size:
|
626 |
+
image_aux_features_chunks = []
|
627 |
+
for start_idx in range(0, image_aux.shape[0], chunk_size):
|
628 |
+
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
|
629 |
+
chunk = image_aux[start_idx:end_idx]
|
630 |
+
image_aux_features_chunk = vision_tower_aux(chunk)
|
631 |
+
image_aux_features_chunks.append(image_aux_features_chunk)
|
632 |
+
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
|
633 |
+
else:
|
634 |
+
image_aux_features = vision_tower_aux(image_aux)
|
635 |
+
return image_aux_features
|
636 |
+
else:
|
637 |
+
for image_aux, vision_tower_aux in zip(
|
638 |
+
image_aux_list, vision_tower_aux_list
|
639 |
+
):
|
640 |
+
if image_aux.shape[0] > chunk_size:
|
641 |
+
image_aux_features_chunks = []
|
642 |
+
for start_idx in range(0, image_aux.shape[0], chunk_size):
|
643 |
+
end_idx = min(start_idx + chunk_size, image_aux.shape[0])
|
644 |
+
chunk = image_aux[start_idx:end_idx]
|
645 |
+
image_aux_features_chunk = vision_tower_aux(chunk)
|
646 |
+
image_aux_features_chunks.append(image_aux_features_chunk)
|
647 |
+
image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
|
648 |
+
else:
|
649 |
+
image_aux_features = vision_tower_aux(image_aux)
|
650 |
+
image_aux_features_list.append(image_aux_features)
|
651 |
+
return image_aux_features_list
|
652 |
+
|
653 |
+
def select_frame(
|
654 |
+
self,
|
655 |
+
feature_list,
|
656 |
+
split_sizes,
|
657 |
+
input_ids,
|
658 |
+
new_image_aux_list,
|
659 |
+
image_sizes,
|
660 |
+
window_size=16,
|
661 |
+
threshold=0.83,
|
662 |
+
):
|
663 |
+
dino_features_batch = torch.split(feature_list, split_sizes, dim=0)
|
664 |
+
new_image_aux_batch_0 = torch.split(new_image_aux_list[0], split_sizes, dim=0)
|
665 |
+
new_image_aux_batch_1 = torch.split(new_image_aux_list[1], split_sizes, dim=0)
|
666 |
+
new_split_sizes = []
|
667 |
+
selected_frames_all_0 = []
|
668 |
+
selected_frames_all_1 = []
|
669 |
+
selected_frames_feature_all = []
|
670 |
+
selected_frame_indices_all = []
|
671 |
+
for i_batch, frame_features in enumerate(dino_features_batch):
|
672 |
+
try:
|
673 |
+
if "llama" in self.get_model().config.model_type:
|
674 |
+
text_len = torch.where(input_ids[i_batch] == 128002)[-1][0]
|
675 |
+
else:
|
676 |
+
text_len = torch.where(input_ids[i_batch] == 151643)[-1][0]
|
677 |
+
except:
|
678 |
+
text_len = len(input_ids[i_batch])
|
679 |
+
original_width, original_height = image_sizes[i_batch]
|
680 |
+
if getattr(self.get_model().config, "highres", False):
|
681 |
+
token_per_frame = self.get_model().config.lowres_token ** 2
|
682 |
+
else:
|
683 |
+
token_per_frame = self.get_model().config.image_token_len
|
684 |
+
# current_height, current_width = token_per_side, token_per_side
|
685 |
+
# original_aspect_ratio = original_width / original_height
|
686 |
+
# current_aspect_ratio = current_width / current_height
|
687 |
+
# if original_aspect_ratio > current_aspect_ratio:
|
688 |
+
# scale_factor = current_width / original_width
|
689 |
+
# new_height = int(original_height * scale_factor)
|
690 |
+
# padding = math.ceil((current_height - new_height) / 2.0)
|
691 |
+
# token_per_frame = (
|
692 |
+
# current_height - padding * 2
|
693 |
+
# ) * token_per_side + token_per_side
|
694 |
+
# else:
|
695 |
+
# scale_factor = current_height / original_height
|
696 |
+
# new_width = int(original_width * scale_factor)
|
697 |
+
# padding = math.ceil((current_width - new_width) / 2.0)
|
698 |
+
# token_per_frame = (current_width - padding * 2) * token_per_side + (
|
699 |
+
# current_width - padding * 2
|
700 |
+
# )
|
701 |
+
# token_per_frame = (
|
702 |
+
# token_per_side**2 if token_per_frame < 1 else token_per_frame
|
703 |
+
# )
|
704 |
+
max_num_frames = max(
|
705 |
+
1,
|
706 |
+
(
|
707 |
+
self.get_model().config.tokenizer_model_max_length
|
708 |
+
- text_len
|
709 |
+
- getattr(self.get_model().config, "inference_max_length", 16)
|
710 |
+
)
|
711 |
+
// token_per_frame,
|
712 |
+
)
|
713 |
+
if len(frame_features) < max_num_frames:
|
714 |
+
selected_frames_all_0.append(new_image_aux_batch_0[i_batch])
|
715 |
+
selected_frames_all_1.append(new_image_aux_batch_1[i_batch])
|
716 |
+
selected_frames_feature_all.append(frame_features)
|
717 |
+
new_split_sizes.append(len(frame_features))
|
718 |
+
selected_frame_indices_all.append(torch.arange(len(frame_features)))
|
719 |
+
continue
|
720 |
+
|
721 |
+
num_segments = len(frame_features) // window_size
|
722 |
+
if num_segments == 0:
|
723 |
+
query_feature = frame_features.flatten(1, 2)
|
724 |
+
query_feature = query_feature / torch.norm(
|
725 |
+
(query_feature), dim=1, keepdim=True
|
726 |
+
)
|
727 |
+
similarities = torch.mean(query_feature @ query_feature.T, dim=1)
|
728 |
+
similarities[len(frame_features) // 2] = 0
|
729 |
+
indices = torch.where(similarities < threshold)[0]
|
730 |
+
selected_frame_indices_all.append(indices)
|
731 |
+
selected_frames_all_0.append(new_image_aux_batch_0[i_batch][indices])
|
732 |
+
selected_frames_all_1.append(new_image_aux_batch_1[i_batch][indices])
|
733 |
+
selected_frames_feature_all.append(frame_features[indices])
|
734 |
+
new_split_sizes.append(len(indices))
|
735 |
+
continue
|
736 |
+
segments_frames_0 = []
|
737 |
+
segments_frames_1 = []
|
738 |
+
segments_features = []
|
739 |
+
for start_idx in range(0, len(frame_features), window_size):
|
740 |
+
end_idx = min(start_idx + window_size, len(frame_features))
|
741 |
+
segments_frames_0.append(
|
742 |
+
new_image_aux_batch_0[i_batch][start_idx:end_idx]
|
743 |
+
)
|
744 |
+
segments_frames_1.append(
|
745 |
+
new_image_aux_batch_1[i_batch][start_idx:end_idx]
|
746 |
+
)
|
747 |
+
segments_features.append(frame_features[start_idx:end_idx])
|
748 |
+
selected_frames_0 = []
|
749 |
+
selected_frames_1 = []
|
750 |
+
selected_features = []
|
751 |
+
selected_frame_indices = []
|
752 |
+
for i, segment in enumerate(segments_features):
|
753 |
+
query_feature = segment.flatten(1, 2)
|
754 |
+
query_feature = query_feature / torch.norm(
|
755 |
+
(query_feature), dim=1, keepdim=True
|
756 |
+
)
|
757 |
+
similarities = torch.mean(query_feature @ query_feature.T, dim=1)
|
758 |
+
similarities[len(segment) // 2] = 0
|
759 |
+
indices = torch.where(similarities < threshold)[0]
|
760 |
+
selected_frames_0.append(segments_frames_0[i][indices])
|
761 |
+
selected_frames_1.append(segments_frames_1[i][indices])
|
762 |
+
selected_features.append(segment[indices])
|
763 |
+
selected_frame_indices.extend(indices + i * window_size)
|
764 |
+
selected_frames_0 = torch.cat(selected_frames_0, dim=0)
|
765 |
+
selected_frames_1 = torch.cat(selected_frames_1, dim=0)
|
766 |
+
selected_features = torch.cat(selected_features, dim=0)
|
767 |
+
selected_frame_indices = torch.tensor(selected_frame_indices)
|
768 |
+
# ablation
|
769 |
+
max_num_frames = 400 # in case of OOM
|
770 |
+
if len(selected_frames_0) > max_num_frames:
|
771 |
+
interval = len(selected_frames_0) / float(max_num_frames)
|
772 |
+
indices = [int(interval * i) for i in range(max_num_frames)]
|
773 |
+
new_split_sizes.append(len(indices))
|
774 |
+
selected_frames_all_0.append(selected_frames_0[indices])
|
775 |
+
selected_frames_all_1.append(selected_frames_1[indices])
|
776 |
+
selected_frames_feature_all.append(selected_features[indices])
|
777 |
+
selected_frame_indices = selected_frame_indices[indices]
|
778 |
+
else:
|
779 |
+
new_split_sizes.append(len(selected_frames_0))
|
780 |
+
selected_frames_all_0.append(selected_frames_0)
|
781 |
+
selected_frames_all_1.append(selected_frames_1)
|
782 |
+
selected_frames_feature_all.append(selected_features)
|
783 |
+
selected_frame_indices_all.append(selected_frame_indices)
|
784 |
+
selected_frames_all_0 = torch.cat(selected_frames_all_0, dim=0)
|
785 |
+
selected_frames_all_1 = torch.cat(selected_frames_all_1, dim=0)
|
786 |
+
selected_frames_feature_all = torch.cat(selected_frames_feature_all, dim=0)
|
787 |
+
return (
|
788 |
+
selected_frames_feature_all,
|
789 |
+
new_split_sizes,
|
790 |
+
[selected_frames_all_0, selected_frames_all_1],
|
791 |
+
selected_frame_indices_all,
|
792 |
+
)
|
793 |
+
|
794 |
+
def prepare_inputs_labels_for_multimodal(
|
795 |
+
self,
|
796 |
+
input_ids,
|
797 |
+
position_ids,
|
798 |
+
attention_mask,
|
799 |
+
past_key_values,
|
800 |
+
labels,
|
801 |
+
images,
|
802 |
+
image_aux_attention_masks_list=None,
|
803 |
+
image_sizes=None,
|
804 |
+
):
|
805 |
+
# vision_tower = self.get_vision_tower()
|
806 |
+
vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
|
807 |
+
if vision_tower_aux_list is None or images is None or input_ids.shape[1] == 1:
|
808 |
+
return (
|
809 |
+
input_ids,
|
810 |
+
position_ids,
|
811 |
+
attention_mask,
|
812 |
+
past_key_values,
|
813 |
+
None,
|
814 |
+
labels,
|
815 |
+
None,
|
816 |
+
None,
|
817 |
+
None,
|
818 |
+
None,
|
819 |
+
)
|
820 |
+
|
821 |
+
image_aux_list = images
|
822 |
+
|
823 |
+
split_sizes = None
|
824 |
+
|
825 |
+
if type(image_aux_list[0]) is list or image_aux_list[0].ndim == 5:
|
826 |
+
split_sizes_ori = [
|
827 |
+
1 if image.ndim == 3 else image.shape[0] for image in image_aux_list[0]
|
828 |
+
]
|
829 |
+
new_image_aux_list = []
|
830 |
+
for image_aux in image_aux_list:
|
831 |
+
if type(image_aux) is list:
|
832 |
+
image_aux = [
|
833 |
+
x.unsqueeze(0) if x.ndim == 3 else x for x in image_aux
|
834 |
+
]
|
835 |
+
concat_image_aux = torch.cat([image for image in image_aux], dim=0)
|
836 |
+
new_image_aux_list.append(concat_image_aux)
|
837 |
+
image_aux_features_dino = self.encode_images(
|
838 |
+
new_image_aux_list, encode_type="dino"
|
839 |
+
)
|
840 |
+
|
841 |
+
(
|
842 |
+
image_aux_features_dino,
|
843 |
+
split_sizes,
|
844 |
+
new_image_aux_list,
|
845 |
+
selected_frame_indices_all,
|
846 |
+
) = self.select_frame(
|
847 |
+
image_aux_features_dino,
|
848 |
