Vinitrajputt commited on
Commit
39fb34b
1 Parent(s): 283b459

Upload 8 files

Browse files
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97e108c2abbd378c03de9eb36ae9836382f6e2b309d1d1fc02369856534b31bb
3
+ size 340225224
checkpoint-200_README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
checkpoint-200_adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "down_proj",
21
+ "up_proj",
22
+ "lm_head",
23
+ "o_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-200_trainer_state.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.076923076923077,
5
+ "eval_steps": 25,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.38,
13
+ "learning_rate": 2.29933110367893e-05,
14
+ "loss": 1.9196,
15
+ "step": 25
16
+ },
17
+ {
18
+ "epoch": 0.38,
19
+ "eval_loss": 1.4835141897201538,
20
+ "eval_runtime": 4.4399,
21
+ "eval_samples_per_second": 4.505,
22
+ "eval_steps_per_second": 0.676,
23
+ "step": 25
24
+ },
25
+ {
26
+ "epoch": 0.77,
27
+ "learning_rate": 2.090301003344482e-05,
28
+ "loss": 0.9398,
29
+ "step": 50
30
+ },
31
+ {
32
+ "epoch": 0.77,
33
+ "eval_loss": 1.353461503982544,
34
+ "eval_runtime": 4.4353,
35
+ "eval_samples_per_second": 4.509,
36
+ "eval_steps_per_second": 0.676,
37
+ "step": 50
38
+ },
39
+ {
40
+ "epoch": 1.15,
41
+ "learning_rate": 1.8812709030100337e-05,
42
+ "loss": 0.7795,
43
+ "step": 75
44
+ },
45
+ {
46
+ "epoch": 1.15,
47
+ "eval_loss": 1.4102122783660889,
48
+ "eval_runtime": 4.4451,
49
+ "eval_samples_per_second": 4.499,
50
+ "eval_steps_per_second": 0.675,
51
+ "step": 75
52
+ },
53
+ {
54
+ "epoch": 1.54,
55
+ "learning_rate": 1.6722408026755853e-05,
56
+ "loss": 0.6915,
57
+ "step": 100
58
+ },
59
+ {
60
+ "epoch": 1.54,
61
+ "eval_loss": 1.3842780590057373,
62
+ "eval_runtime": 4.44,
63
+ "eval_samples_per_second": 4.505,
64
+ "eval_steps_per_second": 0.676,
65
+ "step": 100
66
+ },
67
+ {
68
+ "epoch": 1.92,
69
+ "learning_rate": 1.4632107023411373e-05,
70
+ "loss": 0.706,
71
+ "step": 125
72
+ },
73
+ {
74
+ "epoch": 1.92,
75
+ "eval_loss": 1.4492868185043335,
76
+ "eval_runtime": 4.4412,
77
+ "eval_samples_per_second": 4.503,
78
+ "eval_steps_per_second": 0.675,
79
+ "step": 125
80
+ },
81
+ {
82
+ "epoch": 2.31,
83
+ "learning_rate": 1.254180602006689e-05,
84
+ "loss": 0.4767,
85
+ "step": 150
86
+ },
87
+ {
88
+ "epoch": 2.31,
89
+ "eval_loss": 1.5637826919555664,
90
+ "eval_runtime": 4.4377,
91
+ "eval_samples_per_second": 4.507,
92
+ "eval_steps_per_second": 0.676,
93
+ "step": 150
94
+ },
95
+ {
96
+ "epoch": 2.69,
97
+ "learning_rate": 1.045150501672241e-05,
98
+ "loss": 0.4167,
99
+ "step": 175
100
+ },
101
+ {
102
+ "epoch": 2.69,
103
+ "eval_loss": 1.6361162662506104,
104
+ "eval_runtime": 4.4339,
105
+ "eval_samples_per_second": 4.511,
106
+ "eval_steps_per_second": 0.677,
107
+ "step": 175
108
+ },
109
+ {
110
+ "epoch": 3.08,
111
+ "learning_rate": 8.361204013377926e-06,
112
+ "loss": 0.8085,
113
+ "step": 200
114
+ },
115
+ {
116
+ "epoch": 3.08,
117
+ "eval_loss": 1.869662880897522,
118
+ "eval_runtime": 4.4356,
119
+ "eval_samples_per_second": 4.509,
120
+ "eval_steps_per_second": 0.676,
121
+ "step": 200
122
+ }
123
+ ],
124
+ "logging_steps": 25,
125
+ "max_steps": 300,
126
+ "num_train_epochs": 5,
127
+ "save_steps": 25,
128
+ "total_flos": 1105259711692800.0,
129
+ "trial_name": null,
130
+ "trial_params": null
131
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14e7a8a39630161ef250739c283ff8d3d85f784929cbe714742fcaa8f9171ff
3
+ size 170950631
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7a8897479d1dbd9a672321d73fe2a3d09370584f791ba1329e0e35cf353353f
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef9808a7b4bea21800e28f810a599c2cdcd987806b6f84e2c304ad57f3fa2c20
3
+ size 627
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e93936e735452d40dba2683877f022f826972f6b34855bfaa1e7eec4b5f8299
3
+ size 4155