Upload . with huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1677081342.816cce4e237e +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000960_3932160_reward_23.771.pth +3 -0
- checkpoint_p0/checkpoint_000000918_3760128.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +734 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1677081342.816cce4e237e
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d215276feadd69b0ec3cc4594611bb9f3f3f4fb67a0eec04202d0fe87e094353
|
3 |
+
size 227593
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 7.46 +/- 4.98
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r Unterwexi/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000960_3932160_reward_23.771.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:944284f8863564e019f171711777cac37dfeb067f911b7d541ba75ee9bd58bbf
|
3 |
+
size 34928614
|
checkpoint_p0/checkpoint_000000918_3760128.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f6083f2b7dc3ccb84bb02e2a6f58b9b6cf215ffcad8b30201e7e237d3029dde
|
3 |
+
size 34929028
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d529536f7d53869e10eb57aa6e022baaa72759d07ebc4fdbc0e3f79ed96eefd1
|
3 |
+
size 34929028
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/content/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3add91a68d0ca7de431ec8532694b2cb2cd46009fb774e5a8378b2fabcce03
|
3 |
+
size 13829008
|
sf_log.txt
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-02-22 15:55:46,126][11727] Saving configuration to /content/train_dir/default_experiment/config.json...
|
2 |
+
[2023-02-22 15:55:46,128][11727] Rollout worker 0 uses device cpu
|
3 |
+
[2023-02-22 15:55:46,129][11727] Rollout worker 1 uses device cpu
|
4 |
+
[2023-02-22 15:55:46,130][11727] Rollout worker 2 uses device cpu
|
5 |
+
[2023-02-22 15:55:46,132][11727] Rollout worker 3 uses device cpu
|
6 |
+
[2023-02-22 15:55:46,133][11727] Rollout worker 4 uses device cpu
|
7 |
+
[2023-02-22 15:55:46,136][11727] Rollout worker 5 uses device cpu
|
8 |
+
[2023-02-22 15:55:46,137][11727] Rollout worker 6 uses device cpu
|
9 |
+
[2023-02-22 15:55:46,139][11727] Rollout worker 7 uses device cpu
|
10 |
+
[2023-02-22 15:55:46,236][11727] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-02-22 15:55:46,238][11727] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-02-22 15:55:46,268][11727] Starting all processes...
|
13 |
+
[2023-02-22 15:55:46,270][11727] Starting process learner_proc0
|
14 |
+
[2023-02-22 15:55:46,326][11727] Starting all processes...
|
15 |
+
[2023-02-22 15:55:46,338][11727] Starting process inference_proc0-0
|
16 |
+
[2023-02-22 15:55:46,338][11727] Starting process rollout_proc0
|
17 |
+
[2023-02-22 15:55:46,339][11727] Starting process rollout_proc1
|
18 |
+
[2023-02-22 15:55:46,340][11727] Starting process rollout_proc2
|
19 |
+
[2023-02-22 15:55:46,342][11727] Starting process rollout_proc3
|
20 |
+
[2023-02-22 15:55:46,342][11727] Starting process rollout_proc4
|
21 |
+
[2023-02-22 15:55:46,357][11727] Starting process rollout_proc5
|
22 |
+
[2023-02-22 15:55:46,358][11727] Starting process rollout_proc6
|
23 |
+
[2023-02-22 15:55:46,358][11727] Starting process rollout_proc7
|
24 |
+
[2023-02-22 15:55:48,129][11948] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2023-02-22 15:55:48,129][11948] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
26 |
+
[2023-02-22 15:55:48,448][11949] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
27 |
+
[2023-02-22 15:55:48,552][11934] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
28 |
+
[2023-02-22 15:55:48,553][11934] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
29 |
+
[2023-02-22 15:55:48,778][11974] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
30 |
+
[2023-02-22 15:55:48,778][11953] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
31 |
+
[2023-02-22 15:55:48,807][11950] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
32 |
+
[2023-02-22 15:55:48,860][11951] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
33 |
+
[2023-02-22 15:55:48,864][11973] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
34 |
+
[2023-02-22 15:55:48,895][11975] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
35 |
+
[2023-02-22 15:55:48,947][11970] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
36 |
+
[2023-02-22 15:55:49,003][11948] Num visible devices: 1
|
37 |
+
[2023-02-22 15:55:49,003][11934] Num visible devices: 1
|
38 |
+
[2023-02-22 15:55:49,028][11934] Starting seed is not provided
|
39 |
+
[2023-02-22 15:55:49,028][11934] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
40 |
+
[2023-02-22 15:55:49,028][11934] Initializing actor-critic model on device cuda:0
|
41 |
+
[2023-02-22 15:55:49,028][11934] RunningMeanStd input shape: (3, 72, 128)
|
42 |
+
[2023-02-22 15:55:49,030][11934] RunningMeanStd input shape: (1,)
|
43 |
+
[2023-02-22 15:55:49,044][11934] ConvEncoder: input_channels=3
|
44 |
+
[2023-02-22 15:55:49,304][11934] Conv encoder output size: 512
|
45 |
+
[2023-02-22 15:55:49,304][11934] Policy head output size: 512
|
46 |
+
[2023-02-22 15:55:49,345][11934] Created Actor Critic model with architecture:
|
47 |
+
[2023-02-22 15:55:49,345][11934] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2023-02-22 15:55:56,154][11934] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2023-02-22 15:55:56,155][11934] No checkpoints found
|
90 |
+
[2023-02-22 15:55:56,156][11934] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2023-02-22 15:55:56,156][11934] Initialized policy 0 weights for model version 0
|
92 |
+
[2023-02-22 15:55:56,158][11934] LearnerWorker_p0 finished initialization!
|
93 |
+
[2023-02-22 15:55:56,159][11934] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2023-02-22 15:55:56,267][11948] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2023-02-22 15:55:56,268][11948] RunningMeanStd input shape: (1,)
|
96 |
+
[2023-02-22 15:55:56,284][11948] ConvEncoder: input_channels=3
|
97 |
+
[2023-02-22 15:55:56,395][11948] Conv encoder output size: 512
|
98 |
+
[2023-02-22 15:55:56,396][11948] Policy head output size: 512
|
99 |
+
[2023-02-22 15:55:57,406][11727] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
100 |
+
[2023-02-22 15:55:59,174][11727] Inference worker 0-0 is ready!
|
101 |
+
[2023-02-22 15:55:59,176][11727] All inference workers are ready! Signal rollout workers to start!
|
102 |
+
[2023-02-22 15:55:59,195][11974] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2023-02-22 15:55:59,195][11973] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2023-02-22 15:55:59,201][11950] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2023-02-22 15:55:59,202][11970] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2023-02-22 15:55:59,202][11951] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2023-02-22 15:55:59,202][11975] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2023-02-22 15:55:59,202][11953] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2023-02-22 15:55:59,202][11949] Doom resolution: 160x120, resize resolution: (128, 72)
|
110 |
+
[2023-02-22 15:55:59,257][11974] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
111 |
+
[2023-02-22 15:55:59,258][11974] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
112 |
+
Traceback (most recent call last):
|
113 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
114 |
+
self.game.init()
|
115 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
116 |
+
|
117 |
+
During handling of the above exception, another exception occurred:
|
118 |
+
|
119 |
+
Traceback (most recent call last):
|
120 |
+
File "/usr/local/lib/python3.8/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
121 |
+
slot_callable(*args)
|
122 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
123 |
+
env_runner.init(self.timing)
|
124 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
125 |
+
self._reset()
|
126 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
127 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
128 |
+
File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
|
129 |
+
return self.env.reset(**kwargs)
|
130 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
131 |
+
obs, info = self.env.reset(**kwargs)
|
132 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
133 |
+
obs, info = self.env.reset(**kwargs)
|
134 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
135 |
+
return self.env.reset(**kwargs)
|
136 |
+
File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 379, in reset
|
137 |
+
obs, info = self.env.reset(**kwargs)
|
138 |
+
File "/usr/local/lib/python3.8/dist-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
139 |
+
obs, info = self.env.reset(**kwargs)
|
140 |
+
File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
|
141 |
+
return self.env.reset(**kwargs)
|
142 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
143 |
+
return self.env.reset(**kwargs)
|
144 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
145 |
+
self._ensure_initialized()
|
146 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
147 |
+
self.initialize()
|
148 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
149 |
+
self._game_init()
|
150 |
+
File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
151 |
+
raise EnvCriticalError()
|
152 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
153 |
+
[2023-02-22 15:55:59,260][11974] Unhandled exception in evt loop rollout_proc6_evt_loop
|
154 |
+
[2023-02-22 15:55:59,528][11973] Decorrelating experience for 0 frames...
|
155 |
+
[2023-02-22 15:55:59,528][11953] Decorrelating experience for 0 frames...
|
156 |
+
[2023-02-22 15:55:59,528][11951] Decorrelating experience for 0 frames...
|
157 |
+
[2023-02-22 15:55:59,528][11949] Decorrelating experience for 0 frames...
|
158 |
+
[2023-02-22 15:55:59,599][11950] Decorrelating experience for 0 frames...
|
159 |
+
[2023-02-22 15:55:59,600][11970] Decorrelating experience for 0 frames...
|
160 |
+
[2023-02-22 15:55:59,776][11951] Decorrelating experience for 32 frames...
|
161 |
+
[2023-02-22 15:55:59,801][11953] Decorrelating experience for 32 frames...
|
162 |
+
[2023-02-22 15:55:59,821][11975] Decorrelating experience for 0 frames...
