Varaprabha
commited on
Commit
·
a224ffc
1
Parent(s):
1ebb2d6
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.40 +/- 0.29
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4d27af164752b2fe6ce292d19651c74b10aa31ef022dfda8d5fae0309765b01
|
3 |
+
size 108036
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[ 1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1686249920434066697,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAS0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6kcP4Wyr79bUhc/5yBXP5BFir/3xty/ZbMIPpgkHL8CDKu/K5wOv31jlj+y1oQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]]",
|
38 |
+
"desired_goal": "[[ 0.61195916 -1.3726355 0.5911004 ]\n [ 0.8403458 -1.0802479 -1.7248219 ]\n [ 0.13349684 -0.6099334 -1.336304 ]\n [-0.55707043 1.1749111 1.037802 ]]",
|
39 |
+
"observation": "[[0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k+cPfZd5j3pCrU9WKgrPW4TDT5qJxY+GyXruyRwqz29MIk+0kQPvqVRCL2QGiA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.07632433 0.1124839 0.08839972]\n [ 0.04190859 0.13776943 0.14663473]\n [-0.00717605 0.08370999 0.26794997]\n [-0.13991097 -0.03328099 0.03908783]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICty6m6c6+7+UhpRSlIwBbJRLMowBdJRHQHAakJF9a2Z1fZQoaAZoCWgPQwjwhjQqcDL6v5SGlFKUaBVLMmgWR0BwGM/D+BH1dX2UKGgGaAloD0MIWYY41sUt/r+UhpRSlGgVSzJoFkdAcBcFcY64lXV9lChoBmgJaA9DCDW3QliNJfS/lIaUUpRoFUsyaBZHQHAUwrtmcvx1fZQoaAZoCWgPQwiveOqRBjf/v5SGlFKUaBVLMmgWR0BwIZjLB9CvdX2UKGgGaAloD0MIARWOIJXi+b+UhpRSlGgVSzJoFkdAcB/ZflZHNHV9lChoBmgJaA9DCNDTgEHSp/2/lIaUUpRoFUsyaBZHQHAeDxG2Cul1fZQoaAZoCWgPQwgiUtMuphn3v5SGlFKUaBVLMmgWR0BwG8wHqu8sdX2UKGgGaAloD0MIwTi4dMz5/r+UhpRSlGgVSzJoFkdAcCkWbwz+FXV9lChoBmgJaA9DCEfGavP/qvu/lIaUUpRoFUsyaBZHQHAnWS+xnnN1fZQoaAZoCWgPQwj5n/zdO2r2v5SGlFKUaBVLMmgWR0BwJZHtnf2sdX2UKGgGaAloD0MIbM7BM6HJ97+UhpRSlGgVSzJoFkdAcCNTx5LRKHV9lChoBmgJaA9DCFSOyeL+I/6/lIaUUpRoFUsyaBZHQHA0MwL3K0V1fZQoaAZoCWgPQwhPO/w1WWP6v5SGlFKUaBVLMmgWR0BwMncIqsltdX2UKGgGaAloD0MIJXoZxXLL/r+UhpRSlGgVSzJoFkdAcDC176YVqXV9lChoBmgJaA9DCP3c0JSdPvu/lIaUUpRoFUsyaBZHQHAueMhouf51fZQoaAZoCWgPQwgOLEfIQF76v5SGlFKUaBVLMmgWR0BwPzxx1gYxdX2UKGgGaAloD0MI38DkRpH197+UhpRSlGgVSzJoFkdAcD1/s3Q2M3V9lChoBmgJaA9DCObOTDCca/m/lIaUUpRoFUsyaBZHQHA7uUhV2id1fZQoaAZoCWgPQwi+Sj52F2j8v5SGlFKUaBVLMmgWR0BwOXhtLteEdX2UKGgGaAloD0MIFQDjGTR097+UhpRSlGgVSzJoFkdAcErj7hvR7nV9lChoBmgJaA9DCAoUsYhhx/q/lIaUUpRoFUsyaBZHQHBJKo2n8891fZQoaAZoCWgPQwi9cr1tpsL5v5SGlFKUaBVLMmgWR0BwR2R/3FkydX2UKGgGaAloD0MIza57KxKT+r+UhpRSlGgVSzJoFkdAcEUkt29tdnV9lChoBmgJaA9DCDxmoDL+vf6/lIaUUpRoFUsyaBZHQHBV/VZs9B91fZQoaAZoCWgPQwj+DG/W4L34v5SGlFKUaBVLMmgWR0BwVEH5aePJdX2UKGgGaAloD0MI9