Text Generation
Safetensors
English
llama
shining-valiant
shining-valiant-2
valiant
valiant-labs
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-70b
llama-3
llama-3-instruct
llama-3-instruct-70b
70b
science
physics
biology
chemistry
compsci
computer-science
engineering
logic
rationality
advanced
expert
technical
conversational
chat
instruct
Eval Results
File size: 8,926 Bytes
a5a7b5e 5543662 1c1683f a5a7b5e 7428c3e a5a7b5e 7428c3e 48e48f6 a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e a5a7b5e 7428c3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
language:
- en
pipeline_tag: text-generation
tags:
- shining-valiant
- shining-valiant-2
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-70b
- llama-3
- llama-3-instruct
- llama-3-instruct-70b
- 70b
- science
- physics
- biology
- chemistry
- compsci
- computer-science
- engineering
- logic
- rationality
- advanced
- expert
- technical
- conversational
- chat
- instruct
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
datasets:
- sequelbox/Celestia
- sequelbox/Spurline
- sequelbox/Supernova
model_type: llama
model-index:
- name: Llama3.1-70B-ShiningValiant2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-Shot)
type: Winogrande
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.93
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU College Biology (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 93.75
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU High School Biology (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 91.94
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU Conceptual Physics (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.70
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU College Physics (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.78
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU High School Physics (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.91
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU College Chemistry (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.00
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU High School Chemistry (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.86
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU Astronomy (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 89.47
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU College Computer Science (5-Shot)
type: MMLU
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.00
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.55
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 27.19
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.02
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.48
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.37
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-70B-ShiningValiant2
name: Open LLM Leaderboard
license: llama3.1
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/EXX7TKbB-R6arxww2mk0R.jpeg)
Shining Valiant 2 is a chat model built on Llama 3.1 70b, finetuned on our data for friendship, insight, knowledge and enthusiasm.
- Finetuned on [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) for best available general performance
- Trained on a variety of high quality open source data; focused on science, engineering, technical knowledge, and structured reasoning
- Also available for [Llama 3.1 8b](https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2) and [Llama 3.2 3b!](https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2)
## Version
This is the **2024-10-30** release of Shining Valiant 2 for Llama 3.1 70b.
This release uses our newest datasets, open-sourced for everyone's use, including our expanded [science-instruct dataset](https://huggingface.co/datasets/sequelbox/Celestia). This release features improvements in logical thinking and structured reasoning as well as physics, chemistry, biology, astronomy, Earth science, computer science, and information theory.
Future upgrades will continue to expand Shining Valiant's technical knowledge base.
Help us and recommend Shining Valiant 2 to your friends!
## Prompting Guide
Shining Valiant 2 uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) prompt format. The example script below can be used as a starting point for general chat:
```python
import transformers
import torch
model_id = "ValiantLabs/Llama3.1-70B-ShiningValiant2"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an AI assistant."},
{"role": "user", "content": "What is the role of lysosomal enzymes in the regulation of cellular processes?"}
]
outputs = pipeline(
messages,
max_new_tokens=2048,
)
print(outputs[0]["generated_text"][-1])
```
## The Model
Shining Valiant 2 is built on top of Llama 3.1 70b Instruct.
The current version of Shining Valiant 2 is trained on technical knowledge using [sequelbox/Celestia](https://huggingface.co/datasets/sequelbox/Celestia), complex reasoning using [sequelbox/Spurline](https://huggingface.co/datasets/sequelbox/Spurline), and general chat capability using [sequelbox/Supernova.](https://huggingface.co/datasets/sequelbox/Supernova)
We're super excited that Shining Valiant's dataset has been fully open-sourced! She's friendly, enthusiastic, insightful, knowledgeable, and loves to learn! Magical.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)
Shining Valiant 2 is created by [Valiant Labs.](http://valiantlabs.ca/)
[Check out our HuggingFace page for our open-source Build Tools models, including the newest version of code-specialist Enigma!](https://huggingface.co/ValiantLabs)
[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
We care about open source.
For everyone to use.
We encourage others to finetune further from our models. |