|
163 |
+
[2023-02-22 15:55:59,852][11970] Decorrelating experience for 32 frames...
|
164 |
+
[2023-02-22 15:55:59,871][11950] Decorrelating experience for 32 frames...
|
165 |
+
[2023-02-22 15:55:59,887][11949] Decorrelating experience for 32 frames...
|
166 |
+
[2023-02-22 15:56:00,034][11973] Decorrelating experience for 32 frames...
|
167 |
+
[2023-02-22 15:56:00,121][11951] Decorrelating experience for 64 frames...
|
168 |
+
[2023-02-22 15:56:00,134][11975] Decorrelating experience for 32 frames...
|
169 |
+
[2023-02-22 15:56:00,157][11970] Decorrelating experience for 64 frames...
|
170 |
+
[2023-02-22 15:56:00,175][11950] Decorrelating experience for 64 frames...
|
171 |
+
[2023-02-22 15:56:00,349][11973] Decorrelating experience for 64 frames...
|
172 |
+
[2023-02-22 15:56:00,423][11953] Decorrelating experience for 64 frames...
|
173 |
+
[2023-02-22 15:56:00,427][11949] Decorrelating experience for 64 frames...
|
174 |
+
[2023-02-22 15:56:00,428][11951] Decorrelating experience for 96 frames...
|
175 |
+
[2023-02-22 15:56:00,460][11970] Decorrelating experience for 96 frames...
|
176 |
+
[2023-02-22 15:56:00,695][11950] Decorrelating experience for 96 frames...
|
177 |
+
[2023-02-22 15:56:00,714][11975] Decorrelating experience for 64 frames...
|
178 |
+
[2023-02-22 15:56:00,726][11949] Decorrelating experience for 96 frames...
|
179 |
+
[2023-02-22 15:56:00,736][11953] Decorrelating experience for 96 frames...
|
180 |
+
[2023-02-22 15:56:00,775][11973] Decorrelating experience for 96 frames...
|
181 |
+
[2023-02-22 15:56:00,999][11975] Decorrelating experience for 96 frames...
|
182 |
+
[2023-02-22 15:56:02,406][11727] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
183 |
+
[2023-02-22 15:56:05,026][11934] Signal inference workers to stop experience collection...
|
184 |
+
[2023-02-22 15:56:05,032][11948] InferenceWorker_p0-w0: stopping experience collection
|
185 |
+
[2023-02-22 15:56:06,229][11727] Heartbeat connected on Batcher_0
|
186 |
+
[2023-02-22 15:56:06,237][11727] Heartbeat connected on InferenceWorker_p0-w0
|
187 |
+
[2023-02-22 15:56:06,244][11727] Heartbeat connected on RolloutWorker_w0
|
188 |
+
[2023-02-22 15:56:06,247][11727] Heartbeat connected on RolloutWorker_w1
|
189 |
+
[2023-02-22 15:56:06,251][11727] Heartbeat connected on RolloutWorker_w2
|
190 |
+
[2023-02-22 15:56:06,254][11727] Heartbeat connected on RolloutWorker_w3
|
191 |
+
[2023-02-22 15:56:06,258][11727] Heartbeat connected on RolloutWorker_w4
|
192 |
+
[2023-02-22 15:56:06,261][11727] Heartbeat connected on RolloutWorker_w5
|
193 |
+
[2023-02-22 15:56:06,268][11727] Heartbeat connected on RolloutWorker_w7
|
194 |
+
[2023-02-22 15:56:07,406][11727] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 310.2. Samples: 3102. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
195 |
+
[2023-02-22 15:56:07,408][11727] Avg episode reward: [(0, '2.718')]
|
196 |
+
[2023-02-22 15:56:07,941][11934] Signal inference workers to resume experience collection...
|
197 |
+
[2023-02-22 15:56:07,941][11948] InferenceWorker_p0-w0: resuming experience collection
|
198 |
+
[2023-02-22 15:56:08,828][11727] Heartbeat connected on LearnerWorker_p0
|
199 |
+
[2023-02-22 15:56:10,521][11948] Updated weights for policy 0, policy_version 10 (0.0011)
|
200 |
+
[2023-02-22 15:56:12,406][11727] Fps is (10 sec: 6963.0, 60 sec: 4642.1, 300 sec: 4642.1). Total num frames: 69632. Throughput: 0: 901.7. Samples: 13526. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
201 |
+
[2023-02-22 15:56:12,408][11727] Avg episode reward: [(0, '4.505')]
|
202 |
+
[2023-02-22 15:56:12,915][11948] Updated weights for policy 0, policy_version 20 (0.0011)
|
203 |
+
[2023-02-22 15:56:15,191][11948] Updated weights for policy 0, policy_version 30 (0.0011)
|
204 |
+
[2023-02-22 15:56:17,406][11727] Fps is (10 sec: 15564.7, 60 sec: 7782.4, 300 sec: 7782.4). Total num frames: 155648. Throughput: 0: 1980.7. Samples: 39614. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
205 |
+
[2023-02-22 15:56:17,408][11727] Avg episode reward: [(0, '4.543')]
|
206 |
+
[2023-02-22 15:56:17,424][11934] Saving new best policy, reward=4.543!
|
207 |
+
[2023-02-22 15:56:17,653][11948] Updated weights for policy 0, policy_version 40 (0.0011)
|
208 |
+
[2023-02-22 15:56:20,028][11948] Updated weights for policy 0, policy_version 50 (0.0011)
|
209 |
+
[2023-02-22 15:56:22,406][11727] Fps is (10 sec: 17203.5, 60 sec: 9666.5, 300 sec: 9666.5). Total num frames: 241664. Throughput: 0: 2092.2. Samples: 52304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
210 |
+
[2023-02-22 15:56:22,409][11727] Avg episode reward: [(0, '4.353')]
|
211 |
+
[2023-02-22 15:56:22,468][11948] Updated weights for policy 0, policy_version 60 (0.0011)
|
212 |
+
[2023-02-22 15:56:24,692][11948] Updated weights for policy 0, policy_version 70 (0.0011)
|
213 |
+
[2023-02-22 15:56:26,917][11948] Updated weights for policy 0, policy_version 80 (0.0011)
|
214 |
+
[2023-02-22 15:56:27,406][11727] Fps is (10 sec: 17612.8, 60 sec: 11059.2, 300 sec: 11059.2). Total num frames: 331776. Throughput: 0: 2634.7. Samples: 79042. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
215 |
+
[2023-02-22 15:56:27,408][11727] Avg episode reward: [(0, '4.552')]
|
216 |
+
[2023-02-22 15:56:27,412][11934] Saving new best policy, reward=4.552!
|
217 |
+
[2023-02-22 15:56:29,208][11948] Updated weights for policy 0, policy_version 90 (0.0011)
|
218 |
+
[2023-02-22 15:56:31,459][11948] Updated weights for policy 0, policy_version 100 (0.0010)
|
219 |
+
[2023-02-22 15:56:32,406][11727] Fps is (10 sec: 18432.0, 60 sec: 12171.0, 300 sec: 12171.0). Total num frames: 425984. Throughput: 0: 3030.2. Samples: 106058. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
220 |
+
[2023-02-22 15:56:32,408][11727] Avg episode reward: [(0, '4.755')]
|
221 |
+
[2023-02-22 15:56:32,417][11934] Saving new best policy, reward=4.755!
|
222 |
+
[2023-02-22 15:56:33,894][11948] Updated weights for policy 0, policy_version 110 (0.0011)
|
223 |
+
[2023-02-22 15:56:36,358][11948] Updated weights for policy 0, policy_version 120 (0.0012)
|
224 |
+
[2023-02-22 15:56:37,406][11727] Fps is (10 sec: 17612.8, 60 sec: 12697.6, 300 sec: 12697.6). Total num frames: 507904. Throughput: 0: 2967.0. Samples: 118682. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
225 |
+
[2023-02-22 15:56:37,408][11727] Avg episode reward: [(0, '4.517')]
|
226 |
+
[2023-02-22 15:56:38,646][11948] Updated weights for policy 0, policy_version 130 (0.0011)
|
227 |
+
[2023-02-22 15:56:40,961][11948] Updated weights for policy 0, policy_version 140 (0.0011)
|
228 |
+
[2023-02-22 15:56:42,406][11727] Fps is (10 sec: 17203.3, 60 sec: 13289.2, 300 sec: 13289.2). Total num frames: 598016. Throughput: 0: 3222.5. Samples: 145014. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
229 |
+
[2023-02-22 15:56:42,408][11727] Avg episode reward: [(0, '4.649')]
|
230 |
+
[2023-02-22 15:56:43,202][11948] Updated weights for policy 0, policy_version 150 (0.0011)
|
231 |
+
[2023-02-22 15:56:45,462][11948] Updated weights for policy 0, policy_version 160 (0.0011)
|
232 |
+
[2023-02-22 15:56:47,406][11727] Fps is (10 sec: 18022.4, 60 sec: 13762.6, 300 sec: 13762.6). Total num frames: 688128. Throughput: 0: 3827.0. Samples: 172214. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
233 |
+
[2023-02-22 15:56:47,409][11727] Avg episode reward: [(0, '4.915')]
|
234 |
+
[2023-02-22 15:56:47,413][11934] Saving new best policy, reward=4.915!