+
split_sizes_ori,
|
849 |
+
input_ids,
|
850 |
+
new_image_aux_list,
|
851 |
+
image_sizes,
|
852 |
+
threshold=getattr(self.get_model().config, "dino_threshold", 0.83),
|
853 |
+
)
|
854 |
+
|
855 |
+
image_aux_features_siglip = self.encode_images(
|
856 |
+
new_image_aux_list, encode_type="siglip"
|
857 |
+
)
|
858 |
+
image_aux_features_list = [
|
859 |
+
image_aux_features_siglip,
|
860 |
+
image_aux_features_dino,
|
861 |
+
]
|
862 |
+
|
863 |
+
bs = image_aux_features_list[0].shape[0]
|
864 |
+
dtype = new_image_aux_list[0].dtype
|
865 |
+
|
866 |
+
frame_sizes = []
|
867 |
+
for i in range(len(image_sizes)):
|
868 |
+
for j in range(split_sizes[i]):
|
869 |
+
frame_sizes.append(image_sizes[i])
|
870 |
+
image_sizes = frame_sizes
|
871 |
+
else:
|
872 |
+
image_aux_features_list = self.encode_images(image_aux_list)
|
873 |
+
bs = image_aux_list[0].shape[0]
|
874 |
+
dtype = image_aux_list[0].dtype
|
875 |
+
|
876 |
+
image_token_len = self.get_model().config.image_token_len
|
877 |
+
query_num_list = self.get_model().config.query_num_list
|
878 |
+
|
879 |
+
final_height = final_width = int(image_token_len**0.5)
|
880 |
+
|
881 |
+
final_image_features_list = []
|
882 |
+
final_image_features_down_list = []
|
883 |
+
|
884 |
+
# only needed for sva
|
885 |
+
vision_tower_aux_feature_list_final = None
|
886 |
+
vision_tower_aux_attention_masks_list_final = None
|
887 |
+
global_context_feature_final = None
|
888 |
+
|
889 |
+
if self.get_model().config.mm_projector_type == "sva":
|
890 |
+
vision_tower_aux_feature_list = []
|
891 |
+
vision_tower_aux_attention_masks_list = []
|
892 |
+
# get vision tokens from each vision tower
|
893 |
+
for aux_i in range(len(vision_tower_aux_list)):
|
894 |
+
image_aux_features = image_aux_features_list[aux_i]
|
895 |
+
|
896 |
+
image_aux_features = getattr(
|
897 |
+
self.get_model(), "mm_projector_aux_{}".format(aux_i)
|
898 |
+
)(image_aux_features).to(dtype)
|
899 |
+
if aux_i == 0:
|
900 |
+
global_context_feature = image_aux_features.mean(1).view(
|
901 |
+
bs, 1, 1, -1
|
902 |
+
)
|
903 |
+
|
904 |
+
vision_tower_aux_feature_list.append(image_aux_features)
|
905 |
+
input_mix_res = True
|
906 |
+
input_high_res = True
|
907 |
+
# perform vision sampling for each query group
|
908 |
+
for query_group_i, query_num in enumerate(query_num_list):
|
909 |
+
query_features_i = (
|
910 |
+
self.get_model()
|
911 |
+
.vision_query[query_group_i, :]
|
912 |
+
.view(1, 1, 1, -1)
|
913 |
+
.expand(bs, query_num, -1, -1)
|
914 |
+
)
|
915 |
+
global_context_feature_i = global_context_feature.expand(
|
916 |
+
-1, query_num, 1, -1
|
917 |
+
).flatten(0, 1)
|
918 |
+
query_side_len = int(query_num**0.5)
|
919 |
+
if IS_XLA_AVAILABLE:
|
920 |
+
(
|
921 |
+
vision_tower_aux_feature_list_i,
|
922 |
+
vision_tower_aux_attention_masks_list_i,
|
923 |
+
) = self.rearrange_vision_tower_features_train(
|
924 |
+
vision_tower_aux_feature_list,
|
925 |
+
image_aux_attention_masks_list,
|
926 |
+
query_side_len,
|
927 |
+
)
|
928 |
+
else:
|
929 |
+
(
|
930 |
+
vision_tower_aux_feature_list_i,
|
931 |
+
vision_tower_aux_attention_masks_list_i,
|
932 |
+
) = self.rearrange_vision_tower_features_inference(
|
933 |
+
vision_tower_aux_feature_list, query_side_len, image_sizes
|
934 |
+
)
|
935 |
+
|
936 |
+
query_features_i = getattr(
|
937 |
+
self.get_model(), "vision_sampler_{}".format(query_group_i)
|
938 |
+
)(
|
939 |
+
query_features_i.flatten(0, 1),
|
940 |
+
global_context_feature_i,
|
941 |
+
*vision_tower_aux_feature_list_i,
|
942 |
+
*vision_tower_aux_attention_masks_list_i,
|
943 |
+
)
|
944 |
+
query_features_i = query_features_i.view(bs, query_num, -1)
|
945 |
+
|
946 |
+
if split_sizes is not None:
|
947 |
+
try:
|
948 |
+
if "llama" in self.get_model().config.model_type:
|
949 |
+
text_len = torch.where(input_ids[0] == 128002)[-1][0]
|
950 |
+
else:
|
951 |
+
text_len = torch.where(input_ids[0] == 151643)[-1][0]
|
952 |
+
except:
|
953 |
+
text_len = len(input_ids[0])
|
954 |
+
max_visual_len = (
|
955 |
+
self.get_model().config.tokenizer_model_max_length
|
956 |
+
- text_len
|
957 |
+
- getattr(self.get_model().config, "inference_max_length", 16)
|
958 |
+
)
|
959 |
+
max_num_frames = max(
|
960 |
+
1,
|
961 |
+
math.floor(max_visual_len // (final_height * final_width)),
|
962 |
+
)
|
963 |
+
max_num_frames_low = max(
|
964 |
+
1,
|
965 |
+
math.floor(
|
966 |
+
max_visual_len
|
967 |
+
// (self.get_model().config.lowres_token ** 2)
|
968 |
+
),
|
969 |
+
)
|
970 |
+
if split_sizes[0] < max_num_frames:
|
971 |
+
input_mix_res = False
|
972 |
+
elif split_sizes[0] > max_num_frames_low:
|
973 |
+
input_mix_res = False
|
974 |
+
input_high_res = False
|
975 |
+
|
976 |
+
# input_mix_res = False # ablation
|
977 |
+
|
978 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
979 |
+
_query_features_i = (
|
980 |
+
query_features_i.permute(0, 2, 1)
|
981 |
+
.contiguous()
|
982 |
+
.view(bs, -1, query_side_len, query_side_len)
|
983 |
+
)
|
984 |
+
_query_features_i = F.interpolate(
|
985 |
+
_query_features_i.float(),
|
986 |
+
size=(
|
987 |
+
self.get_model().config.lowres_token,
|
988 |
+
self.get_model().config.lowres_token,
|
989 |
+
),
|
990 |
+
mode="bilinear",
|
991 |
+
align_corners=False,
|
992 |
+
).to(dtype=query_features_i.dtype)
|
993 |
+
_query_features_i = (
|
994 |
+
_query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
995 |
+
)
|
996 |
+
final_image_features_down_list.append(_query_features_i)
|
997 |
+
|
998 |
+
# interpolate to the final target size
|
999 |
+
if query_side_len != final_height:
|
1000 |
+
query_features_i = (
|
1001 |
+
query_features_i.permute(0, 2, 1)
|
1002 |
+
.contiguous()
|
1003 |
+
.view(bs, -1, query_side_len, query_side_len)
|
1004 |
+
)
|
1005 |
+
if input_high_res:
|
1006 |
+
query_features_i = F.interpolate(
|
1007 |
+
query_features_i.float(),
|
1008 |
+
size=(final_height, final_width),
|
1009 |
+
mode="bilinear",
|
1010 |
+
align_corners=False,
|
1011 |
+
).to(dtype=query_features_i.dtype)
|
1012 |
+
else:
|
1013 |
+
query_features_i = F.interpolate(
|
1014 |
+
query_features_i.float(),
|
1015 |
+
size=(8, 8),
|
1016 |
+
mode="bilinear",
|
1017 |
+
align_corners=False,
|
1018 |
+
).to(dtype=query_features_i.dtype)
|
1019 |
+
query_features_i = (
|
1020 |
+
query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
1021 |
+
)
|
1022 |
+
final_image_features_list.append(query_features_i)
|
1023 |
+
|
1024 |
+
if IS_XLA_AVAILABLE:
|
1025 |
+
(
|
1026 |
+
vision_tower_aux_feature_list_final,
|
1027 |
+
vision_tower_aux_attention_masks_list_final,
|
1028 |
+
) = self.rearrange_vision_tower_features_train(
|
1029 |
+
vision_tower_aux_feature_list,
|
1030 |
+
image_aux_attention_masks_list,
|
1031 |
+
final_height,
|
1032 |
+
)
|
1033 |
+
global_context_feature_final = global_context_feature.expand(
|
1034 |
+
-1, final_height * final_width, 1, -1
|
1035 |
+
).flatten(0, 1)
|
1036 |
+
else:
|
1037 |
+
final_image_features_list = image_aux_features_list
|
1038 |
+
|
1039 |
+
image_features = torch.cat(final_image_features_list, -1)
|
1040 |
+
image_features = self.get_model().mm_projector(image_features).to(dtype)
|
1041 |
+
|
1042 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1043 |
+
image_features_down = torch.cat(final_image_features_down_list, -1)
|
1044 |
+
image_features_down = (
|
1045 |
+
self.get_model().mm_projector(image_features_down).to(dtype)
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
if IS_XLA_AVAILABLE:
|
1049 |
+
image_features = image_features.view(
|
1050 |
+
image_features.shape[0], final_height, final_width, -1
|
1051 |
+
)
|
1052 |
+
image_features = torch.cat(
|
1053 |
+
(
|
1054 |
+
image_features,
|
1055 |
+
self.model.image_newline[None, None, None, :].expand(
|
1056 |
+
image_features.shape[0], final_height, 1, -1
|
1057 |
+
),
|
1058 |
+
),
|
1059 |
+
dim=2,
|
1060 |
+
)
|
1061 |
+
image_features = image_features.flatten(1, 2)
|
1062 |
+
final_size = [(final_height, final_width)] * bs
|
1063 |
+
|
1064 |
+
else:
|
1065 |
+
image_features = image_features.view(bs, final_height, final_width, -1)
|
1066 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1067 |
+
image_features_down = image_features_down.view(
|
1068 |
+
bs,
|
1069 |
+
self.get_model().config.lowres_token,
|
1070 |
+
self.get_model().config.lowres_token,
|
1071 |
+
-1,
|
1072 |
+
)
|
1073 |
+
image_features_unpadded = []
|
1074 |
+
image_features_downsample = []
|
1075 |
+
final_size = []
|
1076 |
+
if self.get_model().config.mm_projector_type == "sva":
|
1077 |
+
(
|
1078 |
+
vision_tower_aux_feature_list_final,
|
1079 |
+
vision_tower_aux_attention_masks_list_final,
|
1080 |
+
) = self.rearrange_vision_tower_features_inference(
|
1081 |
+
vision_tower_aux_feature_list, final_height, image_sizes, unpad=True
|
1082 |
+
)
|
1083 |
+
global_context_feature_final = []
|
1084 |
+
for batch_i in range(bs):
|
1085 |
+
cur_image_feature = image_features[batch_i]
|
1086 |
+
image_size = image_sizes[batch_i]
|
1087 |
+
|
1088 |
+
cur_image_feature = unpad_image(
|
1089 |
+
cur_image_feature.unsqueeze(0), image_size
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
cur_h, cur_w = cur_image_feature.shape[1:3]
|
1093 |
+
try: # fix bug for some invalid image
|
1094 |
+
cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
|
1095 |
+
final_size.append((cur_h, cur_w))
|
1096 |
+
except:
|
1097 |
+
# print(f"invalid after unpad {image_features[batch_i].shape}, {image_sizes[batch_i]}", flush=True)
|
1098 |
+
cur_image_feature = image_features[batch_i].unsqueeze(0)
|
1099 |
+
image_size = image_sizes[batch_i]
|
1100 |
+
cur_h, cur_w = cur_image_feature.shape[1:3]
|
1101 |
+
cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
|
1102 |
+
final_size.append((cur_h, cur_w))
|
1103 |
+
|
1104 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1105 |
