sino
commited on
Commit
·
a62a2b1
1
Parent(s):
8d2d274
Upload modeling_maelm.py
Browse files- modeling_maelm.py +592 -0
modeling_maelm.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pdb
|
4 |
+
from mmcv.cnn.bricks import padding
|
5 |
+
import torch
|
6 |
+
from torch import nn, einsum
|
7 |
+
from typing import Optional, Dict, Tuple
|
8 |
+
from src.mae_vit import MAEViT
|
9 |
+
from src.htsat import HTSAT_Swin_Transformer, create_htsat_model
|
10 |
+
from src.LMdecoder import LMDecoder, LMDecoder_qlora
|
11 |
+
from src.vision_transformer import VisionTransformer
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
from einops_exts import rearrange_many
|
14 |
+
import inspect
|
15 |
+
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from .configuration_maelm import MAELMConfig
|
18 |
+
|
19 |
+
class ArgsHandler:
|
20 |
+
def __init__(self, module, funcname, fargs, fkargs):
|
21 |
+
self.fargs = list(fargs)
|
22 |
+
self.fkargs = fkargs
|
23 |
+
func = getattr(module, funcname)
|
24 |
+
fal_repr = f"{funcname}_argnames_list"
|
25 |
+
if (argns_list:=getattr(module, fal_repr, None)) is None:
|
26 |
+
self.func_sig = inspect.signature(func)
|
27 |
+
self.argnames_list = list(self.func_sig.parameters.keys())
|
28 |
+
setattr(module, fal_repr, self.argnames_list)
|
29 |
+
else:
|
30 |
+
self.argnames_list = argns_list
|
31 |
+
|
32 |
+
def get_arg(self, arg_name):
|
33 |
+
if arg_name in self.fkargs:
|
34 |
+
arg = self.fkargs[arg_name]
|
35 |
+
else:
|
36 |
+
arg = self.fargs[self.argnames_list.index(arg_name)]
|
37 |
+
return arg
|
38 |
+
|
39 |
+
def set_arg(self, arg_name, arg_value):
|
40 |
+
if arg_name in self.fkargs:
|
41 |
+
self.fkargs[arg_name] = arg_value
|
42 |
+
else:
|
43 |
+
self.fargs[self.argnames_list.index(arg_name)] = arg_value
|
44 |
+
|
45 |
+
def return_all_args(self,):
|
46 |
+
return tuple(self.fargs), self.fkargs
|
47 |
+
|
48 |
+
class SquaredReLU(nn.Module):
|
49 |
+
""" squared ReLU activation function"""
|
50 |
+
def __init__(self):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return torch.pow(torch.relu(x), 2)
|
55 |
+
|
56 |
+
def FeedForward(dim, out_dim, mult=4, act='gelu'):
|
57 |
+
"""
|
58 |
+
lucidrains implementation, slightly modified with the act parameter.
|
59 |
+
"""
|
60 |
+
|
61 |
+
acts = dict(
|
62 |
+
gelu=nn.GELU,
|
63 |
+
sqrelu=SquaredReLU,
|
64 |
+
relu=nn.ReLU
|
65 |
+
)
|
66 |
+
|
67 |
+
assert act in acts, f"act. can only be one of {acts.keys()}"
|
68 |
+
|
69 |
+
inner_dim = int(dim * mult)
|
70 |
+
return nn.Sequential(
|
71 |
+
nn.LayerNorm(dim),
|
72 |
+
nn.Linear(dim, inner_dim, bias=False),
|
73 |
+
acts[act](),
|
74 |
+
nn.Linear(inner_dim, out_dim, bias=False)
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
class PerceiverAttentionLayer(nn.Module):
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
*,
|
82 |
+
feat_dim,
|
83 |
+
latent_dim,
|
84 |
+
dim_head=64,
|
85 |
+
heads=8
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.scale = dim_head ** -0.5
|
89 |
+
self.heads = heads
|
90 |
+
self.dim_head = dim_head
|
91 |
+
|
92 |
+
inner_dim = dim_head * heads
|
93 |
+
|
94 |
+
# trainable components of PerceiverAttentionLayer
|
95 |
+
self.norm_media = nn.LayerNorm(feat_dim)
|
96 |
+
self.norm_latents = nn.LayerNorm(latent_dim)
|
97 |
+
|
98 |
+
self.to_q = nn.Linear(latent_dim, inner_dim, bias=False)
|
99 |
+
self.to_k = nn.Linear(feat_dim, inner_dim, bias=False)
|
100 |
+
self.to_v = nn.Linear(feat_dim, inner_dim, bias=False)
|
101 |
+
self.to_out = nn.Linear(inner_dim, latent_dim, bias=False)
|
102 |
+
|
103 |
+
def forward(self, features, latents):
|
104 |
+
"""
|
105 |
+
Latent vectors are cross-attending to the visual features x.