|
235 |
+
[2023-02-22 15:56:47,753][11948] Updated weights for policy 0, policy_version 170 (0.0011)
|
236 |
+
[2023-02-22 15:56:50,203][11948] Updated weights for policy 0, policy_version 180 (0.0011)
|
237 |
+
[2023-02-22 15:56:52,406][11727] Fps is (10 sec: 17612.7, 60 sec: 14075.3, 300 sec: 14075.3). Total num frames: 774144. Throughput: 0: 4038.2. Samples: 184820. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
238 |
+
[2023-02-22 15:56:52,409][11727] Avg episode reward: [(0, '5.185')]
|
239 |
+
[2023-02-22 15:56:52,417][11934] Saving new best policy, reward=5.185!
|
240 |
+
[2023-02-22 15:56:52,622][11948] Updated weights for policy 0, policy_version 190 (0.0011)
|
241 |
+
[2023-02-22 15:56:54,883][11948] Updated weights for policy 0, policy_version 200 (0.0011)
|
242 |
+
[2023-02-22 15:56:57,222][11948] Updated weights for policy 0, policy_version 210 (0.0011)
|
243 |
+
[2023-02-22 15:56:57,406][11727] Fps is (10 sec: 17203.3, 60 sec: 14336.0, 300 sec: 14336.0). Total num frames: 860160. Throughput: 0: 4388.8. Samples: 211022. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
244 |
+
[2023-02-22 15:56:57,409][11727] Avg episode reward: [(0, '5.563')]
|
245 |
+
[2023-02-22 15:56:57,425][11934] Saving new best policy, reward=5.563!
|
246 |
+
[2023-02-22 15:56:59,425][11948] Updated weights for policy 0, policy_version 220 (0.0010)
|
247 |
+
[2023-02-22 15:57:01,745][11948] Updated weights for policy 0, policy_version 230 (0.0011)
|
248 |
+
[2023-02-22 15:57:02,406][11727] Fps is (10 sec: 18022.5, 60 sec: 15906.1, 300 sec: 14682.6). Total num frames: 954368. Throughput: 0: 4411.3. Samples: 238122. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
249 |
+
[2023-02-22 15:57:02,409][11727] Avg episode reward: [(0, '6.131')]
|
250 |
+
[2023-02-22 15:57:02,415][11934] Saving new best policy, reward=6.131!
|
251 |
+
[2023-02-22 15:57:04,074][11948] Updated weights for policy 0, policy_version 240 (0.0011)
|
252 |
+
[2023-02-22 15:57:06,481][11948] Updated weights for policy 0, policy_version 250 (0.0011)
|
253 |
+
[2023-02-22 15:57:07,406][11727] Fps is (10 sec: 17612.8, 60 sec: 17271.5, 300 sec: 14804.1). Total num frames: 1036288. Throughput: 0: 4415.2. Samples: 250988. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
254 |
+
[2023-02-22 15:57:07,409][11727] Avg episode reward: [(0, '6.780')]
|
255 |
+
[2023-02-22 15:57:07,427][11934] Saving new best policy, reward=6.780!
|
256 |
+
[2023-02-22 15:57:08,893][11948] Updated weights for policy 0, policy_version 260 (0.0011)
|
257 |
+
[2023-02-22 15:57:11,132][11948] Updated weights for policy 0, policy_version 270 (0.0010)
|
258 |
+
[2023-02-22 15:57:12,406][11727] Fps is (10 sec: 17203.3, 60 sec: 17612.9, 300 sec: 15018.7). Total num frames: 1126400. Throughput: 0: 4406.4. Samples: 277330. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
259 |
+
[2023-02-22 15:57:12,408][11727] Avg episode reward: [(0, '7.336')]
|
260 |
+
[2023-02-22 15:57:12,417][11934] Saving new best policy, reward=7.336!
|
261 |
+
[2023-02-22 15:57:13,391][11948] Updated weights for policy 0, policy_version 280 (0.0012)
|
262 |
+
[2023-02-22 15:57:15,635][11948] Updated weights for policy 0, policy_version 290 (0.0010)
|
263 |
+
[2023-02-22 15:57:17,406][11727] Fps is (10 sec: 18022.3, 60 sec: 17681.1, 300 sec: 15206.4). Total num frames: 1216512. Throughput: 0: 4410.0. Samples: 304508. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
264 |
+
[2023-02-22 15:57:17,408][11727] Avg episode reward: [(0, '7.986')]
|
265 |
+
[2023-02-22 15:57:17,419][11934] Saving new best policy, reward=7.986!
|
266 |
+
[2023-02-22 15:57:17,940][11948] Updated weights for policy 0, policy_version 300 (0.0011)
|
267 |
+
[2023-02-22 15:57:20,251][11948] Updated weights for policy 0, policy_version 310 (0.0011)
|
268 |
+
[2023-02-22 15:57:22,406][11727] Fps is (10 sec: 17612.6, 60 sec: 17681.1, 300 sec: 15323.9). Total num frames: 1302528. Throughput: 0: 4421.6. Samples: 317652. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
269 |
+
[2023-02-22 15:57:22,408][11727] Avg episode reward: [(0, '9.339')]
|
270 |
+
[2023-02-22 15:57:22,419][11934] Saving new best policy, reward=9.339!
|
271 |
+
[2023-02-22 15:57:22,705][11948] Updated weights for policy 0, policy_version 320 (0.0012)
|
272 |
+
[2023-02-22 15:57:25,079][11948] Updated weights for policy 0, policy_version 330 (0.0011)
|
273 |
+
[2023-02-22 15:57:27,406][11727] Fps is (10 sec: 17203.4, 60 sec: 17612.8, 300 sec: 15428.3). Total num frames: 1388544. Throughput: 0: 4407.8. Samples: 343364. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
274 |
+
[2023-02-22 15:57:27,408][11727] Avg episode reward: [(0, '9.500')]
|
275 |
+
[2023-02-22 15:57:27,420][11934] Saving new best policy, reward=9.500!
|
276 |
+
[2023-02-22 15:57:27,422][11948] Updated weights for policy 0, policy_version 340 (0.0011)
|
277 |
+
[2023-02-22 15:57:29,748][11948] Updated weights for policy 0, policy_version 350 (0.0011)
|
278 |
+
[2023-02-22 15:57:32,048][11948] Updated weights for policy 0, policy_version 360 (0.0010)
|
279 |
+
[2023-02-22 15:57:32,406][11727] Fps is (10 sec: 17612.9, 60 sec: 17544.5, 300 sec: 15564.8). Total num frames: 1478656. Throughput: 0: 4389.4. Samples: 369738. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
280 |
+
[2023-02-22 15:57:32,408][11727] Avg episode reward: [(0, '10.590')]
|
281 |
+
[2023-02-22 15:57:32,416][11934] Saving new best policy, reward=10.590!
|
282 |
+
[2023-02-22 15:57:34,420][11948] Updated weights for policy 0, policy_version 370 (0.0011)
|
283 |
+
[2023-02-22 15:57:36,777][11948] Updated weights for policy 0, policy_version 380 (0.0011)
|
284 |
+
[2023-02-22 15:57:37,406][11727] Fps is (10 sec: 17612.8, 60 sec: 17612.8, 300 sec: 15646.7). Total num frames: 1564672. Throughput: 0: 4400.5. Samples: 382842. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
285 |
+
[2023-02-22 15:57:37,408][11727] Avg episode reward: [(0, '11.263')]
|
286 |
+
[2023-02-22 15:57:37,412][11934] Saving new best policy, reward=11.263!
|
287 |
+
[2023-02-22 15:57:39,255][11948] Updated weights for policy 0, policy_version 390 (0.0012)
|
288 |
+
[2023-02-22 15:57:41,601][11948] Updated weights for policy 0, policy_version 400 (0.0011)
|
289 |
+
[2023-02-22 15:57:42,406][11727] Fps is (10 sec: 17203.1, 60 sec: 17544.5, 300 sec: 15720.8). Total num frames: 1650688. Throughput: 0: 4381.9. Samples: 408208. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
290 |
+
[2023-02-22 15:57:42,408][11727] Avg episode reward: [(0, '11.024')]
|
291 |
+
[2023-02-22 15:57:42,417][11934] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth...
|
292 |
+
[2023-02-22 15:57:43,882][11948] Updated weights for policy 0, policy_version 410 (0.0018)
|
293 |
+
[2023-02-22 15:57:46,152][11948] Updated weights for policy 0, policy_version 420 (0.0011)
|
294 |
+
[2023-02-22 15:57:47,406][11727] Fps is (10 sec: 17612.9, 60 sec: 17544.6, 300 sec: 15825.5). Total num frames: 1740800. Throughput: 0: 4378.0. Samples: 435132. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
295 |
+
[2023-02-22 15:57:47,408][11727] Avg episode reward: [(0, '14.537')]
|
296 |
+
[2023-02-22 15:57:47,410][11934] Saving new best policy, reward=14.537!
|
297 |
+
[2023-02-22 15:57:48,472][11948] Updated weights for policy 0, policy_version 430 (0.0011)
|
298 |
+
[2023-02-22 15:57:50,720][11948] Updated weights for policy 0, policy_version 440 (0.0011)
|
299 |
+
[2023-02-22 15:57:52,406][11727] Fps is (10 sec: 17612.9, 60 sec: 17544.6, 300 sec: 15885.4). Total num frames: 1826816. Throughput: 0: 4394.8. Samples: 448752. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
300 |
+
[2023-02-22 15:57:52,409][11727] Avg episode reward: [(0, '15.374')]
|
301 |
+
[2023-02-22 15:57:52,415][11934] Saving new best policy, reward=15.374!
|
302 |
+
[2023-02-22 15:57:53,133][11948] Updated weights for policy 0, policy_version 450 (0.0011)
|
303 |
+
[2023-02-22 15:57:55,519][11948] Updated weights for policy 0, policy_version 460 (0.0011)
|
304 |
+
[2023-02-22 15:57:57,406][11727] Fps is (10 sec: 17612.7, 60 sec: 17612.8, 300 sec: 15974.4). Total num frames: 1916928. Throughput: 0: 4381.9. Samples: 474514. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
305 |
+
[2023-02-22 15:57:57,409][11727] Avg episode reward: [(0, '17.365')]
|
306 |
+
[2023-02-22 15:57:57,411][11934] Saving new best policy, reward=17.365!
|
307 |
+
[2023-02-22 15:57:57,797][11948] Updated weights for policy 0, policy_version 470 (0.0011)
|
308 |
+
[2023-02-22 15:58:00,064][11948] Updated weights for policy 0, policy_version 480 (0.0011)
|
309 |
+
[2023-02-22 15:58:02,345][11948] Updated weights for policy 0, policy_version 490 (0.0010)
|
310 |
+
[2023-02-22 15:58:02,406][11727] Fps is (10 sec: 18022.6, 60 sec: 17544.6, 300 sec: 16056.3). Total num frames: 2007040. Throughput: 0: 4381.5. Samples: 501676. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
311 |
+
[2023-02-22 15:58:02,409][11727] Avg episode reward: [(0, '15.039')]
|
312 |
+
[2023-02-22 15:58:04,589][11948] Updated weights for policy 0, policy_version 500 (0.0011)
|
313 |
+
[2023-02-22 15:58:06,878][11948] Updated weights for policy 0, policy_version 510 (0.0011)
|
314 |
+
[2023-02-22 15:58:07,406][11727] Fps is (10 sec: 17612.8, 60 sec: 17612.8, 300 sec: 16100.4). Total num frames: 2093056. Throughput: 0: 4393.0. Samples: 515336. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
315 |
+
[2023-02-22 15:58:07,409][11727] Avg episode reward: [(0, '16.264')]
|
316 |
+
[2023-02-22 15:58:09,322][11948] Updated weights for policy 0, policy_version 520 (0.0011)
|
317 |
+
[2023-02-22 15:58:11,720][11948] Updated weights for policy 0, policy_version 530 (0.0011)
|
318 |
+
[2023-02-22 15:58:12,406][11727] Fps is (10 sec: 17203.1, 60 sec: 17544.5, 300 sec: 16141.3). Total num frames: 2179072. Throughput: 0: 4393.1. Samples: 541052. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
319 |
+
[2023-02-22 15:58:12,409][11727] Avg episode reward: [(0, '16.818')]
|
320 |
+
[2023-02-22 15:58:14,040][11948] Updated weights for policy 0, policy_version 540 (0.0011)
|
321 |
+
[2023-02-22 15:58:16,254][11948] Updated weights for policy 0, policy_version 550 (0.0011)
|
322 |
+
[2023-02-22 15:58:17,406][11727] Fps is (10 sec: 17612.7, 60 sec: 17544.5, 300 sec: 16208.5). Total num frames: 2269184. Throughput: 0: 4403.9. Samples: 567914. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
323 |
+
[2023-02-22 15:58:17,409][11727] Avg episode reward: [(0, '17.111')]
|
324 |
+
[2023-02-22 15:58:18,537][11948] Updated weights for policy 0, policy_version 560 (0.0011)
|
325 |
+
[2023-02-22 15:58:20,818][11948] Updated weights for policy 0, policy_version 570 (0.0011)
|
326 |
+
[2023-02-22 15:58:22,406][11727] Fps is (10 sec: 18432.0, 60 sec: 17681.1, 300 sec: 16299.3). Total num frames: 2363392. Throughput: 0: 4414.4. Samples: 581488. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
327 |
+
[2023-02-22 15:58:22,408][11727] Avg episode reward: [(0, '18.845')]
|
328 |
+
[2023-02-22 15:58:22,417][11934] Saving new best policy, reward=18.845!
|
329 |
+
[2023-02-22 15:58:23,129][11948] Updated weights for policy 0, policy_version 580 (0.0011)
|
330 |
+
[2023-02-22 15:58:25,602][11948] Updated weights for policy 0, policy_version 590 (0.0011)
|
331 |
+
[2023-02-22 15:58:27,406][11727] Fps is (10 sec: 17613.0, 60 sec: 17612.8, 300 sec: 16302.1). Total num frames: 2445312. Throughput: 0: 4420.1. Samples: 607112. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
332 |
+
[2023-02-22 15:58:27,409][11727] Avg episode reward: [(0, '17.650')]
|
333 |
+
[2023-02-22 15:58:28,042][11948] Updated weights for policy 0, policy_version 600 (0.0012)
|
334 |
+
[2023-02-22 15:58:30,381][11948] Updated weights for policy 0, policy_version 610 (0.0011)
|
335 |
+
[2023-02-22 15:58:32,406][11727] Fps is (10 sec: 16793.4, 60 sec: 17544.5, 300 sec: 16331.1). Total num frames: 2531328. Throughput: 0: 4401.9. Samples: 633220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
336 |
+
[2023-02-22 15:58:32,409][11727] Avg episode reward: [(0, '18.158')]
|
337 |
+
[2023-02-22 15:58:32,688][11948] Updated weights for policy 0, policy_version 620 (0.0011)
|
338 |
+
[2023-02-22 15:58:35,144][11948] Updated weights for policy 0, policy_version 630 (0.0011)
|
339 |
+
[2023-02-22 15:58:37,406][11727] Fps is (10 sec: 17203.0, 60 sec: 17544.5, 300 sec: 16358.4). Total num frames: 2617344. Throughput: 0: 4381.1. Samples: 645902. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
340 |
+
[2023-02-22 15:58:37,409][11727] Avg episode reward: [(0, '17.190')]
|
341 |
+
[2023-02-22 15:58:37,540][11948] Updated weights for policy 0, policy_version 640 (0.0011)
|
342 |
+
[2023-02-22 15:58:40,020][11948] Updated weights for policy 0, policy_version 650 (0.0012)
|
343 |
+
[2023-02-22 15:58:42,406][11727] Fps is (10 sec: 16793.8, 60 sec: 17476.3, 300 sec: 16359.2). Total num frames: 2699264. Throughput: 0: 4369.1. Samples: 671124. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
344 |
+
[2023-02-22 15:58:42,410][11727] Avg episode reward: [(0, '20.379')]
|
345 |
+
[2023-02-22 15:58:42,443][11934] Saving new best policy, reward=20.379!
|
346 |
+
[2023-02-22 15:58:42,447][11948] Updated weights for policy 0, policy_version 660 (0.0011)
|
347 |
+
[2023-02-22 15:58:44,798][11948] Updated weights for policy 0, policy_version 670 (0.0012)
|
348 |
+
[2023-02-22 15:58:47,071][11948] Updated weights for policy 0, policy_version 680 (0.0010)
|
349 |
+
[2023-02-22 15:58:47,406][11727] Fps is (10 sec: 17203.2, 60 sec: 17476.2, 300 sec: 16408.1). Total num frames: 2789376. Throughput: 0: 4347.0. Samples: 697292. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
350 |
+
[2023-02-22 15:58:47,409][11727] Avg episode reward: [(0, '20.186')]
|
351 |
+
[2023-02-22 15:58:49,407][11948] Updated weights for policy 0, policy_version 690 (0.0010)
|
352 |
+
[2023-02-22 15:58:51,689][11948] Updated weights for policy 0, policy_version 700 (0.0011)
|
353 |
+
[2023-02-22 15:58:52,406][11727] Fps is (10 sec: 18022.2, 60 sec: 17544.5, 300 sec: 16454.2). Total num frames: 2879488. Throughput: 0: 4340.9. Samples: 710678. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
354 |
+
[2023-02-22 15:58:52,408][11727] Avg episode reward: [(0, '22.052')]
|
355 |
+
[2023-02-22 15:58:52,417][11934] Saving new best policy, reward=22.052!