+
cur_image_feature_down = unpad_image(
|
1106 |
+
image_features_down[batch_i].unsqueeze(0),
|
1107 |
+
(
|
1108 |
+
int(
|
1109 |
+
image_size[0]
|
1110 |
+
/ (
|
1111 |
+
image_token_len**0.5
|
1112 |
+
/ self.get_model().config.lowres_token
|
1113 |
+
)
|
1114 |
+
),
|
1115 |
+
int(
|
1116 |
+
image_size[1]
|
1117 |
+
/ (
|
1118 |
+
image_token_len**0.5
|
1119 |
+
/ self.get_model().config.lowres_token
|
1120 |
+
)
|
1121 |
+
),
|
1122 |
+
),
|
1123 |
+
)
|
1124 |
+
_cur_h, _cur_w = cur_image_feature_down.shape[1:3]
|
1125 |
+
|
1126 |
+
try: # fix bug for some invalid image
|
1127 |
+
cur_image_feature_down = cur_image_feature_down.view(
|
1128 |
+
1, _cur_h, _cur_w, -1
|
1129 |
+
)
|
1130 |
+
except:
|
1131 |
+
print("invalid after unpad", flush=True)
|
1132 |
+
cur_image_feature_down = image_features_down[batch_i].unsqueeze(
|
1133 |
+
0
|
1134 |
+
)
|
1135 |
+
_cur_h, _cur_w = cur_image_feature_down.shape[1:3]
|
1136 |
+
cur_image_feature_down = cur_image_feature_down.view(
|
1137 |
+
1, _cur_h, _cur_w, -1
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
cur_image_feature_down = torch.cat(
|
1141 |
+
(
|
1142 |
+
cur_image_feature_down,
|
1143 |
+
self.model.image_newline.view(1, 1, 1, -1)
|
1144 |
+
.expand(1, _cur_h, 1, -1)
|
1145 |
+
.to(cur_image_feature_down.device),
|
1146 |
+
),
|
1147 |
+
dim=2,
|
1148 |
+
).flatten(1, 2)
|
1149 |
+
|
1150 |
+
if split_sizes is None and getattr(self.config, "frame_pos", False):
|
1151 |
+
frame_pos = (
|
1152 |
+
self.get_model()
|
1153 |
+
.get_frame_pos(torch.arange(1))
|
1154 |
+
.to(cur_image_feature_down.device)
|
1155 |
+
.to(cur_image_feature_down.dtype)
|
1156 |
+
)
|
1157 |
+
cur_image_feature_down += frame_pos
|
1158 |
+
|
1159 |
+
image_features_downsample.append(cur_image_feature_down.squeeze(0))
|
1160 |
+
|
1161 |
+
cur_image_feature = torch.cat(
|
1162 |
+
(
|
1163 |
+
cur_image_feature,
|
1164 |
+
self.model.image_newline.view(1, 1, 1, -1)
|
1165 |
+
.expand(1, cur_h, 1, -1)
|
1166 |
+
.to(cur_image_feature.device),
|
1167 |
+
),
|
1168 |
+
dim=2,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
if split_sizes is None and getattr(self.config, "frame_pos", False):
|
1172 |
+
frame_pos = (
|
1173 |
+
self.get_model()
|
1174 |
+
.get_frame_pos(torch.arange(1))
|
1175 |
+
.to(cur_image_feature.device)
|
1176 |
+
.to(cur_image_feature.dtype)
|
1177 |
+
)
|
1178 |
+
cur_image_feature += frame_pos
|
1179 |
+
|
1180 |
+
cur_image_feature = cur_image_feature.flatten(1, 2)
|
1181 |
+
image_features_unpadded.append(cur_image_feature.squeeze(0))
|
1182 |
+
|
1183 |
+
if self.get_model().config.mm_projector_type == "sva":
|
1184 |
+
cur_global_context_feature = global_context_feature[batch_i].expand(
|
1185 |
+
cur_h * cur_w, 1, -1
|
1186 |
+
)
|
1187 |
+
global_context_feature_final.append(cur_global_context_feature)
|
1188 |
+
if self.get_model().config.mm_projector_type == "sva":
|
1189 |
+
global_context_feature_final = torch.cat(
|
1190 |
+
global_context_feature_final, 0
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1194 |
+
image_features = image_features_downsample
|
1195 |
+
else:
|
1196 |
+
image_features = image_features_unpadded
|
1197 |
+
|
1198 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1199 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
|
1200 |
+
self.config, "mm_use_im_start_end", False
|
1201 |
+
):
|
1202 |
+
raise NotImplementedError
|
1203 |
+
|
1204 |
+
split_image_features_unpadded = None
|
1205 |
+
frame_split_sizes = None
|
1206 |
+
|
1207 |
+
if split_sizes is not None:
|
1208 |
+
split_image_features = []
|
1209 |
+
split_image_features_unpadded = (
|
1210 |
+
[]
|
1211 |
+
if (getattr(self.config, "highres", False)) and input_mix_res
|
1212 |
+
else None
|
1213 |
+
)
|
1214 |
+
start_idx = 0
|
1215 |
+
for split_batch_idx, split_size in enumerate(split_sizes):
|
1216 |
+
if isinstance(image_features[start_idx : start_idx + split_size], list):
|
1217 |
+
if getattr(self.config, "frame_pos", False):
|
1218 |
+
frame_feature = torch.cat(
|
1219 |
+
image_features[start_idx : start_idx + split_size], dim=0
|
1220 |
+
).reshape(split_size, -1, image_features[0].shape[-1])
|
1221 |
+
frame_pos = (
|
1222 |
+
self.get_model()
|
1223 |
+
.get_frame_pos(selected_frame_indices_all[split_batch_idx])
|
1224 |
+
.to(frame_feature.device)
|
1225 |
+
.to(frame_feature.dtype)
|
1226 |
+
)
|
1227 |
+
frame_feature += frame_pos
|
1228 |
+
split_image_features.append(
|
1229 |
+
frame_feature.reshape(-1, image_features[0].shape[-1])
|
1230 |
+
)
|
1231 |
+
else:
|
1232 |
+
split_image_features.append(
|
1233 |
+
torch.cat(
|
1234 |
+
image_features[start_idx : start_idx + split_size],
|
1235 |
+
dim=0,
|
1236 |
+
)
|
1237 |
+
)
|
1238 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1239 |
+
if getattr(self.config, "frame_pos", False):
|
1240 |
+
frame_feature = torch.cat(
|
1241 |
+
image_features_unpadded[
|
1242 |
+
start_idx : start_idx + split_size
|
1243 |
+
],
|
1244 |
+
dim=0,
|
1245 |
+
).reshape(split_size, -1, image_features[0].shape[-1])
|
1246 |
+
frame_pos = (
|
1247 |
+
self.get_model()
|
1248 |
+
.get_frame_pos(
|
1249 |
+
selected_frame_indices_all[split_batch_idx]
|
1250 |
+
)
|
1251 |
+
.to(frame_feature.device)
|
1252 |
+
.to(frame_feature.dtype)
|
1253 |
+
)
|
1254 |
+
frame_feature += frame_pos
|
1255 |
+
split_image_features_unpadded.append(
|
1256 |
+
frame_feature.reshape(-1, image_features[0].shape[-1])
|
1257 |
+
)
|
1258 |
+
else:
|
1259 |
+
split_image_features_unpadded.append(
|
1260 |
+
torch.cat(
|
1261 |
+
image_features_unpadded[
|
1262 |
+
start_idx : start_idx + split_size
|
1263 |
+
],
|
1264 |
+
dim=0,
|
1265 |
+
)
|
1266 |
+
)
|
1267 |
+
else:
|
1268 |
+
if getattr(self.config, "frame_pos", False):
|
1269 |
+
frame_feature = image_features[
|
1270 |
+
start_idx : start_idx + split_size
|
1271 |
+
].reshape(split_size, -1, image_features[0].shape[-1])
|
1272 |
+
frame_pos = (
|
1273 |
+
self.get_model()
|
1274 |
+
.get_frame_pos(selected_frame_indices_all[split_batch_idx])
|
1275 |
+
.to(frame_feature.device)
|
1276 |
+
.to(frame_feature.dtype)
|
1277 |
+
)
|
1278 |
+
frame_feature += frame_pos
|
1279 |
+
split_image_features.append(
|
1280 |
+
frame_feature.reshape(-1, image_features[0].shape[-1])
|
1281 |
+
)
|
1282 |
+
else:
|
1283 |
+
split_image_features.append(
|
1284 |
+
image_features[start_idx : start_idx + split_size]
|
1285 |
+
)
|
1286 |
+
if (getattr(self.config, "highres", False)) and input_mix_res:
|
1287 |
+
if getattr(self.config, "frame_pos", False):
|
1288 |
+
frame_feature = image_features_unpadded[
|
1289 |
+
start_idx : start_idx + split_size
|
1290 |
+
]
|
1291 |
+
frame_pos = (
|
1292 |
+
self.get_model()
|
1293 |
+
.get_frame_pos(
|
1294 |
+
selected_frame_indices_all[split_batch_idx]
|
1295 |
+
)
|
1296 |
+
.to(frame_feature.device)
|
1297 |
+
.to(frame_feature.dtype)
|
1298 |
+
)
|
1299 |
+
frame_feature += frame_pos
|
1300 |
+
split_image_features_unpadded.append(
|
1301 |
+
frame_feature.reshape(-1, image_features[0].shape[-1])
|
1302 |
+
)
|
1303 |
+
else:
|
1304 |
+
split_image_features_unpadded.append(
|
1305 |
+
image_features_unpadded[
|
1306 |
+
start_idx : start_idx + split_size
|
1307 |
+
]
|
1308 |
+
)
|
1309 |
+
start_idx += split_size
|
1310 |
+
image_features = split_image_features
|
1311 |
+
frame_split_sizes = split_sizes
|
1312 |
+
|
1313 |
+
_labels = labels
|
1314 |
+
_position_ids = position_ids
|
1315 |
+
_attention_mask = attention_mask
|
1316 |
+
if attention_mask is None:
|
1317 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1318 |
+
else:
|
1319 |
+
attention_mask = attention_mask.bool()
|
1320 |
+
if position_ids is None:
|
1321 |
+
position_ids = torch.arange(
|
1322 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
|
1323 |
+
)
|
1324 |
+
if labels is None:
|
1325 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
1326 |
+
|
1327 |
+
# remove the padding using attention_mask -- FIXME
|
1328 |
+
_input_ids = input_ids
|
1329 |
+
|
1330 |
+
attention_mask = attention_mask | (input_ids == IMAGE_TOKEN_INDEX)
|
1331 |
+
|
1332 |
+
input_ids = [
|
1333 |
+
cur_input_ids[cur_attention_mask]
|
1334 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
1335 |
+
]
|
1336 |
+
labels = [
|
1337 |
+
cur_labels[cur_attention_mask]
|
1338 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
1339 |
+
]
|
1340 |
+
|
1341 |
+
new_input_embeds = []
|
1342 |
+
new_labels = []
|
1343 |
+
image_token_indices_batch = []
|
1344 |
+
cur_image_idx = 0
|
1345 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1346 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
1347 |
+
if num_images == 0:
|
1348 |
+
cur_image_features = image_features[cur_image_idx]
|
1349 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
1350 |
+
cur_input_embeds = torch.cat(
|
1351 |
+
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
|
1352 |
+
)
|
1353 |
+
new_input_embeds.append(cur_input_embeds)
|
1354 |
+
new_labels.append(labels[batch_idx])
|
1355 |
+
cur_image_idx += 1
|
1356 |
+
continue
|
1357 |
+
|
1358 |
+
image_token_indices = (
|
1359 |
+
[-1]
|
1360 |
+
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
|
1361 |
+
+ [cur_input_ids.shape[0]]
|
1362 |
+
)
|
1363 |
+
image_token_indices_batch.append(
|
1364 |
+
torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()[0]
|
1365 |
+
)
|
1366 |
+
cur_input_ids_noim = []
|
1367 |
+
cur_labels = labels[batch_idx]
|
1368 |
+
cur_labels_noim = []
|
1369 |
+
for i in range(len(image_token_indices) - 1):
|
1370 |
+
cur_input_ids_noim.append(
|
1371 |
+
cur_input_ids[
|
1372 |
+
image_token_indices[i] + 1 : image_token_indices[i + 1]
|
1373 |
+
]
|
1374 |
+
)
|
1375 |
+
cur_labels_noim.append(
|
1376 |
+
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
|
1377 |
+