|
106 |
+
:param x: Tensor (n_batch, n_features, dim)
|
107 |
+
visual features
|
108 |
+
:param latents: Tensor (n_batch, n_latents, dim)
|
109 |
+
latent learnt vectors from which the queries are computed.
|
110 |
+
Actually the same, just replicated in n_batch and n_frames dimension.
|
111 |
+
:return: Tensor (n_batch, n_latents, dim)
|
112 |
+
"""
|
113 |
+
assert features.ndim == 3
|
114 |
+
assert latents.ndim == 3
|
115 |
+
assert features.shape[0] == latents.shape[0]
|
116 |
+
#assert features.shape[2] == latents.shape[2]
|
117 |
+
|
118 |
+
n_heads = self.heads
|
119 |
+
n_batch, n_features, dim = features.shape
|
120 |
+
n_queries = latents.shape[1]
|
121 |
+
|
122 |
+
# layer normalization, as usual
|
123 |
+
x = self.norm_media(features)
|
124 |
+
latents = self.norm_latents(latents)
|
125 |
+
|
126 |
+
# queries
|
127 |
+
# compute the queries from the latents, for all attention heads simultaneously.
|
128 |
+
q = self.to_q(latents)
|
129 |
+
q = rearrange(q, 'b q (h d) -> b h q d', h=n_heads)
|
130 |
+
assert q.shape == torch.Size([n_batch, n_heads, n_queries, self.dim_head])
|
131 |
+
|
132 |
+
# keys and values for all attention heads
|
133 |
+
|
134 |
+
'''
|
135 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
136 |
+
n_features_latents = n_features + n_queries
|
137 |
+
'''
|
138 |
+
|
139 |
+
kv_input = x
|
140 |
+
n_features_latents = n_features
|
141 |
+
|
142 |
+
# keys, values
|
143 |
+
k = self.to_k(kv_input)
|
144 |
+
v = self.to_v(kv_input)
|
145 |
+
# batch, features, (heads, dim)
|
146 |
+
|
147 |
+
# split so we have an extra dimension for the heads
|
148 |
+
# q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h)
|
149 |
+
k, v = rearrange_many((k, v), 'b f (h d) -> b h f d', h=n_heads)
|
150 |
+
assert v.shape == torch.Size([n_batch, n_heads, n_features_latents, self.dim_head])
|
151 |
+
|
152 |
+
# scale queries?
|
153 |
+
q = q * self.scale
|
154 |
+
|
155 |
+
# attention
|
156 |
+
|
157 |
+
# attention scores
|
158 |
+
# sim = einsum('... i d, ... j d -> ... i j', q, k)
|
159 |
+
sim = einsum('b h q d, b h f d -> b h q f', q, k)
|
160 |
+
|
161 |
+
# Is this for numerical stability? Does not affect the result of the softmax operation
|
162 |
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
163 |
+
alphas = sim.softmax(dim=-1)
|
164 |
+
|
165 |
+
# out = einsum('... i j, ... j d -> ... i d', alphas, v)
|
166 |
+
out = einsum('b h q f, b h f v -> b h q v', alphas, v)
|
167 |
+
|
168 |
+
# out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
|
169 |
+
out = rearrange(out, 'b h q v -> b q (h v)')
|
170 |
+
return self.to_out(out)
|
171 |
+
|
172 |
+
|
173 |
+
class MAEForCausalLM(PreTrainedModel):
|
174 |
+
"""
|
175 |
+
|
176 |
+
Args:
|
177 |
+
backbone (dict): Config dict for encoder. Defaults to None.
|
178 |
+
neck (dict): Config dict for encoder. Defaults to None.
|
179 |
+
head (dict): Config dict for loss functions. Defaults to None.
|
180 |
+
init_cfg (dict, optional): Config dict for weight initialization.
|
181 |
+
Defaults to None.