GqA0lAj87+UhpRSlGgVSzJoFkdAcFJ9Gqgh83V9lChoBmgJaA9DCBsQIa6c/fa/lIaUUpRoFUsyaBZHQHBQPYe1a4d1fZQoaAZoCWgPQwjlt+hkqdUAwJSGlFKUaBVLMmgWR0BwYUb83uNQdX2UKGgGaAloD0MIQbeXNEar+7+UhpRSlGgVSzJoFkdAcF+MpPRAr3V9lChoBmgJaA9DCMtlo3N+Svq/lIaUUpRoFUsyaBZHQHBdx3JPqLV1fZQoaAZoCWgPQwi70FynkVb8v5SGlFKUaBVLMmgWR0BwW4dtEXtTdX2UKGgGaAloD0MIyCQjZ2HP+L+UhpRSlGgVSzJoFkdAcGyJBPbfxnV9lChoBmgJaA9DCHTsoBLXcfy/lIaUUpRoFUsyaBZHQHBqzTvy9VZ1fZQoaAZoCWgPQwh2pWWk3tP6v5SGlFKUaBVLMmgWR0BwaQg6ltTDdX2UKGgGaAloD0MIdxVSflIt+L+UhpRSlGgVSzJoFkdAcGbJHiFTN3V9lChoBmgJaA9DCAn6Cz1iNPq/lIaUUpRoFUsyaBZHQHB3oX40uUV1fZQoaAZoCWgPQwgkfO9v0N76v5SGlFKUaBVLMmgWR0BwdeScLBsRdX2UKGgGaAloD0MIvwzGiETh+L+UhpRSlGgVSzJoFkdAcHQeKsMiKXV9lChoBmgJaA9DCLR1cLA38fa/lIaUUpRoFUsyaBZHQHBx3Z00WM11fZQoaAZoCWgPQwjTEiujkY/5v5SGlFKUaBVLMmgWR0BwgO6Zpi7TdX2UKGgGaAloD0MIPbg7a7dd9b+UhpRSlGgVSzJoFkdAcH8u6mO2iXV9lChoBmgJaA9DCFu1a0Ja4/a/lIaUUpRoFUsyaBZHQHB9ZB9kSVZ1fZQoaAZoCWgPQwgIHAk02FT1v5SGlFKUaBVLMmgWR0Bwex8ohIOIdX2UKGgGaAloD0MIaAOwAREi/L+UhpRSlGgVSzJoFkdAcIfISDh99nV9lChoBmgJaA9DCJhO6zaoffa/lIaUUpRoFUsyaBZHQHCGCiVSn+B1fZQoaAZoCWgPQwhTIoleRrH6v5SGlFKUaBVLMmgWR0BwhD8TBZZCdX2UKGgGaAloD0MIyLYMOEvJ+r+UhpRSlGgVSzJoFkdAcIH6reZXuHV9lChoBmgJaA9DCL06x4Ds9fu/lIaUUpRoFUsyaBZHQHCOsWweNkx1fZQoaAZoCWgPQwhUc7nBUEf5v5SGlFKUaBVLMmgWR0BwjPILgGbDdX2UKGgGaAloD0MIev1JfO4E+7+UhpRSlGgVSzJoFkdAcIsoF3Y+S3V9lChoBmgJaA9DCICaWrbWF/i/lIaUUpRoFUsyaBZHQHCI4x59mYl1fZQoaAZoCWgPQwidoE0On3T7v5SGlFKUaBVLMmgWR0BwlW+BYmsvdX2UKGgGaAloD0MIG2SSkbMw9L+UhpRSlGgVSzJoFkdAcJOu9eyAx3V9lChoBmgJaA9DCPJEEOfhhPm/lIaUUpRoFUsyaBZHQHCR5Fw1ivx1fZQoaAZoCWgPQwjYKyy4H/D7v5SGlFKUaBVLMmgWR0Bwj59qk/KRdX2UKGgGaAloD0MID9B9ObMd9r+UhpRSlGgVSzJoFkdAcJw13+uNgnV9lChoBmgJaA9DCAUZARWO4Pi/lIaUUpRoFUsyaBZHQHCadQbdadN1fZQoaAZoCWgPQwiLNPEO8KT3v5SGlFKUaBVLMmgWR0BwmKvovBacdX2UKGgGaAloD0MIhbAaS1hb+L+UhpRSlGgVSzJoFkdAcJZo2XLNfXV9lChoBmgJaA9DCPOOU3QkV/m/lIaUUpRoFUsyaBZHQHCi5OWSlnB1fZQoaAZoCWgPQwiC4seYu9b4v5SGlFKUaBVLMmgWR0BwoSO6unuRdX2UKGgGaAloD0MIr1xvm6mQ/L+UhpRSlGgVSzJoFkdAcJ9ZeiSJTHV9lChoBmgJaA9DCJqxaDo7mfa/lIaUUpRoFUsyaBZHQHCdFEd/8VJ1fZQoaAZoCWgPQwigTnl0I2z2v5SGlFKUaBVLMmgWR0BwqZEE1VHXdX2UKGgGaAloD0MIL/zgfOqY97+UhpRSlGgVSzJoFkdAcKfSnLq2SnV9lChoBmgJaA9DCF9E2zF1V/+/lIaUUpRoFUsyaBZHQHCmCuIRAbB1fZQoaAZoCWgPQwhBDd/CuvH5v5SGlFKUaBVLMmgWR0Bwo8b5uZTidX2UKGgGaAloD0MII04n2ery97+UhpRSlGgVSzJoFkdAcLA7ngYP5HV9lChoBmgJaA9DCHHjFvNzg/y/lIaUUpRoFUsyaBZHQHCueskpqh11fZQoaAZoCWgPQwi/1xAcl3H1v5SGlFKUaBVLMmgWR0BwrLGS6lLwdX2UKGgGaAloD0MIuHh4z4Gl+r+UhpRSlGgVSzJoFkdAcKpswL3K0XV9lChoBmgJaA9DCAg7xapB2Pm/lIaUUpRoFUsyaBZHQHC2+GCZnct1fZQoaAZoCWgPQwh8gVmhSLf6v5SGlFKUaBVLMmgWR0BwtTgGbCrMdX2UKGgGaAloD0MI2q1lMhzP87+UhpRSlGgVSzJoFkdAcLNvRJEpiXV9lChoBmgJaA9DCKM/NPPkGvy/lIaUUpRoFUsyaBZHQHCxLIPsiSt1fZQoaAZoCWgPQwiwBFJi1zb6v5SGlFKUaBVLMmgWR0Bwvc0VJtiydX2UKGgGaAloD0MIINCZtKk6+r+UhpRSlGgVSzJoFkdAcLwNcW0qpnV9lChoBmgJaA9DCHRiD+1jBfq/lIaUUpRoFUsyaBZHQHC6RuGbkOt1fZQoaAZoCWgPQwhpN/qYD8j4v5SGlFKUaBVLMmgWR0BwuARoRIz4dX2UKGgGaAloD0MIwhN6/Um8/b+UhpRSlGgVSzJoFkdAcMT8AJb+tXV9lChoBmgJaA9DCBBc5QmEvQDAlIaUUpRoFUsyaBZHQHDDO/5+H8F1fZQoaAZoCWgPQwjMC7CPTp3/v5SGlFKUaBVLMmgWR0BwwXFMqSX/dX2UKGgGaAloD0MIBvTCnQsj+b+UhpRSlGgVSzJoFkdAcL8tfoicG3V9lChoBmgJaA9DCCmzQSYZefq/lIaUUpRoFUsyaBZHQHDL+AI6bON1fZQoaAZoCWgPQwj3sYLfhhj7v5SGlFKUaBVLMmgWR0BwyjpnpSrHdX2UKGgGaAloD0MIjexKy0h99L+UhpRSlGgVSzJoFkdAcMhwEhaC+XV9lChoBmgJaA9DCPoOfuIAevi/lIaUUpRoFUsyaBZHQHDGK9bor4F1fZQoaAZoCWgPQwjfxJCcTBz+v5SGlFKUaBVLMmgWR0Bw0ov/R3NcdX2UKGgGaAloD0MIrOC3Icar+b+UhpRSlGgVSzJoFkdAcNDNVinYQXV9lChoBmgJaA9DCMYX7fFC+v2/lIaUUpRoFUsyaBZHQHDPBQBPsRh1fZQoaAZoCWgPQwhyhuKON7n6v5SGlFKUaBVLMmgWR0BwzMQ176YWdX2UKGgGaAloD0MITBdi9UfY+r+UhpRSlGgVSzJoFkdAcNlih37k4nV9lChoBmgJaA9DCL2nctpTsvu/lIaUUpRoFUsyaBZHQHDXomkWRA91fZQoaAZoCWgPQwjtn6cBg+T8v5SGlFKUaBVLMmgWR0Bw1dhXr+o+dX2UKGgGaAloD0MIAoQPJVry/L+UhpRSlGgVSzJoFkdAcNOT5ftx/HV9lChoBmgJaA9DCAsm/ijqTPq/lIaUUpRoFUsyaBZHQHDgJy6tknV1fZQoaAZoCWgPQwhbttYXCa0AwJSGlFKUaBVLMmgWR0Bw3mYeDFqBdX2UKGgGaAloD0MIWB8PfXdLAMCUhpRSlGgVSzJoFkdAcNycEeQuEnV9lChoBmgJaA9DCAwG19zRfwHAlIaUUpRoFUsyaBZHQHDaVv/BFd91ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 5000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3ccb4c7a1482ffe77c4d920b252c2d6f4e32f031f1bb7f2d4c722b6250b1b9d
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd355709aa20d9895874a0dbd23469bb0ac3efb38414d0a54bfb3379ee9aeedc
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1163a0a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1163a05f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686244109557117597, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAs5QJP9w5urwmIhU/s5QJP9w5urwmIhU/s5QJP9w5urwmIhU/s5QJP9w5urwmIhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyge4P0RnsD9DTym/ESGBvhqFmT8J2n+/DE/qvrL25z5KHac/ygzdveZ6yj872WC+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACzlAk/3Dm6vCYiFT+IFuQ7EHoCvKv2NLqzlAk/3Dm6vCYiFT+IFuQ7EHoCvKv2NLqzlAk/3Dm6vCYiFT+IFuQ7EHoCvKv2NLqzlAk/3Dm6vCYiFT+IFuQ7EHoCvKv2NLqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5374252 -0.02273267 0.5825523 ]\n [ 0.5374252 -0.02273267 0.5825523 ]\n [ 0.5374252 -0.02273267 0.5825523 ]\n [ 0.5374252 -0.02273267 0.5825523 ]]", "desired_goal": "[[ 1.4377377 1.3781514 -0.6613657 ]\n [-0.2522054 1.1993744 -0.9994207 ]\n [-0.45763433 0.453054 1.3055813 ]\n [-0.10793455 