)
|
1378 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1379 |
+
cur_input_embeds = self.get_model().embed_tokens(
|
1380 |
+
torch.cat(cur_input_ids_noim)
|
1381 |
+
)
|
1382 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1383 |
+
cur_new_input_embeds = []
|
1384 |
+
cur_new_labels = []
|
1385 |
+
|
1386 |
+
text_len = sum([x.shape[0] for x in cur_input_embeds_no_im])
|
1387 |
+
visual_len = len(image_features[cur_image_idx])
|
1388 |
+
max_visual_len = (
|
1389 |
+
self.get_model().config.tokenizer_model_max_length
|
1390 |
+
- getattr(self.get_model().config, "inference_max_length", 16)
|
1391 |
+
- text_len
|
1392 |
+
)
|
1393 |
+
mix_token = False
|
1394 |
+
|
1395 |
+
# ablation mix
|
1396 |
+
if (
|
1397 |
+
input_mix_res
|
1398 |
+
and (
|
1399 |
+
self.get_model().config.image_token_len
|
1400 |
+
> getattr(self.get_model().config, "lowres_token", 8) ** 2
|
1401 |
+
)
|
1402 |
+
and frame_split_sizes is not None
|
1403 |
+
and getattr(self.config, "highres", False)
|
1404 |
+
):
|
1405 |
+
if max_visual_len > visual_len:
|
1406 |
+
visual_emb = image_features[cur_image_idx]
|
1407 |
+
text_emb = cur_input_embeds_no_im[-1]
|
1408 |
+
highres_num = math.floor(
|
1409 |
+
(max_visual_len - visual_len)
|
1410 |
+
/ (
|
1411 |
+
split_image_features_unpadded[cur_image_idx].shape[0]
|
1412 |
+
// frame_split_sizes[cur_image_idx]
|
1413 |
+
- visual_emb.shape[0] // frame_split_sizes[cur_image_idx]
|
1414 |
+
)
|
1415 |
+
)
|
1416 |
+
if highres_num >= 1:
|
1417 |
+
mix_token = True
|
1418 |
+
sim = torch.matmul(visual_emb, text_emb.transpose(0, 1)).mean(
|
1419 |
+
dim=-1
|
1420 |
+
)
|
1421 |
+
sim_frame = sim.reshape(
|
1422 |
+
frame_split_sizes[cur_image_idx], -1
|
1423 |
+
).mean(dim=-1)
|
1424 |
+
highres_num = min(highres_num, sim_frame.shape[0])
|
1425 |
+
top_values, top_indices = torch.topk(sim_frame, highres_num)
|
1426 |
+
if len(top_indices) > 0:
|
1427 |
+
sorted_indices = torch.sort(top_indices)[1]
|
1428 |
+
top_indices = top_indices[sorted_indices]
|
1429 |
+
visual_emb_frame = image_features[cur_image_idx].reshape(
|
1430 |
+
frame_split_sizes[cur_image_idx],
|
1431 |
+
-1,
|
1432 |
+
image_features[cur_image_idx].shape[-1],
|
1433 |
+
)
|
1434 |
+
visual_emb_frame_highres = split_image_features_unpadded[
|
1435 |
+
cur_image_idx
|
1436 |
+
].reshape(
|
1437 |
+
frame_split_sizes[cur_image_idx],
|
1438 |
+
-1,
|
1439 |
+
split_image_features_unpadded[cur_image_idx].shape[-1],
|
1440 |
+
)
|
1441 |
+
current_point = 0
|
1442 |
+
mix_visual_emb_frame = []
|
1443 |
+
for frame_i in range(len(visual_emb_frame)):
|
1444 |
+
if current_point > len(top_indices) - 1:
|
1445 |
+
mix_visual_emb_frame.append(
|
1446 |
+
visual_emb_frame[frame_i]
|
1447 |
+
)
|
1448 |
+
continue
|
1449 |
+
if frame_i == top_indices[current_point]:
|
1450 |
+
mix_visual_emb_frame.append(
|
1451 |
+
visual_emb_frame_highres[frame_i]
|
1452 |
+
)
|
1453 |
+
current_point += 1
|
1454 |
+
else:
|
1455 |
+
mix_visual_emb_frame.append(
|
1456 |
+
visual_emb_frame[frame_i]
|
1457 |
+
)
|
1458 |
+
image_features[cur_image_idx] = torch.cat(
|
1459 |
+
mix_visual_emb_frame, dim=0
|
1460 |
+
)
|
1461 |
+
# ablation drop
|
1462 |
+
|
1463 |
+
if (
|
1464 |
+
max_visual_len < visual_len
|
1465 |
+
and frame_split_sizes is not None
|
1466 |
+
and not mix_token
|
1467 |
+
):
|
1468 |
+
visual_emb_frame = image_features[cur_image_idx].reshape(
|
1469 |
+
frame_split_sizes[cur_image_idx],
|
1470 |
+
-1,
|
1471 |
+
image_features[cur_image_idx].shape[-1],
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
sim = F.cosine_similarity(
|
1475 |
+
visual_emb_frame[:-1],
|
1476 |
+
visual_emb_frame[1:],
|
1477 |
+
dim=-1,
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
new_visual_emb_frames = []
|
1481 |
+
for start_idx in range(0, len(visual_emb_frame), 8):
|
1482 |
+
end_idx = min(start_idx + 8, len(visual_emb_frame))
|
1483 |
+
chunk_feature = visual_emb_frame[start_idx:end_idx] # 8, HW, C
|
1484 |
+
if len(chunk_feature) == 1:
|
1485 |
+
new_visual_emb_frames.append(chunk_feature[0])
|
1486 |
+
continue
|
1487 |
+
sim = F.cosine_similarity(
|
1488 |
+
chunk_feature[0]
|
1489 |
+
.unsqueeze(0)
|
1490 |
+
.repeat_interleave(len(chunk_feature[1:]), dim=0),
|
1491 |
+
chunk_feature[1:],
|
1492 |
+
dim=-1,
|
1493 |
+
)
|
1494 |
+
new_visual_emb_frame = torch.cat(
|
1495 |
+
[
|
1496 |
+
chunk_feature[0],
|
1497 |
+
chunk_feature[1:].flatten(0, 1)[
|
1498 |
+
sim.flatten(0, 1)
|
1499 |
+
< getattr(
|
1500 |
+
self.get_model().config, "drop_threshold", 0.7
|
1501 |
+
)
|
1502 |
+
],
|
1503 |
+
],
|
1504 |
+
dim=0,
|
1505 |
+
)
|
1506 |
+
new_visual_emb_frames.append(new_visual_emb_frame)
|
1507 |
+
|
1508 |
+
reduced_visual_len = sum([x.shape[0] for x in new_visual_emb_frames])
|
1509 |
+
|
1510 |
+
if reduced_visual_len > max_visual_len:
|
1511 |
+
force_remove = math.ceil(
|
1512 |
+
(reduced_visual_len - max_visual_len)
|
1513 |
+
/ len(new_visual_emb_frames)
|
1514 |
+
)
|
1515 |
+
for chunk_i in range(len(new_visual_emb_frames)):
|
1516 |
+
new_visual_emb_frames[chunk_i] = new_visual_emb_frames[chunk_i][
|
1517 |
+
:-force_remove
|
1518 |
+
]
|
1519 |
+
new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
|
1520 |
+
else:
|
1521 |
+
new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
|
1522 |
+
|
1523 |
+
image_features[cur_image_idx] = new_visual_emb_frames[:max_visual_len]
|
1524 |
+
|
1525 |
+
for i in range(num_images + 1):
|
1526 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1527 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1528 |
+
if i < num_images:
|
1529 |
+
cur_image_features = image_features[cur_image_idx]
|
1530 |
+
cur_image_idx += 1
|
1531 |
+
cur_new_input_embeds.append(cur_image_features)
|
1532 |
+
cur_new_labels.append(
|
1533 |
+
torch.full(
|
1534 |
+
(cur_image_features.shape[0],),
|
1535 |
+
IGNORE_INDEX,
|
1536 |
+
device=cur_labels.device,
|
1537 |
+
dtype=cur_labels.dtype,
|
1538 |
+
)
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
1542 |
+
|
1543 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1544 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1545 |
+
|
1546 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1547 |
+
new_labels.append(cur_new_labels)
|
1548 |
+
|
1549 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1550 |
+
tokenizer_model_max_length = getattr(
|
1551 |
+
self.config, "tokenizer_model_max_length", None
|
1552 |
+
)
|
1553 |
+
if tokenizer_model_max_length is not None:
|
1554 |
+
new_input_embeds = [
|
1555 |
+
x[:tokenizer_model_max_length] for x in new_input_embeds
|
1556 |
+
]
|
1557 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1558 |
+
|
1559 |
+
# Combine them
|
1560 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1561 |
+
batch_size = len(new_input_embeds)
|
1562 |
+
|
1563 |
+
new_input_embeds_padded = []
|
1564 |
+
new_labels_padded = torch.full(
|
1565 |
+
(batch_size, max_len),
|
1566 |
+
IGNORE_INDEX,
|
1567 |
+
dtype=new_labels[0].dtype,
|
1568 |
+
device=new_labels[0].device,
|
1569 |
+
)
|
1570 |
+
attention_mask = torch.zeros(
|
1571 |
+
(batch_size, max_len),
|
1572 |
+
dtype=attention_mask.dtype,
|
1573 |
+
device=attention_mask.device,
|
1574 |
+
)
|
1575 |
+
position_ids = torch.zeros(
|
1576 |
+
(batch_size, max_len),
|
1577 |
+
dtype=position_ids.dtype,
|
1578 |
+
device=position_ids.device,
|
1579 |
+
)
|
1580 |
+
|
1581 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(
|
1582 |
+
zip(new_input_embeds, new_labels)
|
1583 |
+
):
|
1584 |
+
cur_len = cur_new_embed.shape[0]
|
1585 |
+
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
|
1586 |
+
new_input_embeds_padded.append(
|
1587 |
+
torch.cat(
|
1588 |
+
(
|
1589 |
+
torch.zeros(
|
1590 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
1591 |
+
dtype=cur_new_embed.dtype,
|
1592 |
+
device=cur_new_embed.device,
|
1593 |
+
),
|
1594 |
+
cur_new_embed,
|
1595 |
+
),
|
1596 |
+
dim=0,
|
1597 |
+
)
|
1598 |
+
)
|
1599 |
+
if cur_len > 0:
|
1600 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1601 |
+
attention_mask[i, -cur_len:] = True
|
1602 |
+
position_ids[i, -cur_len:] = torch.arange(
|
1603 |
+
0,
|
1604 |
+
cur_len,
|
1605 |
+
dtype=position_ids.dtype,
|
1606 |
+
device=position_ids.device,
|
1607 |
+
)
|
1608 |
+
else:
|
1609 |
+
new_input_embeds_padded.append(
|
1610 |
+
torch.cat(
|
1611 |
+
(
|
1612 |
+
cur_new_embed,
|
1613 |
+
torch.zeros(
|
1614 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
1615 |
+
dtype=cur_new_embed.dtype,
|
1616 |
+
device=cur_new_embed.device,
|
1617 |
+
),
|
1618 |
+
),
|
1619 |
+
dim=0,
|
1620 |
+
)
|
1621 |
+
)
|
1622 |
+
if cur_len > 0:
|
1623 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1624 |
+
attention_mask[i, :cur_len] = True
|
1625 |
+
position_ids[i, :cur_len] = torch.arange(
|
1626 |
+
0,
|
1627 |
+
cur_len,
|
1628 |
+
dtype=position_ids.dtype,
|
1629 |
+
device=position_ids.device,
|
1630 |
+
)
|
1631 |
+
|
1632 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1633 |
+
|
1634 |
+
if _labels is None:
|
1635 |
+
new_labels = None
|
1636 |
+
else:
|
1637 |
+
new_labels = new_labels_padded
|
1638 |
+
|
1639 |
+
if _attention_mask is None:
|
1640 |
+
attention_mask = None
|
1641 |
+
else:
|
1642 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1643 |
+
|
1644 |
+
if _position_ids is None:
|
1645 |
+
position_ids = None
|
1646 |
+
|
1647 |
+
return (
|
1648 |
+
None,
|
1649 |
+
position_ids,
|
1650 |
+
attention_mask,
|
1651 |
+
past_key_values,
|
1652 |
+
new_input_embeds,
|
1653 |
+
new_labels,
|
1654 |
+
vision_tower_aux_feature_list_final,
|
1655 |
+
vision_tower_aux_attention_masks_list_final,
|
1656 |
+
final_size,
|
1657 |
+
global_context_feature_final,
|
1658 |
+
)
|
1659 |
+
|
1660 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
1661 |
+