|
182 |
+
"""
|
183 |
+
|
184 |
+
config_class = MAELMConfig
|
185 |
+
|
186 |
+
def __init__(self, config: MAELMConfig) -> None:
|
187 |
+
super().__init__(config)
|
188 |
+
backbone = config.backbone
|
189 |
+
assert backbone is not None
|
190 |
+
bk_name = backbone.pop('name')
|
191 |
+
self.bk_name = bk_name
|
192 |
+
if bk_name == 'MAEViT':
|
193 |
+
ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
|
194 |
+
self.backbone = MAEViT(**backbone)
|
195 |
+
if ckpt_path is not None:
|
196 |
+
ckpt = torch.load( ckpt_path,'cpu')
|
197 |
+
self.backbone.load_state_dict(ckpt['state_dict'])
|
198 |
+
|
199 |
+
elif bk_name == 'HTSAT':
|
200 |
+
ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
|
201 |
+
self.backbone = create_htsat_model(backbone)
|
202 |
+
if ckpt_path is not None:
|
203 |
+
ckpt = torch.load( ckpt_path,'cpu')
|
204 |
+
self.backbone.load_state_dict(ckpt['state_dict'])
|
205 |
+
elif bk_name == 'qformer':
|
206 |
+
raise NotImplemented
|
207 |
+
else:
|
208 |
+
raise NotImplemented
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
# neck["num_patches"] = self.backbone.num_patches
|
213 |
+
# neck["patch_resolution"] = self.backbone.patch_resolution
|
214 |
+
neck = config.neck
|
215 |
+
assert neck is not None
|
216 |
+
nk_name = neck.pop('name')
|
217 |
+
if nk_name == 'LMDecoder':
|
218 |
+
self.neck = LMDecoder(**neck)
|
219 |
+
elif nk_name == 'LMDecoder_qlora':
|
220 |
+
self.neck = LMDecoder_qlora(**neck)
|
221 |
+
else:
|
222 |
+
raise NotImplemented
|
223 |
+
self.config = self.neck.LMconfig # TODO
|
224 |
+
|
225 |
+
'''
|
226 |
+
self.ae_proj = nn.Linear(
|
227 |
+
768, self.config.hidden_size
|
228 |
+
)
|
229 |
+
'''
|
230 |
+
|
231 |
+
## TODO
|
232 |
+
|
233 |
+
#self.neck.lm.apply(lambda m:m.gradient_checkpointing=True)
|
234 |
+
self.neck.lm.model.gradient_checkpointing = False
|
235 |
+
|
236 |
+
self.register_buffer('ones', torch.ones((1,4096), dtype=torch.long), persistent=False)
|
237 |
+
self.graft_adapter()
|
238 |
+
self.init_weights()
|
239 |
+
# float32 --> bfloat16
|
240 |
+
for p in self.parameters():
|
241 |
+
p.data = p.data.to(torch.bfloat16)
|
242 |
+
if config.resume_from_checkpoint is not None:
|
243 |
+
drain_loader = True
|
244 |
+
accelerator.load_state(config.resume_from_checkpoint, load_module_strict=False)
|
245 |
+
# start_epoch, start_step, all_step = [int(_.split('_')[1]) for _ in args.resume_from_checkpoint.split('/')[-2].split('-')]
|
246 |
+
elif config.resume_from_pth is not None:
|
247 |
+
print(f'###########loading##########{config.resume_from_pth}###########loading##########')
|
248 |
+
ckpt = torch.load(config.resume_from_pth, map_location='cpu')
|
249 |
+
ckpt_copy = {k[7:]: v for k, v in ckpt.items()}
|
250 |
+
self.load_state_dict(ckpt_copy, strict=False)
|
251 |
+
print(f'###########loaded##########{config.resume_from_pth}###########loaded##########')
|
252 |
+
|
253 |
+
if False:
|
254 |
+
self.patch_llm()
|
255 |
+
self.first_run = True
|
256 |
+
|
257 |
+
def graft_adapter(self):
|
258 |
+
adapter_latent_len = 32
|
259 |
+
self.adapter_latent_len = adapter_latent_len
|
260 |
+
self.adapter_latent = nn.Parameter(torch.rand((1,adapter_latent_len, self.config.hidden_size), \
|
261 |
+