1.5818756 -0.21957867]]", "observation": "[[ 0.5374252 -0.02273267 0.5825523 0.00696069 -0.00796367 -0.00069032]\n [ 0.5374252 -0.02273267 0.5825523 0.00696069 -0.00796367 -0.00069032]\n [ 0.5374252 -0.02273267 0.5825523 0.00696069 -0.00796367 -0.00069032]\n [ 0.5374252 -0.02273267 0.5825523 0.00696069 -0.00796367 -0.00069032]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8qwPvjnnh71chSY+Ia40PeLZzr0qbIk8ATuKPRa+Jr2uz2E+FzW6PdRABL5sv5Y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14030817 -0.06635899 0.1626181 ]\n [ 0.04411137 -0.10100152 0.01677521]\n [ 0.06749535 -0.04070862 0.2205188 ]\n [ 0.09092157 -0.12915355 0.29442918]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6lvmdFnMCMCUhpRSlIwBbJRLMowBdJRHQLThoKjzqbB1fZQoaAZoCWgPQwjlmgKZnXUQwJSGlFKUaBVLMmgWR0C04YCOWBz4dX2UKGgGaAloD0MI/5JUppjDDsCUhpRSlGgVSzJoFkdAtOFj876pHnV9lChoBmgJaA9DCEksKXefAwzAlIaUUpRoFUsyaBZHQLThRtyxRl91fZQoaAZoCWgPQwhxIY/gRpoVwJSGlFKUaBVLMmgWR0C04gzbnHNpdX2UKGgGaAloD0MIWBtjJ7xkEsCUhpRSlGgVSzJoFkdAtOHsuctoSXV9lChoBmgJaA9DCJaS5SSUjhbAlIaUUpRoFUsyaBZHQLTh0EOiFkB1fZQoaAZoCWgPQwgsvMtFfIcPwJSGlFKUaBVLMmgWR0C04bMGLUCrdX2UKGgGaAloD0MIW18ktOVMEsCUhpRSlGgVSzJoFkdAtOJ8lRgqmXV9lChoBmgJaA9DCKXd6GM+wBbAlIaUUpRoFUsyaBZHQLTiXJAMUh51fZQoaAZoCWgPQwgzUu+pnOYRwJSGlFKUaBVLMmgWR0C04j/z8P4EdX2UKGgGaAloD0MI8656wDxECcCUhpRSlGgVSzJoFkdAtOIisYEW7HV9lChoBmgJaA9DCOj500Z1egzAlIaUUpRoFUsyaBZHQLTjByEcsDp1fZQoaAZoCWgPQwhr1a4Jad0RwJSGlFKUaBVLMmgWR0C04udovi97dX2UKGgGaAloD0MIBpylZDl5FMCUhpRSlGgVSzJoFkdAtOLLEehf0HV9lChoBmgJaA9DCM8UOq+xexPAlIaUUpRoFUsyaBZHQLTirhoM8YB1fZQoaAZoCWgPQwgcXDrmPBMRwJSGlFKUaBVLMmgWR0C047oaHbh4dX2UKGgGaAloD0MIUn3nFyW4F8CUhpRSlGgVSzJoFkdAtOOaO/+Kj3V9lChoBmgJaA9DCE+Q2O4eAAvAlIaUUpRoFUsyaBZHQLTjfegL7XR1fZQoaAZoCWgPQwg4FakwtuAWwJSGlFKUaBVLMmgWR0C042E2tMfzdX2UKGgGaAloD0MI11HVBFHXCsCUhpRSlGgVSzJoFkdAtORv0I1LrXV9lChoBmgJaA9DCFwbKsb5WxDAlIaUUpRoFUsyaBZHQLTkUDXvphZ1fZQoaAZoCWgPQwiHNgAbEDEVwJSGlFKUaBVLMmgWR0C05DPovBacdX2UKGgGaAloD0MI2scKfhuCCMCUhpRSlGgVSzJoFkdAtOQW5Xlr/XV9lChoBmgJaA9DCKlqgqj70BPAlIaUUpRoFUsyaBZHQLTlHpz90ih1fZQoaAZoCWgPQwju7ZbkgL0JwJSGlFKUaBVLMmgWR0C05P7LMcIadX2UKGgGaAloD0MIqTP3kPC9CsCUhpRSlGgVSzJoFkdAtOTicAimmHV9lChoBmgJaA9DCI0qw7gbZA/AlIaUUpRoFUsyaBZHQLTkxXarWAh1fZQoaAZoCWgPQwiqRNlbytkHwJSGlFKUaBVLMmgWR0C05dq+N96UdX2UKGgGaAloD0MIhjjWxW1EH8CUhpRSlGgVSzJoFkdAtOW63BpHqnV9lChoBmgJaA9DCG/1nPS+EQ/AlIaUUpRoFUsyaBZHQLTlnobn5i51fZQoaAZoCWgPQwjS/3ItWgARwJSGlFKUaBVLMmgWR0C05YHfZVXFdX2UKGgGaAloD0MIfT81XrrJFsCUhpRSlGgVSzJoFkdAtOaUzqKP4nV9lChoBmgJaA9DCDIDlfHvkxfAlIaUUpRoFUsyaBZHQLTmdPf8/EB1fZQoaAZoCWgPQwgBGM+goW8RwJSGlFKUaBVLMmgWR0C05linHeabdX2UKGgGaAloD0MIf/YjRWT4E8CUhpRSlGgVSzJoFkdAtOY7s3Q2M3V9lChoBmgJaA9DCIKtEiwO5w/AlIaUUpRoFUsyaBZHQLTnR+V1Oj91fZQoaAZoCWgPQwglWvJ4Wt4MwJSGlFKUaBVLMmgWR0C05yhZEDyOdX2UKGgGaAloD0MIPpXTnpJTBcCUhpRSlGgVSzJoFkdAtOcMElme2HV9lChoBmgJaA9DCN1Dwvf+VhLAlIaUUpRoFUsyaBZHQLTm7xGDtgN1fZQoaAZoCWgPQwip+pXOh6cKwJSGlFKUaBVLMmgWR0C05/lcQiA2dX2UKGgGaAloD0MIuYswRbnUDsCUhpRSlGgVSzJoFkdAtOfZdrwfAHV9lChoBmgJaA9DCFSqRNlbyg7AlIaUUpRoFUsyaBZHQLTnvSh8IAx1fZQoaAZoCWgPQwhyw++mW9YPwJSGlFKUaBVLMmgWR0C056AqmTC+dX2UKGgGaAloD0MICr3+JD4XEsCUhpRSlGgVSzJoFkdAtOhxfiPyTnV9lChoBmgJaA9DCNYZ3xeXCgrAlIaUUpRoFUsyaBZHQLToUVcUuct1fZQoaAZoCWgPQwgHCryTT+8SwJSGlFKUaBVLMmgWR0C06DTLns9kdX2UKGgGaAloD0MI4sgDkUV6H8CUhpRSlGgVSzJoFkdAtOgXllsguHV9lChoBmgJaA9DCJ33/3HChCHAlIaUUpRoFUsyaBZHQLTo2+NcW0t1fZQoaAZoCWgPQwjj3vyGiYYSwJSGlFKUaBVLMmgWR0C06LvIS13MdX2UKGgGaAloD0MIkDAMWHJlFMCUhpRSlGgVSzJoFkdAtOifJ2dNFnV9lChoBmgJaA9DCPxVgO82jxrAlIaUUpRoFUsyaBZHQLTogee4Cp51fZQoaAZoCWgPQwjc2OxI9U0QwJSGlFKUaBVLMmgWR0C06UXazu4PdX2UKGgGaAloD0MIkrOwpx1eG8CUhpRSlGgVSzJoFkdAtOklvHcUNHV9lChoBmgJaA9DCMfa39kebRLAlIaUUpRoFUsyaBZHQLTpCTNMXad1fZQoaAZoCWgPQwhxr8xbdT0TwJSGlFKUaBVLMmgWR0C06OxsQ/X5dX2UKGgGaAloD0MItaM4Rx3tE8CUhpRSlGgVSzJoFkdAtOmzPSlWO3V9lChoBmgJaA9DCJ612y409w7AlIaUUpRoFUsyaBZHQLTpkxaxHG11fZQoaAZoCWgPQwjbMAqCx7cMwJSGlFKUaBVLMmgWR0C06XZ6QeV+dX2UKGgGaAloD0MIdPBMaJJoE8CUhpRSlGgVSzJoFkdAtOlZM8HObHV9lChoBmgJaA9DCLNAu0OKQRDAlIaUUpRoFUsyaBZHQLTqIAU+LWJ1fZQoaAZoCWgPQwjde7jkuLMKwJSGlFKUaBVLMmgWR0C06f/epGWldX2UKGgGaAloD0MIo7CLoge+DsCUhpRSlGgVSzJoFkdAtOnjPw/gSHV9lChoBmgJaA9DCBh9BWnGggrAlIaUUpRoFUsyaBZHQLTpxfVZs9B1fZQoaAZoCWgPQwjwGYnQCDYQwJSGlFKUaBVLMmgWR0C06oxNRFZxdX2UKGgGaAloD0MIUvNV8rH7CsCUhpRSlGgVSzJoFkdAtOpsMPSUknV9lChoBmgJaA9DCJ9afXVVQAjAlIaUUpRoFUsyaBZHQLTqT5CWu5l1fZQoaAZoCWgPQwjni70XX6QTwJSGlFKUaBVLMmgWR0C06jJSrHU+dX2UKGgGaAloD0MIDXGsi9sgIsCUhpRSlGgVSzJoFkdAtOr1bD/EO3V9lChoBmgJaA9DCKwDIO7qtQ/AlIaUUpRoFUsyaBZHQLTq1UGmk311fZQoaAZoCWgPQwjIRbWIKIYLwJSGlFKUaBVLMmgWR0C06riZ4Oc2dX2UKGgGaAloD0MIMlhxqrXQEMCUhpRSlGgVSzJoFkdAtOqbcN6PbXV9lChoBmgJaA9DCD1GeeblYBLAlIaUUpRoFUsyaBZHQLTrYqqOtGN1fZQoaAZoCWgPQwiALESHwGESwJSGlFKUaBVLMmgWR0C060KUeMhpdX2UKGgGaAloD0MIGt1B7EwhEMCUhpRSlGgVSzJoFkdAtOsl7VrhznV9lChoBmgJaA9DCAwfEVMiORrAlIaUUpRoFUsyaBZHQLTrCKR+z+p1fZQoaAZoCWgPQwgeUaG6uTgcwJSGlFKUaBVLMmgWR0C0680xh2GJdX2UKGgGaAloD0MIsDcxJCcDHMCUhpRSlGgVSzJoFkdAtOutFjNILHV9lChoBmgJaA9DCLhbkgN2RRXAlIaUUpRoFUsyaBZHQLTrkIIWxhV1fZQoaAZoCWgPQwhJMNXMWroQwJSGlFKUaBVLMmgWR0C063NVFQVLdX2UKGgGaAloD0MITny1ozhnCcCUhpRSlGgVSzJoFkdAtOw3+MqBmXV9lChoBmgJaA9DCGHgufdwSRLAlIaUUpRoFUsyaBZHQLTsF9mpVCJ1fZQoaAZoCWgPQwgaGHlZE6sVwJSGlFKUaBVLMmgWR0C06/s495hSdX2UKGgGaAloD0MI5SuBlNgVGsCUhpRSlGgVSzJoFkdAtOvd9uxbCHV9lChoBmgJaA9DCFd4l4v4jhbAlIaUUpRoFUsyaBZHQLTsqRHf/FR1fZQoaAZoCWgPQwjmCBnIs5sUwJSGlFKUaBVLMmgWR0C07Ij6SDAadX2UKGgGaAloD0MIttYXCW3ZBMCUhpRSlGgVSzJoFkdAtOxsaaTfSHV9lChoBmgJaA9DCN+l1CXj+A/AlIaUUpRoFUsyaBZHQLTsTyon8bd1fZQoaAZoCWgPQwh72XbaGnEIwJSGlFKUaBVLMmgWR0C07Rj67/XHdX2UKGgGaAloD0MIDK65o/+FD8CUhpRSlGgVSzJoFkdAtOz484gieXV9lChoBmgJaA9DCPcBSG3ihArAlIaUUpRoFUsyaBZHQLTs3JU5uIh1fZQoaAZoCWgPQwjM1CR4Q/oOwJSGlFKUaBVLMmgWR0C07L9OIqLCdX2UKGgGaAloD0MIqvQTzm5NDcCUhpRSlGgVSzJoFkdAtO2Ged07sHV9lChoBmgJaA9DCBDOp45Vyg3AlIaUUpRoFUsyaBZHQLTtZlU6xPh1fZQoaAZoCWgPQwjlKha/KWwVwJSGlFKUaBVLMmgWR0C07Um0Re1KdX2UKGgGaAloD0MI34rEBDWMHsCUhpRSlGgVSzJoFkdAtO0sdn0033V9lChoBmgJaA9DCOqxLQPOEhTAlIaUUpRoFUsyaBZHQLTt8SoOx0N1fZQoaAZoCWgPQwg/HCRE+UIQwJSGlFKUaBVLMmgWR0C07dEIHC40dX2UKGgGaAloD0MIRz6veOqRD8CUhpRSlGgVSzJoFkdAtO20aCL/CXV9lChoBmgJaA9DCJS8OseAjAvAlIaUUpRoFUsyaBZHQLTtlyquKXR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1163a0a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1163a05f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686249920434066697, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAS0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/S0V/PtxJyTyrRg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6kcP4Wyr79bUhc/5yBXP5BFir/3xty/ZbMIPpgkHL8CDKu/K5wOv31jlj+y1oQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjxLRX8+3EnJPKtGDj+jriQ8D8aXOuhaxjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]\n [0.24928777 0.02457135 0.5557658 ]]", "desired_goal": "[[ 0.61195916 -1.3726355 0.5911004 ]\n [ 0.8403458 -1.0802479 -1.7248219 ]\n [ 0.13349684 -0.6099334 -1.336304 ]\n [-0.55707043 1.1749111 1.037802 ]]", "observation": "[[0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]\n [0.24928777 0.02457135 0.5557658 0.0100514 0.00115794 0.02421327]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k+cPfZd5j3pCrU9WKgrPW4TDT5qJxY+GyXruyRwqz29MIk+0kQPvqVRCL2QGiA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07632433 0.1124839 0.08839972]\n [ 0.04190859 0.13776943 0.14663473]\n [-0.00717605 0.08370999 0.26794997]\n [-0.13991097 -0.03328099 0.03908783]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICty6m6c6+7+UhpRSlIwBbJRLMowBdJRHQHAakJF9a2Z1fZQoaAZoCWgPQwjwhjQqcDL6v5SGlFKUaBVLMmgWR0BwGM/D+BH1dX2UKGgGaAloD0MIWYY41sUt/r+UhpRSlGgVSzJoFkdAcBcFcY64lXV9lChoBmgJaA9DCDW3QliNJfS/lIaUUpRoFUsyaBZHQHAUwrtmcvx1fZQoaAZoCWgPQwiveOqRBjf/v5SGlFKUaBVLMmgWR0BwIZjLB9CvdX2UKGgGaAloD0MIARWOIJXi+b+UhpRSlGgVSzJoFkdAcB/ZflZHNHV9lChoBmgJaA9DCNDTgEHSp/2/lIaUUpRoFUsyaBZHQHAeDxG2Cul1fZQoaAZoCWgPQwgiUtMuphn3v5SGlFKUaBVLMmgWR0BwG8wHqu8sdX2UKGgGaAloD0MIwTi4dMz5/r+UhpRSlGgVSzJoFkdAcCkWbwz+FXV9lChoBmgJaA9DCEfGavP/qvu/lIaUUpRoFUsyaBZHQHAnWS+xnnN1fZQoaAZoCWgPQwj5n/zdO2r2v5SGlFKUaBVLMmgWR0BwJZHtnf2sdX2UKGgGaAloD0MIbM7BM6HJ97+UhpRSlGgVSzJoFkdAcCNTx5LRKHV9lChoBmgJaA9DCFSOyeL+I/6/lIaUUpRoFUsyaBZHQHA0MwL3K0V1fZQoaAZoCWgPQwhPO/w1WWP6v5SGlFKUaBVLMmgWR0BwMncIqsltdX2UKGgGaAloD0MIJXoZxXLL/r+UhpRSlGgVSzJoFkdAcDC176YVqXV9lChoBmgJaA9DCP3c0JSdPvu/lIaUUpRoFUsyaBZHQHAueMhouf51fZQoaAZoCWgPQwgOLEfIQF76v5SGlFKUaBVLMmgWR0BwPzxx1gYxdX2UKGgGaAloD0MI38DkRpH197+UhpRSlGgVSzJoFkdAcD1/s3Q2M3V9lChoBmgJaA9DCObOTDCca/m/lIaUUpRoFUsyaBZHQHA7uUhV2id1fZQoaAZoCWgPQwi+Sj52F2j8v5SGlFKUaBVLMmgWR0BwOXhtLteEdX2UKGgGaAloD0MIFQDjGTR097+UhpRSlGgVSzJoFkdAcErj7hvR7nV9lChoBmgJaA9DCAoUsYhhx/q/lIaUUpRoFUsyaBZHQHBJKo2n8891fZQoaAZoCWgPQwi9cr1tpsL5v5SGlFKUaBVLMmgWR0BwR2R/3FkydX2UKGgGaAloD0MIza57KxKT+r+UhpRSlGgVSzJoFkdAcEUkt29tdnV9lChoBmgJaA9DCDxmoDL+vf6/lIaUUpRoFUsyaBZHQHBV/VZs9B91fZQoaAZoCWgPQwj+DG/W4L34v5SGlFKUaBVLMmgWR0BwVEH5aePJdX2UKGgGaAloD0MI9GqA0lAj87+UhpRSlGgVSzJoFkdAcFJ9Gqgh83V9lChoBmgJaA9DCBsQIa6c/fa/lIaUUpRoFUsyaBZHQHBQPYe1a4d1fZQoaAZoCWgPQwjlt+hkqdUAwJSGlFKUaBVLMmgWR0BwYUb83uNQdX2UKGgGaAloD0MIQbeXNEar+7+UhpRSlGgVSzJoFkdAcF+MpPRAr3V9lChoBmgJaA9DCMtlo3N+Svq/lIaUUpRoFUsyaBZHQHBdx3JPqLV1fZQoaAZoCWgPQwi70FynkVb8v5SGlFKUaBVLMmgWR0BwW4dtEXtTdX2UKGgGaAloD0MIyCQjZ2HP+L+UhpRSlGgVSzJoFkdAcGyJBPbfxnV9lChoBmgJaA9DCHTsoBLXcfy/lIaUUpRoFUsyaBZHQHBqzTvy9VZ1fZQoaAZoCWgPQwh2pWWk3tP6v5SGlFKUaBVLMmgWR0BwaQg6ltTDdX2UKGgGaAloD0MIdxVSflIt+L+UhpRSlGgVSzJoFkdAcGbJHiFTN3V9lChoBmgJaA9DCAn6Cz1iNPq/lIaUUpRoFUsyaBZHQHB3oX40uUV1fZQoaAZoCWgPQwgkfO9v0N76v5SGlFKUaBVLMmgWR0BwdeScLBsRdX2UKGgGaAloD0MIvwzGiETh+L+UhpRSlGgVSzJoFkdAcHQeKsMiKXV9lChoBmgJaA9DCLR1cLA38fa/lIaUUpRoFUsyaBZHQHBx3Z00WM11fZQoaAZoCWgPQwjTEiujkY/5v5SGlFKUaBVLMmgWR0BwgO6Zpi7TdX2UKGgGaAloD0MIPbg7a7dd9b+UhpRSlGgVSzJoFkdAcH8u6mO2iXV9lChoBmgJaA9DCFu1a0Ja4/a/lIaUUpRoFUsyaBZHQHB9ZB9kSVZ1fZQoaAZoCWgPQwgIHAk02FT1v5SGlFKUaBVLMmgWR0Bwex8ohIOIdX2UKGgGaAloD0MIaAOwAREi/L+UhpRSlGgVSzJoFkdAcIfISDh99nV9lChoBmgJaA9DCJhO6zaoffa/lIaUUpRoFUsyaBZHQHCGCiVSn+B1fZQoaAZoCWgPQwhTIoleRrH6v5SGlFKUaBVLMmgWR0BwhD8TBZZCdX2UKGgGaAloD0MIyLYMOEvJ+r+UhpRSlGgVSzJoFkdAcIH6reZXuHV9lChoBmgJaA9DCL06x4Ds9fu/lIaUUpRoFUsyaBZHQHCOsWweNkx1fZQoaAZoCWgPQwhUc7nBUEf5v5SGlFKUaBVLMmgWR0BwjPILgGbDdX2UKGgGaAloD0MIev1JfO4E+7+UhpRSlGgVSzJoFkdAcIsoF3Y+S3V9lChoBmgJaA9DCICaWrbWF/i/lIaUUpRoFUsyaBZHQHCI4x59mYl1fZQoaAZoCWgPQwidoE0On3T7v5SGlFKUaBVLMmgWR0BwlW+BYmsvdX2UKGgGaAloD0MIG2SSkbMw9L+UhpRSlGgVSzJoFkdAcJOu9eyAx3V9lChoBmgJaA9DCPJEEOfhhPm/lIaUUpRoFUsyaBZHQHCR5Fw1ivx1fZQoaAZoCWgPQwjYKyy4H/D7v5SGlFKUaBVLMmgWR0Bwj59qk/KRdX2UKGgGaAloD0MID9B9ObMd9r+UhpRSlGgVSzJoFkdAcJw13+uNgnV9lChoBmgJaA9DCAUZARWO4Pi/lIaUUpRoFUsyaBZHQHCadQbdadN1fZQoaAZoCWgPQwiLNPEO8KT3v5SGlFKUaBVLMmgWR0BwmKvovBacdX2UKGgGaAloD0MIhbAaS1hb+L+UhpRSlGgVSzJoFkdAcJZo2XLNfXV9lChoBmgJaA9DCPOOU3QkV/m/lIaUUpRoFUsyaBZHQHCi5OWSlnB1fZQoaAZoCWgPQwiC4seYu9b4v5SGlFKUaBVLMmgWR0BwoSO6unuRdX2UKGgGaAloD0MIr1xvm6mQ/L+UhpRSlGgVSzJoFkdAcJ9ZeiSJTHV9lChoBmgJaA9DCJqxaDo7mfa/lIaUUpRoFUsyaBZHQHCdFEd/8VJ1fZQoaAZoCWgPQwigTnl0I2z2v5SGlFKUaBVLMmgWR0BwqZEE1VHXdX2UKGgGaAloD0MIL/zgfOqY97+UhpRSlGgVSzJoFkdAcKfSnLq2SnV9lChoBmgJaA9DCF9E2zF1V/+/lIaUUpRoFUsyaBZHQHCmCuIRAbB1fZQoaAZoCWgPQwhBDd/CuvH5v5SGlFKUaBVLMmgWR0Bwo8b5uZTidX2UKGgGaAloD0MII04n2ery97+UhpRSlGgVSzJoFkdAcLA7ngYP5HV9lChoBmgJaA9DCHHjFvNzg/y/lIaUUpRoFUsyaBZHQHCueskpqh11fZQoaAZoCWgPQwi/1xAcl3H1v5SGlFKUaBVLMmgWR0BwrLGS6lLwdX2UKGgGaAloD0MIuHh4z4Gl+r+UhpRSlGgVSzJoFkdAcKpswL3K0XV9lChoBmgJaA9DCAg7xapB2Pm/lIaUUpRoFUsyaBZHQHC2+GCZnct1fZQoaAZoCWgPQwh8gVmhSLf6v5SGlFKUaBVLMmgWR0BwtTgGbCrMdX2UKGgGaAloD0MI2q1lMhzP87+UhpRSlGgVSzJoFkdAcLNvRJEpiXV9lChoBmgJaA9DCKM/NPPkGvy/lIaUUpRoFUsyaBZHQHCxLIPsiSt1fZQoaAZoCWgPQwiwBFJi1zb6v5SGlFKUaBVLMmgWR0Bwvc0VJtiydX2UKGgGaAloD0MIINCZtKk6+r+UhpRSlGgVSzJoFkdAcLwNcW0qpnV9lChoBmgJaA9DCHRiD+1jBfq/lIaUUpRoFUsyaBZHQHC6RuGbkOt1fZQoaAZoCWgPQwhpN/qYD8j4v5SGlFKUaBVLMmgWR0BwuARoRIz4dX2UKGgGaAloD0MIwhN6/Um8/b+UhpRSlGgVSzJoFkdAcMT8AJb+tXV9lChoBmgJaA9DCBBc5QmEvQDAlIaUUpRoFUsyaBZHQHDDO/5+H8F1fZQoaAZoCWgPQwjMC7CPTp3/v5SGlFKUaBVLMmgWR0BwwXFMqSX/dX2UKGgGaAloD0MIBvTCnQsj+b+UhpRSlGgVSzJoFkdAcL8tfoicG3V9lChoBmgJaA9DCCmzQSYZefq/lIaUUpRoFUsyaBZHQHDL+AI6bON1fZQoaAZoCWgPQwj3sYLfhhj7v5SGlFKUaBVLMmgWR0BwyjpnpSrHdX2UKGgGaAloD0MIjexKy0h99L+UhpRSlGgVSzJoFkdAcMhwEhaC+XV9lChoBmgJaA9DCPoOfuIAevi/lIaUUpRoFUsyaBZHQHDGK9bor4F1fZQoaAZoCWgPQwjfxJCcTBz+v5SGlFKUaBVLMmgWR0Bw0ov/R3NcdX2UKGgGaAloD0MIrOC3Icar+b+UhpRSlGgVSzJoFkdAcNDNVinYQXV9lChoBmgJaA9DCMYX7fFC+v2/lIaUUpRoFUsyaBZHQHDPBQBPsRh1fZQoaAZoCWgPQwhyhuKON7n6v5SGlFKUaBVLMmgWR0BwzMQ176YWdX2UKGgGaAloD0MITBdi9UfY+r+UhpRSlGgVSzJoFkdAcNlih37k4nV9lChoBmgJaA9DCL2nctpTsvu/lIaUUpRoFUsyaBZHQHDXomkWRA91fZQoaAZoCWgPQwjtn6cBg+T8v5SGlFKUaBVLMmgWR0Bw1dhXr+o+dX2UKGgGaAloD0MIAoQPJVry/L+UhpRSlGgVSzJoFkdAcNOT5ftx/HV9lChoBmgJaA9DCAsm/ijqTPq/lIaUUpRoFUsyaBZHQHDgJy6tknV1fZQoaAZoCWgPQwhbttYXCa0AwJSGlFKUaBVLMmgWR0Bw3mYeDFqBdX2UKGgGaAloD0MIWB8PfXdLAMCUhpRSlGgVSzJoFkdAcNycEeQuEnV9lChoBmgJaA9DCAwG19zRfwHAlIaUUpRoFUsyaBZHQHDaVv/BFd91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3994831395102665, "std_reward": 0.28615294026585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-08T18:50:45.208664"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fedb2e53f13d0ab8bdc4776af8b1d0c1d98b6c2e792e47d5e7e7f9ca28ba0034
|
3 |
size 2387
|