if model_args.mm_use_im_patch_token:
|
1662 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
1663 |
+
self.resize_token_embeddings(len(tokenizer))
|
1664 |
+
|
1665 |
+
if model_args.mm_use_im_start_end:
|
1666 |
+
num_new_tokens = tokenizer.add_tokens(
|
1667 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
1668 |
+
)
|
1669 |
+
self.resize_token_embeddings(len(tokenizer))
|
1670 |
+
|
1671 |
+
if num_new_tokens > 0:
|
1672 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
1673 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
1674 |
+
|
1675 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
1676 |
+
dim=0, keepdim=True
|
1677 |
+
)
|
1678 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
1679 |
+
dim=0, keepdim=True
|
1680 |
+
)
|
1681 |
+
|
1682 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
1683 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1684 |
+
|
1685 |
+
if model_args.tune_mm_mlp_adapter:
|
1686 |
+
for p in self.get_input_embeddings().parameters():
|
1687 |
+
p.requires_grad = True
|
1688 |
+
for p in self.get_output_embeddings().parameters():
|
1689 |
+
p.requires_grad = False
|
1690 |
+
|
1691 |
+
if model_args.pretrain_mm_mlp_adapter:
|
1692 |
+
mm_projector_weights = torch.load(
|
1693 |
+
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
|
1694 |
+
)
|
1695 |
+
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
|
1696 |
+
assert num_new_tokens == 2
|
1697 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
1698 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
|
1699 |
+
-num_new_tokens:
|
1700 |
+
]
|
1701 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
1702 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
1703 |
+
else:
|
1704 |
+
raise ValueError(
|
1705 |
+
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
|
1706 |
+
)
|
1707 |
+
elif model_args.mm_use_im_patch_token:
|
1708 |
+
if model_args.tune_mm_mlp_adapter:
|
1709 |
+
for p in self.get_input_embeddings().parameters():
|
1710 |
+
p.requires_grad = False
|
1711 |
+
for p in self.get_output_embeddings().parameters():
|
1712 |
+
p.requires_grad = False
|
multimodal_encoder_builder.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pyre-unsafe
|
2 |
+
import copy
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
class ProcessorWrapper:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
transform,
|
14 |
+
height=378,
|
15 |
+
width=378,
|
16 |
+
image_mean=[0.48145466, 0.4578275, 0.40821073],
|
17 |
+
):
|
18 |
+
self._crop_size = {
|
19 |
+
"height": height,
|
20 |
+
"width": width,
|
21 |
+
}
|
22 |
+
self._transforms = transform
|
23 |
+
# print(transform)
|
24 |
+
self.image_mean = image_mean
|
25 |
+
|
26 |
+
@property
|
27 |
+
def crop_size(self):
|
28 |
+
return self._crop_size
|
29 |
+
|
30 |
+
def preprocess(self, image, return_tensors="pt"):
|
31 |
+
# Ensure image is a PIL Image
|
32 |
+
output = {}
|
33 |
+
output["pixel_values"] = [self._transforms(image)]
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
class BaseVisionTower(nn.Module):
|
38 |
+
def __init__(self, vision_tower_name, args, delay_load=False):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.is_loaded = False
|
42 |
+
self.args = args
|
43 |
+
|
44 |
+
self.vision_tower_name = vision_tower_name
|
45 |
+
self.select_layer = args.mm_vision_select_layer
|
46 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
47 |
+
self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
|
48 |
+
self.delay_load = delay_load
|
49 |
+
|
50 |
+
@abstractmethod
|
51 |
+
def load_model(self, device_map=None):
|
52 |
+
raise NotImplementedError("Subclasses must implement load_model")
|
53 |
+
|
54 |
+
@abstractmethod
|
55 |
+
def _forward(self, images):
|
56 |
+
raise NotImplementedError("Subclasses must implement forward")
|
57 |
+
|
58 |
+
def forward(self, images):
|
59 |
+
if type(images) is list:
|
60 |
+
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
61 |
+
else:
|
62 |
+
image_features = self._forward(images)
|
63 |
+
|
64 |
+
return image_features
|
65 |
+
|
66 |
+
@property
|
67 |
+
def dummy_feature(self):
|
68 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
69 |
+
|
70 |
+
@property
|
71 |
+
def dtype(self):
|
72 |
+
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
73 |
+
if hasattr(self.vision_tower, "dtype"):
|
74 |
+
return self.vision_tower.dtype
|
75 |
+
else:
|
76 |
+
params = list(self.vision_tower.parameters())
|
77 |
+
return (
|
78 |
+
params[0].dtype if len(params) > 0 else torch.float32
|
79 |
+
) # Default to torch.float32 if no parameters
|
80 |
+
|
81 |
+
@property
|
82 |
+
def device(self):
|
83 |
+
# Dynamically infer the device from the first parameter, if not explicitly specified
|
84 |
+
if hasattr(self.vision_tower, "device"):
|
85 |
+
return self.vision_tower.device
|
86 |
+
else:
|
87 |
+
params = list(self.vision_tower.parameters())
|
88 |
+
return (
|
89 |
+
params[0].device if len(params) > 0 else torch.device("cpu")
|
90 |
+
) # Default to CPU if no parameters
|
91 |
+
|
92 |
+
@property
|
93 |
+
def config(self):
|
94 |
+
if self.is_loaded:
|
95 |
+
return self.vision_tower.config
|
96 |
+
else:
|
97 |
+
return self.cfg_only
|
98 |
+
|
99 |
+
@property
|
100 |
+
def hidden_size(self):
|
101 |
+
try:
|
102 |
+
return self.config.hidden_size
|
103 |
+
except:
|
104 |
+
return self._hidden_size
|
105 |
+
|
106 |
+
@property
|
107 |
+
def image_size(self): # resolution
|
108 |
+
# return self.config.image_size
|
109 |
+
try:
|
110 |
+
return self.config.image_size
|
111 |
+
except:
|
112 |
+
return self._image_size
|
113 |
+
|
114 |
+
@property
|
115 |
+
def patch_size(self):
|
116 |
+
# return self.config.patch_size
|
117 |
+
try:
|
118 |
+
return self.config.patch_size
|
119 |
+
except:
|
120 |
+
return self._patch_size
|
121 |
+
|
122 |
+
@property
|
123 |
+
def num_patches_per_side(self):
|
124 |
+
if self._interp_size is not None:
|
125 |
+
return int(self._interp_size**0.5)
|
126 |
+
try:
|
127 |
+
return self.image_size // self.patch_size
|
128 |
+
except:
|
129 |
+
return self._num_patches_per_side
|
130 |
+
|
131 |
+
@property
|
132 |
+
def num_patches(self):
|
133 |
+
if self._interp_size is not None:
|
134 |
+
return self._interp_size
|
135 |
+
try:
|
136 |
+
return self.num_patches_per_side**2
|
137 |
+
except:
|
138 |
+
return self._num_patches
|
139 |
+
|
140 |
+
|
141 |
+
class DinoVisionTower(BaseVisionTower):
|
142 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
143 |
+
super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)
|
144 |
+
|
145 |
+
model_path = "facebook/dinov2-giant"
|
146 |
+
base_model_name, res, interp = model_path, 378, 576
|
147 |
+
self._vision_tower_name = vision_tower
|
148 |
+
self.vision_tower_name = base_model_name
|
149 |
+
self._image_size = res
|
150 |
+
self._interp_size = interp
|
151 |
+
self._patch_size = 14 # default patch size
|
152 |
+
|
153 |
+
if not self.delay_load:
|
154 |
+
self.load_model()
|
155 |
+
else:
|
156 |
+
self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)
|
157 |
+
|
158 |
+
def load_model(self, device_map=None):
|
159 |
+
|
160 |
+
self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
|
161 |
+
"""ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
|
162 |
+
self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]
|
163 |
+
|
164 |
+
_image_size = self.vision_tower.config.image_size
|
165 |
+
if self._image_size is None:
|
166 |
+
self._image_size = _image_size
|
167 |
+
|
168 |
+
# increase shortest edge to prevent edge case crops
|
169 |
+
default_shortest_ratio = 8 / 7 # 224/256
|
170 |
+
# shortest_edge = int(default_shortest_ratio * self._image_size)
|
171 |
+
shortest_edge = self._image_size
|
172 |
+
|
173 |
+
processor = AutoImageProcessor.from_pretrained(
|
174 |
+
self.vision_tower_name,
|
175 |
+
crop_size=dict(height=self._image_size, width=self._image_size),
|
176 |
+
size=dict(shortest_edge=shortest_edge),
|
177 |
+
)
|
178 |
+
self.image_processor = processor
|
179 |
+
|
180 |
+
# Assign the output channels of the projection convolution as the hidden size
|
181 |
+
self._hidden_size = (
|
182 |
+
self.vision_tower.embeddings.patch_embeddings.projection.out_channels
|
183 |
+
)
|
184 |
+
# Assign the first value of the stride of the projection convolution as the patch size
|
185 |
+
self._patch_size = (
|
186 |
+
self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
|
187 |
+
)
|
188 |
+
|
189 |
+
# print(self._hidden_size, self._patch_size)
|
190 |
+
|
191 |
+
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
192 |
+
self.is_loaded = True
|
193 |
+
|
194 |
+
@property
|
195 |
+
def image_size(self):
|
196 |
+
return self._image_size
|
197 |
+
|
198 |
+
def feature_select(self, outputs):
|
199 |
+
sequence_output = outputs[
|
200 |
+
"last_hidden_state"
|
201 |
+
] # batch_size, sequence_length, hidden_size
|
202 |
+
|
203 |
+
if self.select_feature == "cls_patch":
|
204 |
+
image_features = sequence_output
|
205 |
+
elif self.select_feature == "patch":
|
206 |
+
image_features = sequence_output[:, 1:]
|
207 |
+
elif self.select_feature == "cls":
|
208 |
+
image_features = sequence_output[:, 0]
|
209 |
+
else:
|
210 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
211 |
+
return image_features
|
212 |
+
|
213 |
+
def interpolate(self, image_features):
|
214 |
+
if self._interp_size is None:
|
215 |
+
return image_features
|
216 |
+
|
217 |
+
b, num_tokens, dim = image_features.shape
|
218 |
+
|
219 |
+
if num_tokens != self.num_patches:
|
220 |
+
target_h = target_w = int(self._interp_size**0.5)
|
221 |
+
h = w = int(num_tokens**0.5)
|
222 |
+
|
223 |
+
image_features = image_features.view(b, h, w, dim)
|
224 |
+
image_features = image_features.permute(0, 3, 1, 2).contiguous()
|
225 |
+
|
226 |
+
image_features = F.interpolate(
|
227 |