dtype=torch.float))
|
262 |
+
resampler_latent_len = 32
|
263 |
+
self.resampler_latent_len = resampler_latent_len
|
264 |
+
self.resampler_latent = nn.Parameter(torch.rand((1,resampler_latent_len, self.config.hidden_size), \
|
265 |
+
dtype=torch.float))
|
266 |
+
## TODO
|
267 |
+
# self.adapter.pre_bn = torch.nn.BatchNorm1d(4096, affine=True)
|
268 |
+
|
269 |
+
self.adapter = nn.ModuleList([])
|
270 |
+
|
271 |
+
ff_mult = 4
|
272 |
+
heads=8
|
273 |
+
dim_head=512
|
274 |
+
act='gelu'
|
275 |
+
|
276 |
+
lm_dim = self.config.hidden_size
|
277 |
+
if self.bk_name == 'HTSAT':
|
278 |
+
feat_dim = 1024
|
279 |
+
depth = len(self.backbone.layers[2].blocks)
|
280 |
+
else:
|
281 |
+
feat_dim = 768
|
282 |
+
depth = int(len(self.neck.lm.model.layers)/2) # 16
|
283 |
+
for idx in range(depth):
|
284 |
+
self.adapter.append(nn.ModuleList([
|
285 |
+
Adapter(input_size=self.config.hidden_size),
|
286 |
+
# PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=dim_head, heads=heads),
|
287 |
+
# FeedForward(dim=lm_dim, out_dim=lm_dim, mult=1, act=act),
|
288 |
+
#FeedForward(dim=self.dim, out_dim=768, mult=ff_mult, act=act) if idx != depth-1 else nn.Identity()
|
289 |
+
]))
|
290 |
+
|
291 |
+
self.samplers = nn.ModuleList([]) # add
|
292 |
+
for _ in range(3):
|
293 |
+
self.samplers.append(nn.ModuleList([
|
294 |
+
PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=64, heads=heads),
|
295 |
+
FeedForward(dim=lm_dim, out_dim=lm_dim, mult=4),
|
296 |
+
]))
|
297 |
+
self.norm = nn.LayerNorm(lm_dim)
|
298 |
+
|
299 |
+
# self.agate_list = nn.ParameterList([])
|
300 |
+
# for i in range(len(self.neck.lm.model.layers)):
|
301 |
+
# self.agate_list.append(nn.Parameter(torch.zeros(lm_dim)))
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
def init_weights(self):
|
306 |
+
try:
|
307 |
+
super().init_weights()
|
308 |
+
except:
|
309 |
+
pass
|
310 |
+
# import traceback
|
311 |
+
# traceback.print_exc()
|
312 |
+
if getattr(self, 'adapter_latent', None) is not None:
|
313 |
+
self.adapter_latent.data.normal_(mean=0.0, std=0.02)
|
314 |
+
if getattr(self, 'resampler_latent', None) is not None:
|
315 |
+
self.adapter_latent.data.normal_(mean=0.0, std=0.02)
|
316 |
+
|
317 |
+
def forward_resampler(self, x):
|
318 |
+
# b, 768, 512
|
319 |
+
latents = repeat(self.resampler_latent, 'b n d -> (bs b) n d', bs=x.shape[0])
|
320 |
+
for attn, ff in self.samplers:
|
321 |
+
latents = attn(x, latents) + latents
|
322 |
+
latents = ff(latents) + latents
|
323 |
+
v2t_feats = self.norm(latents) #
|
324 |
+
# v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device)
|
325 |
+
return v2t_feats # bs, 32, dim_llm
|
326 |
+
|
327 |
+
|
328 |
+
def hook_adapter(self, audio_embedding, lm, v2t_feats):
|
329 |
+
|
330 |
+
class PHooker:
|
331 |
+
# model = self.backbone
|
332 |
+
# mgtr = self.backbone.forward_generator(spectrogram)
|
333 |
+
adapter = self.adapter
|
334 |
+
y = v2t_feats
|
335 |
+
handles_list = list()
|
336 |
+
cnter = 0
|
337 |
+
def layer_prehook(self, m, margs, mkargs):
|
338 |
+
ahl = ArgsHandler(m, 'forward', margs, mkargs)
|
339 |
+
|
340 |
+
# print(self.cnter)
|
341 |
+
|
342 |
+
# if self.cnter>=16:
|
343 |
+
# self.cnter+=1
|
344 |
+
# return None
|
345 |
+