|
356 |
+
[2023-02-22 15:58:54,011][11948] Updated weights for policy 0, policy_version 710 (0.0011)
|
357 |
+
[2023-02-22 15:58:56,392][11948] Updated weights for policy 0, policy_version 720 (0.0011)
|
358 |
+
[2023-02-22 15:58:57,406][11727] Fps is (10 sec: 17613.0, 60 sec: 17476.3, 300 sec: 16475.0). Total num frames: 2965504. Throughput: 0: 4353.2. Samples: 736946. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
359 |
+
[2023-02-22 15:58:57,409][11727] Avg episode reward: [(0, '21.568')]
|
360 |
+
[2023-02-22 15:58:58,776][11948] Updated weights for policy 0, policy_version 730 (0.0011)
|
361 |
+
[2023-02-22 15:59:01,128][11948] Updated weights for policy 0, policy_version 740 (0.0010)
|
362 |
+
[2023-02-22 15:59:02,406][11727] Fps is (10 sec: 17203.3, 60 sec: 17408.0, 300 sec: 16494.7). Total num frames: 3051520. Throughput: 0: 4339.9. Samples: 763210. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
363 |
+
[2023-02-22 15:59:02,409][11727] Avg episode reward: [(0, '20.665')]
|
364 |
+
[2023-02-22 15:59:03,339][11948] Updated weights for policy 0, policy_version 750 (0.0011)
|
365 |
+
[2023-02-22 15:59:05,685][11948] Updated weights for policy 0, policy_version 760 (0.0011)
|
366 |
+
[2023-02-22 15:59:07,406][11727] Fps is (10 sec: 17612.6, 60 sec: 17476.3, 300 sec: 16534.9). Total num frames: 3141632. Throughput: 0: 4337.4. Samples: 776670. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
367 |
+
[2023-02-22 15:59:07,409][11727] Avg episode reward: [(0, '21.001')]
|
368 |
+
[2023-02-22 15:59:07,943][11948] Updated weights for policy 0, policy_version 770 (0.0010)
|
369 |
+
[2023-02-22 15:59:10,233][11948] Updated weights for policy 0, policy_version 780 (0.0011)
|
370 |
+
[2023-02-22 15:59:12,406][11727] Fps is (10 sec: 17612.8, 60 sec: 17476.3, 300 sec: 16552.0). Total num frames: 3227648. Throughput: 0: 4356.0. Samples: 803132. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
|
371 |
+
[2023-02-22 15:59:12,408][11727] Avg episode reward: [(0, '21.359')]
|
372 |
+
[2023-02-22 15:59:12,713][11948] Updated weights for policy 0, policy_version 790 (0.0012)
|
373 |
+
[2023-02-22 15:59:15,093][11948] Updated weights for policy 0, policy_version 800 (0.0011)
|
374 |
+
[2023-02-22 15:59:17,407][11948] Updated weights for policy 0, policy_version 810 (0.0011)
|
375 |
+
[2023-02-22 15:59:17,406][11727] Fps is (10 sec: 17613.2, 60 sec: 17476.3, 300 sec: 16588.8). Total num frames: 3317760. Throughput: 0: 4351.6. Samples: 829042. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
376 |
+
[2023-02-22 15:59:17,409][11727] Avg episode reward: [(0, '19.476')]
|
377 |
+
[2023-02-22 15:59:19,655][11948] Updated weights for policy 0, policy_version 820 (0.0011)
|
378 |
+
[2023-02-22 15:59:21,941][11948] Updated weights for policy 0, policy_version 830 (0.0010)
|
379 |
+
[2023-02-22 15:59:22,409][11727] Fps is (10 sec: 18016.5, 60 sec: 17407.0, 300 sec: 16623.5). Total num frames: 3407872. Throughput: 0: 4370.1. Samples: 842572. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
380 |
+
[2023-02-22 15:59:22,411][11727] Avg episode reward: [(0, '19.382')]
|
381 |
+
[2023-02-22 15:59:24,222][11948] Updated weights for policy 0, policy_version 840 (0.0011)
|
382 |
+
[2023-02-22 15:59:26,601][11948] Updated weights for policy 0, policy_version 850 (0.0011)
|
383 |
+
[2023-02-22 15:59:27,406][11727] Fps is (10 sec: 17612.3, 60 sec: 17476.2, 300 sec: 16637.6). Total num frames: 3493888. Throughput: 0: 4403.1. Samples: 869264. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
384 |
+
[2023-02-22 15:59:27,409][11727] Avg episode reward: [(0, '19.677')]
|
385 |
+
[2023-02-22 15:59:29,011][11948] Updated weights for policy 0, policy_version 860 (0.0012)
|
386 |
+
[2023-02-22 15:59:31,383][11948] Updated weights for policy 0, policy_version 870 (0.0011)
|
387 |
+
[2023-02-22 15:59:32,406][11727] Fps is (10 sec: 17208.8, 60 sec: 17476.3, 300 sec: 16650.7). Total num frames: 3579904. Throughput: 0: 4391.0. Samples: 894886. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
388 |
+
[2023-02-22 15:59:32,409][11727] Avg episode reward: [(0, '20.009')]
|
389 |
+
[2023-02-22 15:59:33,716][11948] Updated weights for policy 0, policy_version 880 (0.0011)
|
390 |
+
[2023-02-22 15:59:35,972][11948] Updated weights for policy 0, policy_version 890 (0.0011)
|
391 |
+
[2023-02-22 15:59:37,406][11727] Fps is (10 sec: 17612.9, 60 sec: 17544.5, 300 sec: 16681.9). Total num frames: 3670016. Throughput: 0: 4391.6. Samples: 908300. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
392 |
+
[2023-02-22 15:59:37,408][11727] Avg episode reward: [(0, '19.299')]
|
393 |
+
[2023-02-22 15:59:38,317][11948] Updated weights for policy 0, policy_version 900 (0.0011)
|
394 |
+
[2023-02-22 15:59:40,527][11948] Updated weights for policy 0, policy_version 910 (0.0011)
|
395 |
+
[2023-02-22 15:59:42,406][11727] Fps is (10 sec: 18022.4, 60 sec: 17681.1, 300 sec: 16711.7). Total num frames: 3760128. Throughput: 0: 4407.5. Samples: 935284. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
396 |
+
[2023-02-22 15:59:42,409][11727] Avg episode reward: [(0, '21.332')]
|
397 |
+
[2023-02-22 15:59:42,417][11934] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000918_3760128.pth...
|
398 |
+
[2023-02-22 15:59:42,893][11948] Updated weights for policy 0, policy_version 920 (0.0011)
|
399 |
+
[2023-02-22 15:59:45,384][11948] Updated weights for policy 0, policy_version 930 (0.0012)
|
400 |
+
[2023-02-22 15:59:47,406][11727] Fps is (10 sec: 17203.2, 60 sec: 17544.5, 300 sec: 16704.6). Total num frames: 3842048. Throughput: 0: 4387.0. Samples: 960626. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
401 |
+
[2023-02-22 15:59:47,409][11727] Avg episode reward: [(0, '19.742')]
|
402 |
+
[2023-02-22 15:59:47,743][11948] Updated weights for policy 0, policy_version 940 (0.0011)
|
403 |
+
[2023-02-22 15:59:50,051][11948] Updated weights for policy 0, policy_version 950 (0.0011)
|
404 |
+
[2023-02-22 15:59:52,331][11948] Updated weights for policy 0, policy_version 960 (0.0011)
|
405 |
+
[2023-02-22 15:59:52,406][11727] Fps is (10 sec: 17203.2, 60 sec: 17544.5, 300 sec: 16732.6). Total num frames: 3932160. Throughput: 0: 4384.1. Samples: 973954. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
406 |
+
[2023-02-22 15:59:52,408][11727] Avg episode reward: [(0, '23.771')]
|
407 |
+
[2023-02-22 15:59:52,417][11934] Saving new best policy, reward=23.771!
|
408 |
+
[2023-02-22 15:59:54,622][11948] Updated weights for policy 0, policy_version 970 (0.0011)
|
409 |
+
[2023-02-22 15:59:56,458][11934] Stopping Batcher_0...
|
410 |
+
[2023-02-22 15:59:56,459][11934] Loop batcher_evt_loop terminating...
|
411 |
+
[2023-02-22 15:59:56,459][11934] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
412 |
+
[2023-02-22 15:59:56,459][11727] Component Batcher_0 stopped!
|
413 |
+
[2023-02-22 15:59:56,462][11727] Component RolloutWorker_w6 process died already! Don't wait for it.
|
414 |
+
[2023-02-22 15:59:56,473][11948] Weights refcount: 2 0
|
415 |
+
[2023-02-22 15:59:56,473][11951] Stopping RolloutWorker_w2...
|
416 |
+
[2023-02-22 15:59:56,473][11950] Stopping RolloutWorker_w1...
|
417 |
+
[2023-02-22 15:59:56,474][11950] Loop rollout_proc1_evt_loop terminating...
|
418 |
+
[2023-02-22 15:59:56,474][11951] Loop rollout_proc2_evt_loop terminating...
|
419 |
+
[2023-02-22 15:59:56,475][11948] Stopping InferenceWorker_p0-w0...
|
420 |
+
[2023-02-22 15:59:56,475][11948] Loop inference_proc0-0_evt_loop terminating...
|
421 |
+
[2023-02-22 15:59:56,473][11727] Component RolloutWorker_w1 stopped!
|
422 |
+
[2023-02-22 15:59:56,476][11970] Stopping RolloutWorker_w5...
|
423 |
+
[2023-02-22 15:59:56,476][11953] Stopping RolloutWorker_w3...
|
424 |
+
[2023-02-22 15:59:56,476][11970] Loop rollout_proc5_evt_loop terminating...
|
425 |
+
[2023-02-22 15:59:56,476][11953] Loop rollout_proc3_evt_loop terminating...
|
426 |
+
[2023-02-22 15:59:56,476][11975] Stopping RolloutWorker_w4...
|
427 |
+
[2023-02-22 15:59:56,477][11975] Loop rollout_proc4_evt_loop terminating...
|
428 |
+
[2023-02-22 15:59:56,478][11949] Stopping RolloutWorker_w0...
|
429 |
+
[2023-02-22 15:59:56,479][11949] Loop rollout_proc0_evt_loop terminating...
|
430 |
+
[2023-02-22 15:59:56,477][11727] Component RolloutWorker_w2 stopped!
|
431 |
+
[2023-02-22 15:59:56,480][11727] Component InferenceWorker_p0-w0 stopped!
|
432 |
+
[2023-02-22 15:59:56,481][11727] Component RolloutWorker_w5 stopped!
|
433 |
+
[2023-02-22 15:59:56,482][11727] Component RolloutWorker_w3 stopped!
|
434 |
+
[2023-02-22 15:59:56,484][11727] Component RolloutWorker_w4 stopped!
|
435 |
+
[2023-02-22 15:59:56,484][11973] Stopping RolloutWorker_w7...
|
436 |
+
[2023-02-22 15:59:56,485][11727] Component RolloutWorker_w0 stopped!
|
437 |
+
[2023-02-22 15:59:56,486][11973] Loop rollout_proc7_evt_loop terminating...
