Varosa commited on
Commit
ab0367a
·
verified ·
1 Parent(s): 7a86914

update readme file

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -238,8 +238,8 @@ In this example, the context tokens are 'unforced', meaning the model automatica
238
  >>> from datasets import load_dataset
239
 
240
  >>> # load model and processor
241
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
242
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
243
  >>> model.config.forced_decoder_ids = None
244
 
245
  >>> # load dummy dataset and read audio files
@@ -266,8 +266,8 @@ The following example demonstrates French to French transcription by setting the
266
  >>> from datasets import Audio, load_dataset
267
 
268
  >>> # load model and processor
269
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
270
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
271
  >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
272
 
273
  >>> # load streaming dataset and read first audio sample
@@ -296,8 +296,8 @@ Setting the task to "translate" forces the Whisper model to perform speech trans
296
  >>> from datasets import Audio, load_dataset
297
 
298
  >>> # load model and processor
299
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
300
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
301
  >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
302
 
303
  >>> # load streaming dataset and read first audio sample
@@ -325,8 +325,8 @@ This code snippet shows how to evaluate Whisper Medium on [LibriSpeech test-clea
325
 
326
  >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
327
 
328
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
329
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium").to("cuda")
330
 
331
  >>> def map_to_pred(batch):
332
  >>> audio = batch["audio"]
@@ -363,7 +363,7 @@ can be run with batched inference. It can also be extended to predict sequence l
363
 
364
  >>> pipe = pipeline(
365
  >>> "automatic-speech-recognition",
366
- >>> model="openai/whisper-medium",
367
  >>> chunk_length_s=30,
368
  >>> device=device,
369
  >>> )
 
238
  >>> from datasets import load_dataset
239
 
240
  >>> # load model and processor
241
+ >>> processor = WhisperProcessor.from_pretrained("Varosa/whisper-medium")
242
+ >>> model = WhisperForConditionalGeneration.from_pretrained("Varosa/whisper-medium")
243
  >>> model.config.forced_decoder_ids = None
244
 
245
  >>> # load dummy dataset and read audio files
 
266
  >>> from datasets import Audio, load_dataset
267
 
268
  >>> # load model and processor
269
+ >>> processor = WhisperProcessor.from_pretrained("Varosa/whisper-medium")
270
+ >>> model = WhisperForConditionalGeneration.from_pretrained("Varosa/whisper-medium")
271
  >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
272
 
273
  >>> # load streaming dataset and read first audio sample
 
296
  >>> from datasets import Audio, load_dataset
297
 
298
  >>> # load model and processor
299
+ >>> processor = WhisperProcessor.from_pretrained("Varosa/whisper-medium")
300
+ >>> model = WhisperForConditionalGeneration.from_pretrained("Varosa/whisper-medium")
301
  >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
302
 
303
  >>> # load streaming dataset and read first audio sample
 
325
 
326
  >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
327
 
328
+ >>> processor = WhisperProcessor.from_pretrained("Varosa/whisper-medium")
329
+ >>> model = WhisperForConditionalGeneration.from_pretrained("Varosa/whisper-medium").to("cuda")
330
 
331
  >>> def map_to_pred(batch):
332
  >>> audio = batch["audio"]
 
363
 
364
  >>> pipe = pipeline(
365
  >>> "automatic-speech-recognition",
366
+ >>> model="Varosa/whisper-medium",
367
  >>> chunk_length_s=30,
368
  >>> device=device,
369
  >>> )