adapt = self.adapter[self.cnter][0]
|
346 |
+
|
347 |
+
hs = ahl.get_arg("hidden_states")
|
348 |
+
adapter_residual = hs
|
349 |
+
neo_hs = adapt(hs, adapter_residual)
|
350 |
+
|
351 |
+
self.cnter+=1
|
352 |
+
ahl.set_arg("hidden_states", neo_hs)
|
353 |
+
return ahl.return_all_args()
|
354 |
+
def first_layer_prehook(self, m, margs, mkargs):
|
355 |
+
ahl = ArgsHandler(m, 'forward', margs, mkargs)
|
356 |
+
neo_lm_latents = self.y # torch.Size([128, 32, 4096])
|
357 |
+
hs = ahl.get_arg("hidden_states") # torch.Size([128, 87, 4096])
|
358 |
+
hs_msk = self.lm_ahl.get_arg("input_ids") < 0 # torch.Size([128, 87]) [False,, True*32, False,,]
|
359 |
+
# __import__('pdb').set_trace()
|
360 |
+
neo_hs = hs.masked_scatter(hs_msk.unsqueeze(-1), neo_lm_latents) # resampler hooker直接替换
|
361 |
+
ahl.set_arg("hidden_states", neo_hs)
|
362 |
+
return ahl.return_all_args()
|
363 |
+
|
364 |
+
def lm_prehook(self, m, margs, mkargs):
|
365 |
+
self.lm_ahl = ArgsHandler(m, 'forward', margs, mkargs)
|
366 |
+
return None
|
367 |
+
def last_layer_hook(self, m, margs, mkargs):
|
368 |
+
# __import__('pdb').set_trace()
|
369 |
+
self.cnter = 0
|
370 |
+
|
371 |
+
if getattr(lm,'phooker',False):
|
372 |
+
for _ in lm.phooker.handles_list:
|
373 |
+
_.remove()
|
374 |
+
del lm.phooker
|
375 |
+
lm.phooker = None
|
376 |
+
phooker = PHooker()
|
377 |
+
phooker.handles_list.append(lm.register_forward_pre_hook(phooker.lm_prehook, with_kwargs=True))
|
378 |
+
# 第一层插入
|
379 |
+
phooker.handles_list.append(lm.model.layers[0].register_forward_pre_hook(phooker.first_layer_prehook, with_kwargs=True))
|
380 |
+
|
381 |
+
for ii in range(1,len(lm.model.layers),2):
|
382 |
+
l = lm.model.layers[ii]
|
383 |
+
handle = l.register_forward_pre_hook(phooker.layer_prehook, with_kwargs=True)
|
384 |
+
phooker.handles_list.append(handle)
|
385 |
+
phooker.handles_list.append(lm.model.layers[-1].register_forward_pre_hook(phooker.last_layer_hook, with_kwargs=True))
|
386 |
+
lm.phooker = phooker
|
387 |
+
return None
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
def prepare_ids(self, batch, audio_ids):
|
392 |
+
toker = self.neck.tokenizer
|
393 |
+
# for idx, l in enumerate(self.neck.lm.model.layers):
|
394 |
+
# l.agate = self.agate_list[idx].clone() ## should clone the parameter
|
395 |
+
|
396 |
+
with torch.no_grad():
|
397 |
+
|
398 |
+
input_ids = batch['input_ids']
|
399 |
+
att_msk = batch['attention_mask']
|
400 |
+
au_crds = batch['audio_crds']
|
401 |
+
ans_crds = batch['ans_crds']
|
402 |
+
bsz = input_ids.shape[0]
|
403 |
+
# __import__('pdb').set_trace()
|
404 |
+
## TODO
|
405 |
+
merged_ids, merged_msk, label_ids = list(), list(), list()
|
406 |
+
for i in range(bsz):
|
407 |
+
# cur_merged_ids = torch.cat([input_ids[i,:au_crds[i]], -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
|
408 |
+
cur_merged_ids = torch.cat([ -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
|
409 |
+
|
410 |
+
# cur_au_msk = self.ones[:,:audio_ids.shape[1]][0].clone().type_as(att_msk).detach()
|
411 |
+
cur_au_msk = torch.ones(audio_ids.shape[1], device=audio_ids.device)
|
412 |
+
# cur_merged_msk = torch.cat([att_msk[i,:au_crds[i]], cur_au_msk, att_msk[i,au_crds[i]:]])
|
413 |
+