|
438 |
+
[2023-02-22 15:59:56,487][11727] Component RolloutWorker_w7 stopped!
|
439 |
+
[2023-02-22 15:59:56,533][11934] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth
|
440 |
+
[2023-02-22 15:59:56,542][11934] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
441 |
+
[2023-02-22 15:59:56,658][11934] Stopping LearnerWorker_p0...
|
442 |
+
[2023-02-22 15:59:56,659][11934] Loop learner_proc0_evt_loop terminating...
|
443 |
+
[2023-02-22 15:59:56,658][11727] Component LearnerWorker_p0 stopped!
|
444 |
+
[2023-02-22 15:59:56,660][11727] Waiting for process learner_proc0 to stop...
|
445 |
+
[2023-02-22 15:59:58,235][11727] Waiting for process inference_proc0-0 to join...
|
446 |
+
[2023-02-22 15:59:58,237][11727] Waiting for process rollout_proc0 to join...
|
447 |
+
[2023-02-22 15:59:58,239][11727] Waiting for process rollout_proc1 to join...
|
448 |
+
[2023-02-22 15:59:58,241][11727] Waiting for process rollout_proc2 to join...
|
449 |
+
[2023-02-22 15:59:58,243][11727] Waiting for process rollout_proc3 to join...
|
450 |
+
[2023-02-22 15:59:58,245][11727] Waiting for process rollout_proc4 to join...
|
451 |
+
[2023-02-22 15:59:58,246][11727] Waiting for process rollout_proc5 to join...
|
452 |
+
[2023-02-22 15:59:58,248][11727] Waiting for process rollout_proc6 to join...
|
453 |
+
[2023-02-22 15:59:58,249][11727] Waiting for process rollout_proc7 to join...
|
454 |
+
[2023-02-22 15:59:58,252][11727] Batcher 0 profile tree view:
|
455 |
+
batching: 15.6119, releasing_batches: 0.0487
|
456 |
+
[2023-02-22 15:59:58,253][11727] InferenceWorker_p0-w0 profile tree view:
|
457 |
+
wait_policy: 0.0001
|
458 |
+
wait_policy_total: 4.2324
|
459 |
+
update_model: 3.4167
|
460 |
+
weight_update: 0.0011
|
461 |
+
one_step: 0.0029
|
462 |
+
handle_policy_step: 214.4727
|
463 |
+
deserialize: 8.7479, stack: 1.4146, obs_to_device_normalize: 50.9557, forward: 97.6511, send_messages: 15.7666
|
464 |
+
prepare_outputs: 30.0742
|
465 |
+
to_cpu: 18.3660
|
466 |
+
[2023-02-22 15:59:58,254][11727] Learner 0 profile tree view:
|
467 |
+
misc: 0.0057, prepare_batch: 10.1041
|
468 |
+
train: 19.8425
|
469 |
+
epoch_init: 0.0057, minibatch_init: 0.0062, losses_postprocess: 0.3212, kl_divergence: 0.4617, after_optimizer: 1.0259
|
470 |
+
calculate_losses: 7.7728
|
471 |
+
losses_init: 0.0032, forward_head: 1.1080, bptt_initial: 3.2464, tail: 0.6356, advantages_returns: 0.1694, losses: 1.0630
|
472 |
+
bptt: 1.3701
|
473 |
+
bptt_forward_core: 1.3165
|
474 |
+
update: 9.9027
|
475 |
+
clip: 1.1259
|
476 |
+
[2023-02-22 15:59:58,257][11727] RolloutWorker_w0 profile tree view:
|
477 |
+
wait_for_trajectories: 0.1715, enqueue_policy_requests: 8.7683, env_step: 144.6926, overhead: 11.5534, complete_rollouts: 0.2874
|
478 |
+
save_policy_outputs: 9.9906
|
479 |
+
split_output_tensors: 4.7988
|
480 |
+
[2023-02-22 15:59:58,258][11727] RolloutWorker_w7 profile tree view:
|
481 |
+
wait_for_trajectories: 0.1719, enqueue_policy_requests: 8.7025, env_step: 145.0611, overhead: 11.7300, complete_rollouts: 0.2973
|
482 |
+
save_policy_outputs: 9.8243
|
483 |
+
split_output_tensors: 4.7671
|
484 |
+
[2023-02-22 15:59:58,260][11727] Loop Runner_EvtLoop terminating...
|
485 |
+
[2023-02-22 15:59:58,263][11727] Runner profile tree view:
|
486 |
+
main_loop: 251.9949
|
487 |
+
[2023-02-22 15:59:58,264][11727] Collected {0: 4005888}, FPS: 15896.7
|
488 |
+
[2023-02-22 16:11:15,029][11727] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
489 |
+
[2023-02-22 16:11:15,031][11727] Overriding arg 'num_workers' with value 1 passed from command line
|
490 |
+
[2023-02-22 16:11:15,033][11727] Adding new argument 'no_render'=True that is not in the saved config file!
|
491 |
+
[2023-02-22 16:11:15,034][11727] Adding new argument 'save_video'=True that is not in the saved config file!
|
492 |
+
[2023-02-22 16:11:15,036][11727] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
493 |
+
[2023-02-22 16:11:15,037][11727] Adding new argument 'video_name'=None that is not in the saved config file!
|
494 |
+
[2023-02-22 16:11:15,038][11727] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
495 |
+
[2023-02-22 16:11:15,040][11727] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
496 |
+
[2023-02-22 16:11:15,041][11727] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
497 |
+
[2023-02-22 16:11:15,043][11727] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
498 |
+
[2023-02-22 16:11:15,044][11727] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
499 |
+
[2023-02-22 16:11:15,045][11727] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
500 |
+
[2023-02-22 16:11:15,047][11727] Adding new argument 'train_script'=None that is not in the saved config file!
|
501 |
+
[2023-02-22 16:11:15,048][11727] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
502 |
+
[2023-02-22 16:11:15,049][11727] Using frameskip 1 and render_action_repeat=4 for evaluation
|
503 |
+
[2023-02-22 16:11:15,067][11727] Doom resolution: 160x120, resize resolution: (128, 72)
|
504 |
+
[2023-02-22 16:11:15,070][11727] RunningMeanStd input shape: (3, 72, 128)
|
505 |
+
[2023-02-22 16:11:15,073][11727] RunningMeanStd input shape: (1,)
|
506 |
+
[2023-02-22 16:11:15,093][11727] ConvEncoder: input_channels=3
|
507 |
+
[2023-02-22 16:11:15,967][11727] Conv encoder output size: 512
|
508 |
+
[2023-02-22 16:11:15,970][11727] Policy head output size: 512
|
509 |
+
[2023-02-22 16:11:18,855][11727] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
510 |
+
[2023-02-22 16:11:20,688][11727] Num frames 100...
|
511 |
+
[2023-02-22 16:11:20,811][11727] Num frames 200...
|
512 |
+
[2023-02-22 16:11:20,926][11727] Num frames 300...
|
513 |
+
[2023-02-22 16:11:21,038][11727] Num frames 400...
|
514 |
+
[2023-02-22 16:11:21,156][11727] Num frames 500...
|
515 |
+
[2023-02-22 16:11:21,269][11727] Num frames 600...
|
516 |
+
[2023-02-22 16:11:21,382][11727] Num frames 700...
|
517 |
+
[2023-02-22 16:11:21,496][11727] Num frames 800...
|
518 |
+
[2023-02-22 16:11:21,608][11727] Num frames 900...
|
519 |
+
[2023-02-22 16:11:21,720][11727] Num frames 1000...
|
520 |
+
[2023-02-22 16:11:21,833][11727] Num frames 1100...
|
521 |
+
[2023-02-22 16:11:21,947][11727] Avg episode rewards: #0: 24.520, true rewards: #0: 11.520
|
522 |
+
[2023-02-22 16:11:21,948][11727] Avg episode reward: 24.520, avg true_objective: 11.520
|
523 |
+
[2023-02-22 16:11:22,005][11727] Num frames 1200...
|
524 |
+
[2023-02-22 16:11:22,118][11727] Num frames 1300...
|
525 |
+
[2023-02-22 16:11:22,232][11727] Num frames 1400...
|
526 |
+
[2023-02-22 16:11:22,346][11727] Num frames 1500...
|
527 |
+
[2023-02-22 16:11:22,457][11727] Num frames 1600...
|
528 |
+
[2023-02-22 16:11:22,568][11727] Num frames 1700...
|
529 |
+
[2023-02-22 16:11:22,681][11727] Num frames 1800...
|
530 |
+
[2023-02-22 16:11:22,794][11727] Num frames 1900...
|
531 |
+
[2023-02-22 16:11:22,904][11727] Num frames 2000...
|
532 |
+
[2023-02-22 16:11:23,020][11727] Num frames 2100...
|
533 |
+
[2023-02-22 16:11:23,138][11727] Num frames 2200...
|
534 |
+
[2023-02-22 16:11:23,252][11727] Num frames 2300...
|
535 |
+
[2023-02-22 16:11:23,365][11727] Num frames 2400...
|
536 |
+
[2023-02-22 16:11:23,484][11727] Num frames 2500...
|
537 |
+
[2023-02-22 16:11:23,601][11727] Num frames 2600...
|
538 |
+
[2023-02-22 16:11:23,718][11727] Num frames 2700...
|
539 |
+
[2023-02-22 16:11:23,803][11727] Avg episode rewards: #0: 34.130, true rewards: #0: 13.630
|
540 |
+
[2023-02-22 16:11:23,805][11727] Avg episode reward: 34.130, avg true_objective: 13.630
|
541 |
+
[2023-02-22 16:11:23,891][11727] Num frames 2800...