+
image_features.to(torch.float32),
|
228 |
+
size=(target_h, target_w),
|
229 |
+
mode="bilinear",
|
230 |
+
align_corners=False,
|
231 |
+
).to(image_features.dtype)
|
232 |
+
|
233 |
+
# Permute the dimensions back to (b, target_h, target_w, dim)
|
234 |
+
image_features = image_features.permute(0, 2, 3, 1).contiguous()
|
235 |
+
|
236 |
+
# Flatten the spatial dimensions (target_h, target_w) into a single dimension
|
237 |
+
image_features = image_features.flatten(1, 2)
|
238 |
+
|
239 |
+
return image_features
|
240 |
+
|
241 |
+
def _forward(self, images):
|
242 |
+
# logger.warning(f"images shape: {images.shape}")
|
243 |
+
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
244 |
+
image_forward_outs = self.vision_tower.forward(
|
245 |
+
images.to(device=self.device, dtype=self.dtype)
|
246 |
+
)
|
247 |
+
# logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
|
248 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
249 |
+
# logger.warning(f"image_features shape: {image_features.shape}")
|
250 |
+
interp_features = self.interpolate(image_features)
|
251 |
+
# logger.warning(f"interp_features shape: {interp_features.shape}")
|
252 |
+
return interp_features
|
253 |
+
|
254 |
+
@property
|
255 |
+
def num_patches_per_side(self):
|
256 |
+
return int(self.num_patches**0.5)
|
257 |
+
|
258 |
+
@property
|
259 |
+
def num_patches(self):
|
260 |
+
if self._interp_size is None:
|
261 |
+
return (self._image_size // self._patch_size) ** 2
|
262 |
+
else:
|
263 |
+
return self._interp_size
|
264 |
+
|
265 |
+
|
266 |
+
# from .siglip_encoder import SiglipVisionTower
|
267 |
+
class SiglipVisionTower(BaseVisionTower):
|
268 |
+
def __init__(self, vision_tower_name, args, delay_load=False):
|
269 |
+
super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load)
|
270 |
+
|
271 |
+
model_path = "google/siglip-so400m-patch14-384"
|
272 |
+
base_model_name, res, interp = model_path, 384, 576
|
273 |
+
self.vision_tower_name = base_model_name
|
274 |
+
self._image_size = res if res is not None else 512
|
275 |
+
self._interp_size = interp
|
276 |
+
if not self.delay_load:
|
277 |
+
self.load_model()
|
278 |
+
elif self.unfreeze_mm_vision_tower:
|
279 |
+
self.load_model()
|
280 |
+
else:
|
281 |
+
self._hidden_size = 1152
|
282 |
+
|
283 |
+
def load_model(self, device_map=None):
|
284 |
+
self.vision_model = "siglip"
|
285 |
+
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
|
286 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
287 |
+
|
288 |
+
# self.vision_tower = clip_model.visual.trunk
|
289 |
+
self.vision_tower.output_tokens = True
|
290 |
+
|
291 |
+
self._hidden_size = self.vision_tower.config.hidden_size
|
292 |
+
self._image_size = self.vision_tower.config.image_size
|
293 |
+
self._patch_size = self.vision_tower.config.patch_size
|
294 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(
|
295 |
+
self.vision_tower_name
|
296 |
+
)
|
297 |
+
|
298 |
+
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
299 |
+
self.is_loaded = True
|
300 |
+
|
301 |
+
def interpolate(self, image_features):
|
302 |
+
if self._interp_size is None:
|
303 |
+
return image_features
|
304 |
+
|
305 |
+
b, num_tokens, dim = image_features.shape
|
306 |
+
|
307 |
+
if num_tokens != self.num_patches:
|
308 |
+
target_h = target_w = int(self._interp_size**0.5)
|
309 |
+
h = w = int(num_tokens**0.5)
|
310 |
+
|
311 |
+
image_features = image_features.view(b, h, w, dim)
|
312 |
+
image_features = image_features.permute(0, 3, 1, 2).contiguous()
|
313 |
+
|
314 |
+
image_features = F.interpolate(
|
315 |
+
image_features.to(torch.float32),
|
316 |
+
size=(target_h, target_w),
|
317 |
+
mode="bilinear",
|
318 |
+
align_corners=False,
|
319 |
+
).to(image_features.dtype)
|
320 |
+
|
321 |
+
# Permute the dimensions back to (b, target_h, target_w, dim)
|
322 |
+
image_features = image_features.permute(0, 2, 3, 1).contiguous()
|
323 |
+
|
324 |
+
# Flatten the spatial dimensions (target_h, target_w) into a single dimension
|
325 |
+
image_features = image_features.flatten(1, 2)
|
326 |
+
|
327 |
+
return image_features
|
328 |
+
|
329 |
+
def _forward(self, images, interpolate_token=576):
|
330 |
+
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
331 |
+
image_features = self.vision_tower.forward(
|
332 |
+
images.to(device=self.device, dtype=self.dtype),
|
333 |
+
output_hidden_states=True,
|
334 |
+
).hidden_states[-1]
|
335 |
+
interp_features = self.interpolate(image_features)
|
336 |
+
return interp_features
|
337 |
+
|
338 |
+
|
339 |
+
def build_vision_tower_aux_list(vision_tower_cfg, **kwargs):
|
340 |
+
vision_tower_aux_name_list = getattr(
|
341 |
+
vision_tower_cfg,
|
342 |
+
"mm_vision_tower_aux_list",
|
343 |
+
getattr(vision_tower_cfg, "vision_tower_aux_list", None),
|
344 |
+
)
|
345 |
+
vision_tower_aux_token_len_list = getattr(
|
346 |
+
vision_tower_cfg,
|
347 |
+
"mm_vision_tower_aux_token_len_list",
|
348 |
+
getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None),
|
349 |
+
)
|
350 |
+
vision_tower_aux_list = []
|
351 |
+
for vision_tower_aux_name, vision_tower_aux_token_len in zip(
|
352 |
+
vision_tower_aux_name_list, vision_tower_aux_token_len_list
|
353 |
+
):
|
354 |
+
config = copy.deepcopy(vision_tower_cfg)
|
355 |
+
vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len)
|
356 |
+
if "siglip" in vision_tower_aux_name.lower():
|
357 |
+
vision_tower_aux_list.append(
|
358 |
+
SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs)
|
359 |
+
)
|
360 |
+
|
361 |
+
# SSL-based Vision Towers
|
362 |
+
elif "dinov2" in vision_tower_aux_name.lower():
|
363 |
+
vision_tower_aux_list.append(
|
364 |
+
DinoVisionTower(vision_tower_aux_name, args=config, **kwargs)
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}")
|
368 |
+
return vision_tower_aux_list
|
multimodal_projector_builder.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pyre-unsafe
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class IdentityMap(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
def forward(self, x, *args, **kwargs):
|
12 |
+
return x
|
13 |
+
|
14 |
+
@property
|
15 |
+
def config(self):
|
16 |
+
return {"mm_projector_type": "identity"}
|
17 |
+
|
18 |
+
|
19 |
+
class SimpleResBlock(nn.Module):
|
20 |
+
def __init__(self, channels):
|
21 |
+
super().__init__()
|
22 |
+
self.pre_norm = nn.LayerNorm(channels)
|
23 |
+
|
24 |
+
self.proj = nn.Sequential(
|
25 |
+
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
|
26 |
+
)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.pre_norm(x)
|
30 |
+
return x + self.proj(x)
|
31 |
+
|
32 |
+
|
33 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
34 |
+
projector_type = getattr(config, "mm_projector_type", "linear")
|
35 |
+
config.mm_hidden_size = 256
|
36 |
+
|
37 |
+
if projector_type == "linear":
|
38 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
39 |
+
|
40 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
|
41 |
+
if mlp_gelu_match:
|
42 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
43 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
44 |
+
for _ in range(1, mlp_depth):
|
45 |
+
modules.append(nn.GELU())
|
46 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
47 |
+
return nn.Sequential(*modules)
|
48 |
+
|
49 |
+
if projector_type == "identity":
|
50 |
+
return IdentityMap()
|
51 |
+
|
52 |
+
raise ValueError(f"Unknown projector type: {projector_type}")
|
vision_sampler.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
|
9 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
10 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
11 |
+
"""
|
12 |
+
grid_size: int of the grid height and width
|
13 |
+
return:
|
14 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
15 |
+
"""
|
16 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
17 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
18 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
19 |
+
grid = np.stack(grid, axis=0)
|
20 |
+
|
21 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
22 |
+
|
23 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
24 |
+
if cls_token:
|
25 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
26 |
+
return pos_embed
|
27 |
+
|
28 |
+
|
29 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
30 |
+
assert embed_dim % 2 == 0
|
31 |
+
|
32 |
+
# use half of dimensions to encode grid_h
|
33 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
34 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
35 |
+
|
36 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
37 |
+
return emb
|
38 |
+
|
39 |
+
|
40 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
41 |
+
"""
|
42 |
+
embed_dim: output dimension for each position
|
43 |
+
pos: a list of positions to be encoded: size (M,)
|
44 |
+
out: (M, D)
|
45 |
+
"""
|
46 |
+
assert embed_dim % 2 == 0
|
47 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
48 |
+
omega /= embed_dim / 2.0
|
49 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
50 |
+
|
51 |
+
pos = pos.reshape(-1) # (M,)
|
52 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
53 |
+
|
54 |
+
emb_sin = np.sin(out) # (M, D/2)
|
55 |
+
emb_cos = np.cos(out) # (M, D/2)
|
56 |
+
|
57 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
58 |
+
return emb
|
59 |
+
|
60 |
+
|
61 |
+
class CrossAttention(nn.Module):
|
62 |
+
|
63 |
+
def __init__(self, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False):
|
64 |
+
super().__init__()
|
65 |
+
self.hidden_dim = hidden_dim
|
66 |
+
self.num_heads = num_heads
|
67 |
+
self.head_dim = self.hidden_dim // self.num_heads
|
68 |
+
|
69 |
+
if (self.head_dim * self.num_heads) != self.hidden_dim:
|
70 |
+
raise ValueError(
|
71 |
+
f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
|
72 |
+
f" and `num_heads`: {self.num_heads})."