cur_merged_msk = torch.cat([ cur_au_msk, att_msk[i,au_crds[i]:]])
|
414 |
+
cur_label_ids = cur_merged_ids.clone().detach()
|
415 |
+
cur_label_ids[:audio_ids.shape[1]+ans_crds[i]] = -100
|
416 |
+
|
417 |
+
merged_ids.append(cur_merged_ids)
|
418 |
+
merged_msk.append(cur_merged_msk)
|
419 |
+
label_ids.append(cur_label_ids)
|
420 |
+
|
421 |
+
merged_ids = torch.stack(merged_ids, dim=0)
|
422 |
+
merged_msk = torch.stack(merged_msk, dim=0)
|
423 |
+
label_ids = torch.stack(label_ids, dim=0)
|
424 |
+
|
425 |
+
assert merged_ids.shape[0] == bsz
|
426 |
+
assert merged_ids.shape == merged_msk.shape
|
427 |
+
|
428 |
+
label_msk = merged_msk.clone()
|
429 |
+
assert label_msk.shape == merged_msk.shape
|
430 |
+
assert merged_msk[:,-1].max() == 1
|
431 |
+
|
432 |
+
for i in range(len(ans_crds)):
|
433 |
+
label_ids[i,:audio_ids.shape[1]+ans_crds[i]].fill_(-100)
|
434 |
+
|
435 |
+
|
436 |
+
merged_labels = label_ids
|
437 |
+
merged_ids[merged_ids.eq(-100)] = toker.pad_token_id
|
438 |
+
|
439 |
+
return merged_ids, merged_msk, merged_labels
|
440 |
+
|
441 |
+
def forward(self, batch, **kwargs):
|
442 |
+
"""Forward computation during training.
|
443 |
+
|
444 |
+
Args:
|
445 |
+
img (torch.Tensor): Input images of shape (N, C, H, W).
|
446 |
+
kwargs: Any keyword arguments to be used to forward.
|
447 |
+
Returns:
|
448 |
+
Dict[str, torch.Tensor]: A dictionary of loss components.
|
449 |
+
"""
|
450 |
+
bsz = len(batch['input_ids'])
|
451 |
+
device = batch['input_ids'].device
|
452 |
+
float_type = next(self.parameters()).dtype
|
453 |
+
spectrogram = batch['spectrogram'].type(float_type)
|
454 |
+
audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
|
455 |
+
resampler_feats = self.forward_resampler(audio_embedding)
|
456 |
+
self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
|
457 |
+
|
458 |
+
# self.hook_resapmler(resampler_feats, self.neck.lm)
|
459 |
+
|
460 |
+
audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
|
461 |
+
assert audio_ids.max() < 100
|
462 |
+
merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
|
463 |
+
|
464 |
+
try:
|
465 |
+
assert merged_ids.shape == merged_labels.shape
|
466 |
+
outs = self.neck(input_ids=merged_ids.contiguous().long(),
|
467 |
+
flatten_embs=self.adapter_latent.flatten(0,1), # 32, 4096
|
468 |
+
# flatten_embs = resampler_feats.flatten(0,1), # b, 32, 4096
|
469 |
+
attention_mask=merged_msk.contiguous().long(),
|
470 |
+
labels=merged_labels.contiguous().long(), use_cache=False)
|
471 |
+
except Exception as e:
|
472 |
+
import traceback
|
473 |
+
traceback.print_exc()
|
474 |
+
__import__('remote_pdb').set_trace()
|
475 |
+
#outs.hidden_logits = self.hidden_logits
|
476 |
+
|
477 |
+
## TODO
|
478 |
+
if eval(os.environ.get("doing_eval", 'False')):
|
479 |
+
outs.merged_ids = merged_ids.cpu()
|
480 |
+
outs.merged_labels = merged_labels.cpu()
|
481 |
+
|
482 |
+
return outs
|
483 |
+
|
484 |
+
|
485 |
+
def forward_test(self, batch, **kwargs):
|
486 |
+
"""Forward computation during training.
|
487 |
+
|
488 |
+
Args:
|
489 |
+
img (torch.Tensor): Input images of shape (N, C, H, W).
|
490 |
+
kwargs: Any keyword arguments to be used to forward.
|
491 |
+
Returns:
|
492 |
+
Dict[str, torch.Tensor]: A dictionary of loss components.