|
542 |
+
[2023-02-22 16:11:24,003][11727] Num frames 2900...
|
543 |
+
[2023-02-22 16:11:24,121][11727] Num frames 3000...
|
544 |
+
[2023-02-22 16:11:24,234][11727] Num frames 3100...
|
545 |
+
[2023-02-22 16:11:24,312][11727] Avg episode rewards: #0: 25.063, true rewards: #0: 10.397
|
546 |
+
[2023-02-22 16:11:24,313][11727] Avg episode reward: 25.063, avg true_objective: 10.397
|
547 |
+
[2023-02-22 16:11:24,406][11727] Num frames 3200...
|
548 |
+
[2023-02-22 16:11:24,518][11727] Num frames 3300...
|
549 |
+
[2023-02-22 16:11:24,680][11727] Avg episode rewards: #0: 19.732, true rewards: #0: 8.482
|
550 |
+
[2023-02-22 16:11:24,682][11727] Avg episode reward: 19.732, avg true_objective: 8.482
|
551 |
+
[2023-02-22 16:11:24,692][11727] Num frames 3400...
|
552 |
+
[2023-02-22 16:11:24,818][11727] Num frames 3500...
|
553 |
+
[2023-02-22 16:11:24,939][11727] Num frames 3600...
|
554 |
+
[2023-02-22 16:11:25,055][11727] Num frames 3700...
|
555 |
+
[2023-02-22 16:11:25,171][11727] Num frames 3800...
|
556 |
+
[2023-02-22 16:11:25,285][11727] Num frames 3900...
|
557 |
+
[2023-02-22 16:11:25,401][11727] Num frames 4000...
|
558 |
+
[2023-02-22 16:11:25,517][11727] Num frames 4100...
|
559 |
+
[2023-02-22 16:11:25,635][11727] Num frames 4200...
|
560 |
+
[2023-02-22 16:11:25,749][11727] Num frames 4300...
|
561 |
+
[2023-02-22 16:11:25,864][11727] Num frames 4400...
|
562 |
+
[2023-02-22 16:11:25,984][11727] Num frames 4500...
|
563 |
+
[2023-02-22 16:11:26,099][11727] Num frames 4600...
|
564 |
+
[2023-02-22 16:11:26,238][11727] Num frames 4700...
|
565 |
+
[2023-02-22 16:11:26,362][11727] Num frames 4800...
|
566 |
+
[2023-02-22 16:11:26,482][11727] Num frames 4900...
|
567 |
+
[2023-02-22 16:11:26,602][11727] Num frames 5000...
|
568 |
+
[2023-02-22 16:11:26,720][11727] Num frames 5100...
|
569 |
+
[2023-02-22 16:11:26,822][11727] Avg episode rewards: #0: 24.078, true rewards: #0: 10.278
|
570 |
+
[2023-02-22 16:11:26,824][11727] Avg episode reward: 24.078, avg true_objective: 10.278
|
571 |
+
[2023-02-22 16:11:26,904][11727] Num frames 5200...
|
572 |
+
[2023-02-22 16:11:27,021][11727] Num frames 5300...
|
573 |
+
[2023-02-22 16:11:27,140][11727] Num frames 5400...
|
574 |
+
[2023-02-22 16:11:27,256][11727] Num frames 5500...
|
575 |
+
[2023-02-22 16:11:27,369][11727] Num frames 5600...
|
576 |
+
[2023-02-22 16:11:27,479][11727] Num frames 5700...
|
577 |
+
[2023-02-22 16:11:27,587][11727] Avg episode rewards: #0: 22.078, true rewards: #0: 9.578
|
578 |
+
[2023-02-22 16:11:27,589][11727] Avg episode reward: 22.078, avg true_objective: 9.578
|
579 |
+
[2023-02-22 16:11:27,652][11727] Num frames 5800...
|
580 |
+
[2023-02-22 16:11:27,767][11727] Num frames 5900...
|
581 |
+
[2023-02-22 16:11:27,883][11727] Num frames 6000...
|
582 |
+
[2023-02-22 16:11:27,996][11727] Num frames 6100...
|
583 |
+
[2023-02-22 16:11:28,109][11727] Num frames 6200...
|
584 |
+
[2023-02-22 16:11:28,225][11727] Num frames 6300...
|
585 |
+
[2023-02-22 16:11:28,338][11727] Num frames 6400...
|
586 |
+
[2023-02-22 16:11:28,451][11727] Avg episode rewards: #0: 21.073, true rewards: #0: 9.216
|
587 |
+
[2023-02-22 16:11:28,453][11727] Avg episode reward: 21.073, avg true_objective: 9.216
|
588 |
+
[2023-02-22 16:11:28,511][11727] Num frames 6500...
|
589 |
+
[2023-02-22 16:11:28,625][11727] Num frames 6600...
|
590 |
+
[2023-02-22 16:11:28,743][11727] Num frames 6700...
|
591 |
+
[2023-02-22 16:11:28,855][11727] Num frames 6800...
|
592 |
+
[2023-02-22 16:11:28,951][11727] Avg episode rewards: #0: 19.294, true rewards: #0: 8.544
|
593 |
+
[2023-02-22 16:11:28,953][11727] Avg episode reward: 19.294, avg true_objective: 8.544
|
594 |
+
[2023-02-22 16:11:29,031][11727] Num frames 6900...
|
595 |
+
[2023-02-22 16:11:29,146][11727] Num frames 7000...
|
596 |
+
[2023-02-22 16:11:29,286][11727] Num frames 7100...
|
597 |
+
[2023-02-22 16:11:29,396][11727] Num frames 7200...
|
598 |
+
[2023-02-22 16:11:29,505][11727] Num frames 7300...
|
599 |
+
[2023-02-22 16:11:29,619][11727] Num frames 7400...
|
600 |
+
[2023-02-22 16:11:29,732][11727] Num frames 7500...
|
601 |
+
[2023-02-22 16:11:29,849][11727] Num frames 7600...
|
602 |
+
[2023-02-22 16:11:29,963][11727] Num frames 7700...
|
603 |
+
[2023-02-22 16:11:30,076][11727] Num frames 7800...
|
604 |
+
[2023-02-22 16:11:30,143][11727] Avg episode rewards: #0: 19.677, true rewards: #0: 8.677
|
605 |
+
[2023-02-22 16:11:30,145][11727] Avg episode reward: 19.677, avg true_objective: 8.677
|
606 |
+
[2023-02-22 16:11:30,249][11727] Num frames 7900...
|
607 |
+
[2023-02-22 16:11:30,364][11727] Num frames 8000...
|
608 |
+
[2023-02-22 16:11:30,478][11727] Num frames 8100...
|
609 |
+
[2023-02-22 16:11:30,594][11727] Num frames 8200...
|
610 |
+
[2023-02-22 16:11:30,707][11727] Num frames 8300...
|
611 |
+
[2023-02-22 16:11:30,822][11727] Num frames 8400...
|
612 |
+
[2023-02-22 16:11:30,937][11727] Num frames 8500...
|
613 |
+
[2023-02-22 16:11:31,049][11727] Num frames 8600...
|
614 |
+
[2023-02-22 16:11:31,162][11727] Num frames 8700...
|
615 |
+
[2023-02-22 16:11:31,277][11727] Num frames 8800...
|
616 |
+
[2023-02-22 16:11:31,371][11727] Avg episode rewards: #0: 19.533, true rewards: #0: 8.833
|
617 |
+
[2023-02-22 16:11:31,373][11727] Avg episode reward: 19.533, avg true_objective: 8.833
|
618 |
+
[2023-02-22 16:11:52,331][11727] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|
619 |
+
[2023-02-22 16:12:41,257][11727] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
|
620 |
+
[2023-02-22 16:12:41,259][11727] Overriding arg 'num_workers' with value 1 passed from command line
|
621 |
+
[2023-02-22 16:12:41,260][11727] Adding new argument 'no_render'=True that is not in the saved config file!
|
622 |
+
[2023-02-22 16:12:41,261][11727] Adding new argument 'save_video'=True that is not in the saved config file!
|
623 |
+
[2023-02-22 16:12:41,264][11727] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
624 |
+
[2023-02-22 16:12:41,265][11727] Adding new argument 'video_name'=None that is not in the saved config file!
|
625 |
+
[2023-02-22 16:12:41,266][11727] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
626 |
+
[2023-02-22 16:12:41,268][11727] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
627 |
+
[2023-02-22 16:12:41,270][11727] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
628 |
+
[2023-02-22 16:12:41,271][11727] Adding new argument 'hf_repository'='Unterwexi/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
629 |
+
[2023-02-22 16:12:41,272][11727] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
630 |
+
[2023-02-22 16:12:41,274][11727] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
631 |
+
[2023-02-22 16:12:41,276][11727] Adding new argument 'train_script'=None that is not in the saved config file!
|
632 |
+
[2023-02-22 16:12:41,277][11727] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
633 |
+
[2023-02-22 16:12:41,279][11727] Using frameskip 1 and render_action_repeat=4 for evaluation
|
634 |
+
[2023-02-22 16:12:41,297][11727] RunningMeanStd input shape: (3, 72, 128)
|
635 |
+
[2023-02-22 16:12:41,300][11727] RunningMeanStd input shape: (1,)
|
636 |
+
[2023-02-22 16:12:41,315][11727] ConvEncoder: input_channels=3
|
637 |
+
[2023-02-22 16:12:41,358][11727] Conv encoder output size: 512
|
638 |
+
[2023-02-22 16:12:41,359][11727] Policy head output size: 512
|
639 |
+
[2023-02-22 16:12:41,382][11727] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
640 |
+
[2023-02-22 16:12:41,857][11727] Num frames 100...