|
73 |
+
)
|
74 |
+
|
75 |
+
self.q_proj = nn.Sequential(
|
76 |
+
nn.LayerNorm(q_dim),
|
77 |
+
nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
|
78 |
+
)
|
79 |
+
self.k_proj = nn.Sequential(
|
80 |
+
nn.LayerNorm(kv_dim),
|
81 |
+
nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
|
82 |
+
)
|
83 |
+
self.v_proj = nn.Sequential(
|
84 |
+
nn.LayerNorm(kv_dim),
|
85 |
+
nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
|
86 |
+
)
|
87 |
+
self.o_proj = nn.Linear(
|
88 |
+
self.num_heads * self.head_dim, q_dim, bias=attention_bias
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, vision_latents, queries, attention_mask):
|
92 |
+
|
93 |
+
bsz, q_len, _ = queries.size()
|
94 |
+
bsz, v_len, _ = vision_latents.size()
|
95 |
+
|
96 |
+
query_states = self.q_proj(queries)
|
97 |
+
key_states = self.k_proj(vision_latents)
|
98 |
+
value_states = self.v_proj(vision_latents)
|
99 |
+
|
100 |
+
query_states = query_states.view(
|
101 |
+
bsz, q_len, self.num_heads, self.head_dim
|
102 |
+
).transpose(1, 2)
|
103 |
+
key_states = key_states.view(
|
104 |
+
bsz, v_len, self.num_heads, self.head_dim
|
105 |
+
).transpose(1, 2)
|
106 |
+
value_states = value_states.view(
|
107 |
+
bsz, v_len, self.num_heads, self.head_dim
|
108 |
+
).transpose(1, 2)
|
109 |
+
|
110 |
+
if attention_mask is not None:
|
111 |
+
if attention_mask.size() != (bsz, 1, q_len, v_len):
|
112 |
+
raise ValueError(
|
113 |
+
f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
|
114 |
+
)
|
115 |
+
|
116 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
117 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
118 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
119 |
+
query_states = query_states.contiguous()
|
120 |
+
key_states = key_states.contiguous()
|
121 |
+
value_states = value_states.contiguous()
|
122 |
+
|
123 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
124 |
+
query_states,
|
125 |
+
key_states,
|
126 |
+
value_states,
|
127 |
+
attn_mask=attention_mask,
|
128 |
+
)
|
129 |
+
|
130 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
131 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
|
132 |
+
|
133 |
+
attn_output = self.o_proj(attn_output)
|
134 |
+
|
135 |
+
return attn_output
|
136 |
+
|
137 |
+
|
138 |
+
class AggregationBlock(nn.Module):
|
139 |
+
def __init__(
|
140 |
+
self, attention, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.hidden_dim = hidden_dim
|
144 |
+
self.num_heads = num_heads
|
145 |
+
self.head_dim = self.hidden_dim // self.num_heads
|
146 |
+
|
147 |
+
if (self.head_dim * self.num_heads) != self.hidden_dim:
|
148 |
+
raise ValueError(
|
149 |
+
f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
|
150 |
+
f" and `num_heads`: {self.num_heads})."
|
151 |
+
)
|
152 |
+
|
153 |
+
self.attention = attention
|
154 |
+
if attention:
|
155 |
+
self.attention_layer = CrossAttention(
|
156 |
+
q_dim, kv_dim, hidden_dim, num_heads, attention_bias
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
self.attention_layer = MLP(kv_dim, q_dim, q_dim)
|
160 |
+
|
161 |
+
def forward(self, vision_latents, queries, attention_mask):
|
162 |
+
if self.attention:
|
163 |
+
queries = self.attention_layer(vision_latents, queries, attention_mask)
|
164 |
+
else:
|
165 |
+
queries = self.attention_layer(vision_latents)
|
166 |
+
|
167 |
+
return queries
|
168 |
+
|
169 |
+
|
170 |
+
class MultiKVCrossAttention(nn.Module):
|
171 |
+
|
172 |
+
def __init__(self, q_dim, kv_dim_list, hidden_dim, num_heads, attention_bias=False):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.hidden_dim = hidden_dim
|
176 |
+
self.num_heads = num_heads
|
177 |
+
self.head_dim = self.hidden_dim // self.num_heads
|
178 |
+
|
179 |
+
if (self.head_dim * self.num_heads) != self.hidden_dim:
|
180 |
+
raise ValueError(
|
181 |
+
f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
|
182 |
+
f" and `num_heads`: {self.num_heads})."
|
183 |
+
)
|
184 |
+
|
185 |
+
self.q_proj = nn.Sequential(
|
186 |
+
nn.LayerNorm(q_dim),
|
187 |
+
nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
|
188 |
+
)
|
189 |
+
self.num_of_kvs = len(kv_dim_list)
|
190 |
+
for i, kv_dim in enumerate(kv_dim_list):
|
191 |
+
setattr(
|
192 |
+
self,
|
193 |
+
"k_proj_{}".format(i),
|
194 |
+
nn.Sequential(
|
195 |
+
nn.LayerNorm(kv_dim),
|
196 |
+
nn.Linear(
|
197 |
+
kv_dim, self.num_heads * self.head_dim, bias=attention_bias
|
198 |
+
),
|
199 |
+
),
|
200 |
+
)
|
201 |
+
setattr(
|
202 |
+
self,
|
203 |
+
"v_proj_{}".format(i),
|
204 |
+
nn.Sequential(
|
205 |
+
nn.LayerNorm(kv_dim),
|
206 |
+
nn.Linear(
|
207 |
+
kv_dim, self.num_heads * self.head_dim, bias=attention_bias
|
208 |
+
),
|
209 |
+
),
|
210 |
+
)
|
211 |
+
self.o_proj = nn.Linear(
|
212 |
+
self.num_heads * self.head_dim, q_dim, bias=attention_bias
|
213 |
+
)
|
214 |
+
|
215 |
+
def forward(
|
216 |
+
self,
|
217 |
+
queries,
|
218 |
+
*vision_latents_attention_mask_list,
|
219 |
+
):
|
220 |
+
|
221 |
+
vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
|
222 |
+
attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
|
223 |
+
|
224 |
+
bsz, q_len, _ = queries.size()
|
225 |
+
|
226 |
+
query_states = self.q_proj(queries)
|
227 |
+
key_states = torch.cat(
|
228 |
+
[
|
229 |
+
getattr(self, "k_proj_{}".format(i))(vision_latents_list[i])
|
230 |
+
for i in range(self.num_of_kvs)
|
231 |
+
],
|
232 |
+
dim=1,
|
233 |
+
)
|
234 |
+
value_states = torch.cat(
|
235 |
+
[
|
236 |
+
getattr(self, "v_proj_{}".format(i))(vision_latents_list[i])
|
237 |
+
for i in range(self.num_of_kvs)
|
238 |
+
],
|
239 |
+
dim=1,
|
240 |
+
)
|
241 |
+
|
242 |
+
v_len = key_states.shape[1]
|
243 |
+
|
244 |
+
query_states = query_states.view(
|
245 |
+
bsz, q_len, self.num_heads, self.head_dim
|
246 |
+
).transpose(1, 2)
|
247 |
+
key_states = key_states.view(
|
248 |
+
bsz, v_len, self.num_heads, self.head_dim
|
249 |
+
).transpose(1, 2)
|
250 |
+
value_states = value_states.view(
|
251 |
+
bsz, v_len, self.num_heads, self.head_dim
|
252 |
+
).transpose(1, 2)
|
253 |
+
|
254 |
+
# if kv_weight is not None:
|
255 |
+
# kv_weight = kv_weight.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
|
256 |
+
|
257 |
+
attention_mask = torch.cat(attention_mask_list, dim=-1)
|
258 |
+
|
259 |
+
if attention_mask is not None:
|
260 |
+
if attention_mask.size() != (bsz, 1, q_len, v_len):
|
261 |
+
raise ValueError(
|
262 |
+
f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
|
263 |
+
)
|
264 |
+
|
265 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
266 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
267 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
268 |
+
query_states = query_states.contiguous()
|
269 |
+
key_states = key_states.contiguous()
|
270 |
+
value_states = value_states.contiguous()
|
271 |
+
|
272 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
273 |
+
query_states,
|
274 |
+
key_states,
|
275 |
+
value_states,
|
276 |
+
attn_mask=attention_mask,
|
277 |
+
)
|
278 |
+
# attn_output = spda(
|
279 |
+
# query_states,
|
280 |
+
# key_states,
|
281 |
+
# value_states,
|
282 |
+
# attn_mask=attention_mask,
|
283 |
+
# additional_score=kv_weight
|
284 |
+
# )
|
285 |
+
|
286 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
287 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
|
288 |
+
|
289 |
+
attn_output = self.o_proj(attn_output)
|
290 |
+
|
291 |
+
return attn_output
|
292 |
+
|
293 |
+
|
294 |
+
class MLP(nn.Module):
|
295 |
+
def __init__(self, d_in, d_hidden, d_out):
|
296 |
+
super().__init__()
|
297 |
+
self.linear_1 = nn.Linear(d_in, d_hidden, bias=False)
|
298 |
+
self.act = nn.GELU()
|
299 |
+
self.linear_2 = nn.Linear(d_hidden, d_out, bias=False)
|
300 |
+
|
301 |
+
def forward(self, x):
|
302 |
+
return self.linear_2(self.act(self.linear_1(x)))
|
303 |
+
|
304 |
+
|
305 |
+
class VisionCrossAttentionLayer(nn.Module):
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
q_dim,
|
309 |
+
context_dim,
|
310 |
+
kv_dim_list,
|
311 |
+
kv_size_list,
|
312 |
+
hidden_dim=1024,
|
313 |
+
layer_idx=0,
|
314 |
+
):
|
315 |
+
super().__init__()
|
316 |
+
num_heads = 16
|
317 |
+
self.num_of_kvs = len(kv_dim_list)
|
318 |
+
|
319 |
+
self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
|
320 |
+
self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
|
321 |
+
# if self.num_of_kvs > 1:
|