|
493 |
+
"""
|
494 |
+
|
495 |
+
|
496 |
+
bsz = len(batch['input_ids'])
|
497 |
+
device = batch['input_ids'].device
|
498 |
+
float_type = next(self.parameters()).dtype
|
499 |
+
spectrogram = batch['spectrogram'].type(float_type)
|
500 |
+
audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
|
501 |
+
resampler_feats = self.forward_resampler(audio_embedding)
|
502 |
+
self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
|
503 |
+
# self.extract_features(batch, self.neck.lm)
|
504 |
+
audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
|
505 |
+
assert audio_ids.max() < 100
|
506 |
+
|
507 |
+
merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
|
508 |
+
au_crds = batch['audio_crds']
|
509 |
+
ans_crds = batch['ans_crds']
|
510 |
+
|
511 |
+
aid_len = audio_ids.shape[-1]
|
512 |
+
|
513 |
+
|
514 |
+
toker = self.neck.tokenizer
|
515 |
+
with torch.no_grad():
|
516 |
+
|
517 |
+
## TODO
|
518 |
+
pad_token = toker.encode(self.neck.tokenizer.eos_token)[0]
|
519 |
+
padded_merged_ids = self.ones[:, :aid_len+max(ans_crds)].repeat(bsz, 1).clone().detach() * pad_token
|
520 |
+
for i in range(bsz):
|
521 |
+
# for i in range(1):
|
522 |
+
assert au_crds[i] <= ans_crds[i]
|
523 |
+
cur_ids = merged_ids[i][:aid_len+ans_crds[i]]
|
524 |
+
padded_merged_ids[i][max(ans_crds)-ans_crds[i]:] = cur_ids
|
525 |
+
# __import__('pdb').set_trace()
|
526 |
+
outs = self.neck.generate(padded_merged_ids, self.adapter_latent.flatten(0,1))
|
527 |
+
#outs.hidden_logits = self.hidden_logits
|
528 |
+
|
529 |
+
return outs
|
530 |
+
|
531 |
+
|
532 |
+
|
533 |
+
import torch
|
534 |
+
from torch import nn
|
535 |
+
|
536 |
+
from transformers.activations import ACT2FN
|
537 |
+
|
538 |
+
class Adapter(nn.Module):
|
539 |
+
"""
|
540 |
+
Implementation of a sequential bottleneck adapter block.
|
541 |
+
"""
|
542 |
+
def __init__(
|
543 |
+
self,
|
544 |
+
input_size,
|
545 |
+
down_sample=None,
|
546 |
+
):
|
547 |
+
super().__init__()
|
548 |
+
|
549 |
+
self.input_size = input_size
|
550 |
+
|
551 |
+
# if a downsample size is not passed, we just half the size of the original input
|
552 |
+
self.down_sample = down_sample
|
553 |
+
if down_sample is None:
|
554 |
+
self.down_sample = self.input_size // 2
|
555 |
+
|
556 |
+
self.adapter_norm_before = nn.LayerNorm(self.input_size)
|
557 |
+
self.adapter_down = nn.Linear(self.input_size, self.down_sample)
|
558 |
+
self.non_linearity = ACT2FN["silu"]
|
559 |
+
|
560 |
+
# Up projection to input size
|
561 |
+
self.adapter_up = nn.Linear(self.down_sample, self.input_size)
|
562 |
+
|
563 |
+
# Additional scaling factor (from He et al. (2021))
|
564 |
+
self.scaling = nn.Parameter(torch.ones(1))
|
565 |
+
|
566 |
+
self.adapter_down.apply(self._init_weights)
|
567 |
+
self.adapter_up.apply(self._init_weights)
|
568 |
+
|
569 |
+
def forward(self, x, residual_input): # , residual_input=None):
|
570 |
+
|
571 |
+
down = self.non_linearity(self.adapter_down(self.adapter_norm_before(x)))
|
572 |
+
|
573 |
+
up = self.adapter_up(down)
|
574 |
+
up = up * self.scaling
|
575 |
+
output = up
|
576 |
+
|
577 |
+
output = output + residual_input
|
578 |
+
|
579 |
+
return output
|
580 |
+
|
581 |
+
@staticmethod
|
582 |
+
def _init_weights(module):
|
583 |
+
"""Initialize the weights."""
|
584 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
585 |
+
# std defaults to 0.02, this might need to be changed
|
586 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
587 |
+
elif isinstance(module, nn.LayerNorm):
|
588 |
+
module.bias.data.zero_()
|
589 |
+
module.weight.data.fill_(1.0)
|
590 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
591 |
+
module.bias.data.zero_()
|
592 |
+
|