|
641 |
+
[2023-02-22 16:12:41,979][11727] Num frames 200...
|
642 |
+
[2023-02-22 16:12:42,097][11727] Num frames 300...
|
643 |
+
[2023-02-22 16:12:42,233][11727] Avg episode rewards: #0: 7.670, true rewards: #0: 3.670
|
644 |
+
[2023-02-22 16:12:42,235][11727] Avg episode reward: 7.670, avg true_objective: 3.670
|
645 |
+
[2023-02-22 16:12:42,276][11727] Num frames 400...
|
646 |
+
[2023-02-22 16:12:42,396][11727] Num frames 500...
|
647 |
+
[2023-02-22 16:12:42,528][11727] Num frames 600...
|
648 |
+
[2023-02-22 16:12:42,653][11727] Num frames 700...
|
649 |
+
[2023-02-22 16:12:42,780][11727] Num frames 800...
|
650 |
+
[2023-02-22 16:12:42,907][11727] Num frames 900...
|
651 |
+
[2023-02-22 16:12:43,034][11727] Num frames 1000...
|
652 |
+
[2023-02-22 16:12:43,181][11727] Avg episode rewards: #0: 12.870, true rewards: #0: 5.370
|
653 |
+
[2023-02-22 16:12:43,183][11727] Avg episode reward: 12.870, avg true_objective: 5.370
|
654 |
+
[2023-02-22 16:12:43,215][11727] Num frames 1100...
|
655 |
+
[2023-02-22 16:12:43,331][11727] Num frames 1200...
|
656 |
+
[2023-02-22 16:12:43,441][11727] Num frames 1300...
|
657 |
+
[2023-02-22 16:12:43,554][11727] Num frames 1400...
|
658 |
+
[2023-02-22 16:12:43,685][11727] Avg episode rewards: #0: 10.860, true rewards: #0: 4.860
|
659 |
+
[2023-02-22 16:12:43,687][11727] Avg episode reward: 10.860, avg true_objective: 4.860
|
660 |
+
[2023-02-22 16:12:43,745][11727] Num frames 1500...
|
661 |
+
[2023-02-22 16:12:43,870][11727] Num frames 1600...
|
662 |
+
[2023-02-22 16:12:43,992][11727] Num frames 1700...
|
663 |
+
[2023-02-22 16:12:44,116][11727] Num frames 1800...
|
664 |
+
[2023-02-22 16:12:44,184][11727] Avg episode rewards: #0: 9.775, true rewards: #0: 4.525
|
665 |
+
[2023-02-22 16:12:44,187][11727] Avg episode reward: 9.775, avg true_objective: 4.525
|
666 |
+
[2023-02-22 16:12:44,288][11727] Num frames 1900...
|
667 |
+
[2023-02-22 16:12:44,400][11727] Num frames 2000...
|
668 |
+
[2023-02-22 16:12:44,510][11727] Num frames 2100...
|
669 |
+
[2023-02-22 16:12:44,622][11727] Num frames 2200...
|
670 |
+
[2023-02-22 16:12:44,709][11727] Avg episode rewards: #0: 9.052, true rewards: #0: 4.452
|
671 |
+
[2023-02-22 16:12:44,711][11727] Avg episode reward: 9.052, avg true_objective: 4.452
|
672 |
+
[2023-02-22 16:12:44,795][11727] Num frames 2300...
|
673 |
+
[2023-02-22 16:12:44,906][11727] Num frames 2400...
|
674 |
+
[2023-02-22 16:12:45,039][11727] Num frames 2500...
|
675 |
+
[2023-02-22 16:12:45,152][11727] Num frames 2600...
|
676 |
+
[2023-02-22 16:12:45,268][11727] Num frames 2700...
|
677 |
+
[2023-02-22 16:12:45,381][11727] Num frames 2800...
|
678 |
+
[2023-02-22 16:12:45,492][11727] Num frames 2900...
|
679 |
+
[2023-02-22 16:12:45,602][11727] Num frames 3000...
|
680 |
+
[2023-02-22 16:12:45,715][11727] Num frames 3100...
|
681 |
+
[2023-02-22 16:12:45,826][11727] Num frames 3200...
|
682 |
+
[2023-02-22 16:12:45,936][11727] Num frames 3300...
|
683 |
+
[2023-02-22 16:12:46,050][11727] Num frames 3400...
|
684 |
+
[2023-02-22 16:12:46,166][11727] Num frames 3500...
|
685 |
+
[2023-02-22 16:12:46,282][11727] Num frames 3600...
|
686 |
+
[2023-02-22 16:12:46,392][11727] Num frames 3700...
|
687 |
+
[2023-02-22 16:12:46,507][11727] Num frames 3800...
|
688 |
+
[2023-02-22 16:12:46,618][11727] Num frames 3900...
|
689 |
+
[2023-02-22 16:12:46,730][11727] Num frames 4000...
|
690 |
+
[2023-02-22 16:12:46,845][11727] Num frames 4100...
|
691 |
+
[2023-02-22 16:12:46,960][11727] Num frames 4200...
|
692 |
+
[2023-02-22 16:12:47,087][11727] Num frames 4300...
|
693 |
+
[2023-02-22 16:12:47,174][11727] Avg episode rewards: #0: 17.376, true rewards: #0: 7.210
|
694 |
+
[2023-02-22 16:12:47,176][11727] Avg episode reward: 17.376, avg true_objective: 7.210
|
695 |
+
[2023-02-22 16:12:47,260][11727] Num frames 4400...
|
696 |
+
[2023-02-22 16:12:47,373][11727] Num frames 4500...
|
697 |
+
[2023-02-22 16:12:47,485][11727] Num frames 4600...
|
698 |
+
[2023-02-22 16:12:47,594][11727] Num frames 4700...
|
699 |
+
[2023-02-22 16:12:47,706][11727] Num frames 4800...
|
700 |
+
[2023-02-22 16:12:47,817][11727] Num frames 4900...
|
701 |
+
[2023-02-22 16:12:47,929][11727] Num frames 5000...
|
702 |
+
[2023-02-22 16:12:48,050][11727] Num frames 5100...
|
703 |
+
[2023-02-22 16:12:48,165][11727] Num frames 5200...
|
704 |
+
[2023-02-22 16:12:48,248][11727] Avg episode rewards: #0: 17.603, true rewards: #0: 7.460
|
705 |
+
[2023-02-22 16:12:48,250][11727] Avg episode reward: 17.603, avg true_objective: 7.460
|
706 |
+
[2023-02-22 16:12:48,337][11727] Num frames 5300...
|
707 |
+
[2023-02-22 16:12:48,446][11727] Num frames 5400...
|
708 |
+
[2023-02-22 16:12:48,557][11727] Num frames 5500...
|
709 |
+
[2023-02-22 16:12:48,668][11727] Num frames 5600...
|
710 |
+
[2023-02-22 16:12:48,779][11727] Num frames 5700...
|
711 |
+
[2023-02-22 16:12:48,891][11727] Num frames 5800...
|
712 |
+
[2023-02-22 16:12:49,005][11727] Num frames 5900...
|
713 |
+
[2023-02-22 16:12:49,116][11727] Num frames 6000...
|
714 |
+
[2023-02-22 16:12:49,225][11727] Num frames 6100...
|
715 |
+
[2023-02-22 16:12:49,303][11727] Avg episode rewards: #0: 17.522, true rewards: #0: 7.647
|
716 |
+
[2023-02-22 16:12:49,306][11727] Avg episode reward: 17.522, avg true_objective: 7.647
|
717 |
+
[2023-02-22 16:12:49,397][11727] Num frames 6200...
|
718 |
+
[2023-02-22 16:12:49,509][11727] Num frames 6300...
|
719 |
+
[2023-02-22 16:12:49,625][11727] Num frames 6400...
|
720 |
+
[2023-02-22 16:12:49,736][11727] Num frames 6500...
|
721 |
+
[2023-02-22 16:12:49,849][11727] Num frames 6600...
|
722 |
+
[2023-02-22 16:12:49,938][11727] Avg episode rewards: #0: 16.478, true rewards: #0: 7.367
|
723 |
+
[2023-02-22 16:12:49,940][11727] Avg episode reward: 16.478, avg true_objective: 7.367
|
724 |
+
[2023-02-22 16:12:50,021][11727] Num frames 6700...
|
725 |
+
[2023-02-22 16:12:50,134][11727] Num frames 6800...
|
726 |
+
[2023-02-22 16:12:50,248][11727] Num frames 6900...
|
727 |
+
[2023-02-22 16:12:50,360][11727] Num frames 7000...
|
728 |
+
[2023-02-22 16:12:50,470][11727] Num frames 7100...
|
729 |
+
[2023-02-22 16:12:50,579][11727] Num frames 7200...
|
730 |
+
[2023-02-22 16:12:50,690][11727] Num frames 7300...
|
731 |
+
[2023-02-22 16:12:50,803][11727] Num frames 7400...
|
732 |
+
[2023-02-22 16:12:50,929][11727] Avg episode rewards: #0: 16.461, true rewards: #0: 7.461
|
733 |
+
[2023-02-22 16:12:50,931][11727] Avg episode reward: 16.461, avg true_objective: 7.461
|
734 |
+
[2023-02-22 16:13:08,594][11727] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
|