322 |
+
# self.weight_mlp = MLP(q_dim+hidden_dim, hidden_dim, self.num_of_kvs)
|
323 |
+
# self.tower_weight = nn.Parameter(torch.zeros((self.num_of_kvs)))
|
324 |
+
self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
|
325 |
+
|
326 |
+
self.norm = nn.LayerNorm(hidden_dim)
|
327 |
+
|
328 |
+
self.cross_attn = MultiKVCrossAttention(
|
329 |
+
hidden_dim, kv_dim_list, hidden_dim, num_heads
|
330 |
+
)
|
331 |
+
self.kv_size_list = kv_size_list
|
332 |
+
for i, kv_size in enumerate(kv_size_list):
|
333 |
+
if kv_size > 1:
|
334 |
+
setattr(
|
335 |
+
self,
|
336 |
+
"pos_embed_{}".format(i),
|
337 |
+
nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
|
338 |
+
)
|
339 |
+
# self.register_buffer("pos_embed_{}".format(i), torch.from_numpy(get_2d_sincos_pos_embed(hidden_dim, kv_size)).float(), persistent=False)
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
queries,
|
344 |
+
context_feature,
|
345 |
+
*vision_latents_attention_mask_list,
|
346 |
+
) -> torch.FloatTensor:
|
347 |
+
|
348 |
+
residual = queries
|
349 |
+
# queries = self.proj_in(queries)
|
350 |
+
context_feature = self.proj_context(context_feature)
|
351 |
+
# queries = queries + context_feature
|
352 |
+
queries = torch.cat([queries, context_feature], -1)
|
353 |
+
|
354 |
+
# if self.num_of_kvs > 1:
|
355 |
+
# kv_weight = self.weight_mlp(queries) # B * 1 * num_tower
|
356 |
+
# kv_weight = kv_weight + self.tower_weight.view(1, 1, -1)
|
357 |
+
# kv_weight = kv_weight.softmax(-1)
|
358 |
+
# kv_number_list = [size**2 for size in self.kv_size_list]
|
359 |
+
# kv_weight = torch.repeat_interleave(kv_weight, torch.tensor(kv_number_list).to(kv_weight.device), dim=-1)
|
360 |
+
# else:
|
361 |
+
# kv_weight = None
|
362 |
+
|
363 |
+
queries = self.proj_in(queries)
|
364 |
+
|
365 |
+
vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
|
366 |
+
attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
|
367 |
+
|
368 |
+
attention_mask_list_reshaped = []
|
369 |
+
if attention_mask_list is not None:
|
370 |
+
for attention_mask in attention_mask_list:
|
371 |
+
attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
|
372 |
+
attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
|
373 |
+
attention_mask_list_reshaped.append(attention_mask)
|
374 |
+
|
375 |
+
vision_latents_pos_list = []
|
376 |
+
for i, vision_latents in enumerate(vision_latents_list):
|
377 |
+
if vision_latents.shape[1] > 1:
|
378 |
+
vision_latents_pos_list.append(
|
379 |
+
vision_latents
|
380 |
+
+ getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
|
381 |
+
vision_latents.dtype
|
382 |
+
)
|
383 |
+
)
|
384 |
+
else:
|
385 |
+
vision_latents_pos_list.append(vision_latents)
|
386 |
+
|
387 |
+
# Cross Attention
|
388 |
+
attention_output = self.cross_attn(
|
389 |
+
queries, *vision_latents_pos_list, *attention_mask_list_reshaped
|
390 |
+
)
|
391 |
+
|
392 |
+
# attention_output = (attention_output * combination_weight).sum(2)
|
393 |
+
queries = queries + attention_output
|
394 |
+
|
395 |
+
queries = self.norm(queries)
|
396 |
+
|
397 |
+
queries = self.proj_out(queries)
|
398 |
+
|
399 |
+
queries = queries + residual
|
400 |
+
|
401 |
+
return queries
|
402 |
+
|
403 |
+
|
404 |
+
class VisionAggregationLayer(nn.Module):
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
q_dim,
|
408 |
+
context_dim,
|
409 |
+
kv_dim_list,
|
410 |
+
kv_size_list,
|
411 |
+
hidden_dim=1024,
|
412 |
+
layer_idx=0,
|
413 |
+
):
|
414 |
+
super().__init__()
|
415 |
+
num_heads = 16
|
416 |
+
self.num_of_kvs = len(kv_dim_list)
|
417 |
+
|
418 |
+
self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
|
419 |
+
self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
|
420 |
+
|
421 |
+
self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
|
422 |
+
|
423 |
+
self.norm = nn.LayerNorm(hidden_dim)
|
424 |
+
|
425 |
+
if self.num_of_kvs > 1:
|
426 |
+
self.weight_mlp = MLP(q_dim + hidden_dim, hidden_dim, self.num_of_kvs)
|
427 |
+
|
428 |
+
for i, kv_size in enumerate(kv_size_list):
|
429 |
+
if kv_size > 1:
|
430 |
+
setattr(
|
431 |
+
self,
|
432 |
+
"pos_embed_{}".format(i),
|
433 |
+
nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
|
434 |
+
)
|
435 |
+
setattr(
|
436 |
+
self,
|
437 |
+
"aggregate_{}".format(i),
|
438 |
+
AggregationBlock(
|
439 |
+
True, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
|
440 |
+
),
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
setattr(
|
444 |
+
self,
|
445 |
+
"aggregate_{}".format(i),
|
446 |
+
AggregationBlock(
|
447 |
+
False, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
|
448 |
+
),
|
449 |
+
)
|
450 |
+
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
queries,
|
454 |
+
context_feature,
|
455 |
+
*vision_latents_attention_mask_list,
|
456 |
+
) -> torch.FloatTensor:
|
457 |
+
|
458 |
+
residual = queries
|
459 |
+
# queries = self.proj_in(queries)
|
460 |
+
context_feature = self.proj_context(context_feature)
|
461 |
+
# queries = queries + context_feature
|
462 |
+
queries = torch.cat([queries, context_feature], -1)
|
463 |
+
|
464 |
+
if self.num_of_kvs > 1:
|
465 |
+
combination_weight = self.weight_mlp(queries).softmax(
|
466 |
+
-1
|
467 |
+
) # B * 1 * num_tower
|
468 |
+
combination_weight = combination_weight.unsqueeze(-1)
|
469 |
+
else:
|
470 |
+
combination_weight = 1
|
471 |
+
|
472 |
+
queries = self.proj_in(queries)
|
473 |
+
|
474 |
+
vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
|
475 |
+
attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
|
476 |
+
|
477 |
+
attention_mask_list_reshaped = []
|
478 |
+
if attention_mask_list is not None:
|
479 |
+
for attention_mask in attention_mask_list:
|
480 |
+
attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
|
481 |
+
attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
|
482 |
+
attention_mask_list_reshaped.append(attention_mask)
|
483 |
+
|
484 |
+
vision_latents_pos_list = []
|
485 |
+
for i, vision_latents in enumerate(vision_latents_list):
|
486 |
+
if vision_latents.shape[1] > 1:
|
487 |
+
vision_latents_pos_list.append(
|
488 |
+
vision_latents
|
489 |
+
+ getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
|
490 |
+
vision_latents.dtype
|
491 |
+
)
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
vision_latents_pos_list.append(vision_latents)
|
495 |
+
|
496 |
+
aggregated_vision_latents_list = []
|
497 |
+
for i, (vision_latents, attention_mask) in enumerate(
|
498 |
+
zip(vision_latents_pos_list, attention_mask_list_reshaped)
|
499 |
+
):
|
500 |
+
aggregated_vision_latents_list.append(
|
501 |
+
getattr(self, "aggregate_{}".format(i))(
|
502 |
+
vision_latents, queries, attention_mask
|
503 |
+
)
|
504 |
+
)
|
505 |
+
|
506 |
+
aggregated_vision_latents = torch.stack(aggregated_vision_latents_list, 2)
|
507 |
+
|
508 |
+
queries = queries + (aggregated_vision_latents * combination_weight).sum(2)
|
509 |
+
|
510 |
+
queries = self.norm(queries)
|
511 |
+
|
512 |
+
queries = self.proj_out(queries)
|
513 |
+
|
514 |
+
queries = queries + residual
|
515 |
+
|
516 |
+
return queries
|
517 |
+
|
518 |
+
|
519 |
+
class VisionTokenSampler(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
q_dim,
|
523 |
+
context_dim,
|
524 |
+
kv_dim_list,
|
525 |
+
kv_size_list,
|
526 |
+
vision_hidden_size,
|
527 |
+
num_of_layers=1,
|
528 |
+
layer_type="joint",
|
529 |
+
):
|
530 |
+
super().__init__()
|
531 |
+
assert layer_type in ["joint", "sep"]
|
532 |
+
if layer_type == "joint":
|
533 |
+
self.layers = nn.ModuleList(
|
534 |
+
[
|
535 |
+
VisionCrossAttentionLayer(
|
536 |
+
q_dim,
|
537 |
+
context_dim,
|
538 |
+
kv_dim_list,
|
539 |
+
kv_size_list,
|
540 |
+
vision_hidden_size,
|
541 |
+
idx,
|
542 |
+
)
|
543 |
+
for idx in range(num_of_layers)
|
544 |
+
]
|
545 |
+
)
|
546 |
+
else:
|
547 |
+
self.layers = nn.ModuleList(
|
548 |
+
[
|
549 |
+
VisionAggregationLayer(
|
550 |
+
q_dim,
|
551 |
+
context_dim,
|
552 |
+
kv_dim_list,
|
553 |
+
kv_size_list,
|
554 |
+
vision_hidden_size,
|
555 |
+
idx,
|
556 |
+
)
|
557 |
+
for idx in range(num_of_layers)
|
558 |
+
]
|
559 |
+
)
|
560 |
+
|
561 |
+
def forward(self, queries, context_feature, *vision_latents_attention_mask_list):
|
562 |
+
for layer in self.layers:
|
563 |
+
queries = layer(
|
564 |
+
queries, context_feature, *vision_latents_attention_mask_list
|
565 |
+
)
|
566 |
+
return queries
|