OpenJMLA / htsat.py
sino
Upload 4 files
ff4fdee
raw
history blame
51.8 kB
# Ke Chen
# [email protected]
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
# Some layers designed on the model
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
import torch
import torch.nn as nn
import torch.nn.functional as F
from itertools import repeat
import collections.abc
import math
import warnings
from torch.nn.init import _calculate_fan_in_and_fan_out
import torch.utils.checkpoint as checkpoint
import random
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from torchlibrosa.augmentation import SpecAugmentation
from einops import rearrange
from itertools import repeat
# from .utils import interpolate
# from .feature_fusion import iAFF, AFF, DAF
'''
Feature Fusion for Varible-Length Data Processing
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
'''
class DAF(nn.Module):
'''
直接相加 DirectAddFuse
'''
def __init__(self):
super(DAF, self).__init__()
def forward(self, x, residual):
return x + residual
class iAFF(nn.Module):
'''
多特征融合 iAFF
'''
def __init__(self, channels=64, r=4, type='2D'):
super(iAFF, self).__init__()
inter_channels = int(channels // r)
if type == '1D':
# 本地注意力
self.local_att = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 全局注意力
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 第二次本地注意力
self.local_att2 = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 第二次全局注意力
self.global_att2 = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
elif type == '2D':
# 本地注意力
self.local_att = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 全局注意力
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 第二次本地注意力
self.local_att2 = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 第二次全局注意力
self.global_att2 = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
else:
raise f'the type is not supported'
self.sigmoid = nn.Sigmoid()
def forward(self, x, residual):
flag = False
xa = x + residual
if xa.size(0) == 1:
xa = torch.cat([xa,xa],dim=0)
flag = True
xl = self.local_att(xa)
xg = self.global_att(xa)
xlg = xl + xg
wei = self.sigmoid(xlg)
xi = x * wei + residual * (1 - wei)
xl2 = self.local_att2(xi)
xg2 = self.global_att(xi)
xlg2 = xl2 + xg2
wei2 = self.sigmoid(xlg2)
xo = x * wei2 + residual * (1 - wei2)
if flag:
xo = xo[0].unsqueeze(0)
return xo
class AFF(nn.Module):
'''
多特征融合 AFF
'''
def __init__(self, channels=64, r=4, type='2D'):
super(AFF, self).__init__()
inter_channels = int(channels // r)
if type == '1D':
self.local_att = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
elif type == '2D':
self.local_att = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
else:
raise f'the type is not supported.'
self.sigmoid = nn.Sigmoid()
def forward(self, x, residual):
flag = False
xa = x + residual
if xa.size(0) == 1:
xa = torch.cat([xa,xa],dim=0)
flag = True
xl = self.local_att(xa)
xg = self.global_att(xa)
xlg = xl + xg
wei = self.sigmoid(xlg)
xo = 2 * x * wei + 2 * residual * (1 - wei)
if flag:
xo = xo[0].unsqueeze(0)
return xo
# .utils
def interpolate(x, ratio):
"""Interpolate data in time domain. This is used to compensate the
resolution reduction in downsampling of a CNN.
Args:
x: (batch_size, time_steps, classes_num)
ratio: int, ratio to interpolate
Returns:
upsampled: (batch_size, time_steps * ratio, classes_num)
"""
(batch_size, time_steps, classes_num) = x.shape
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
return upsampled
def do_mixup(x, mixup_lambda):
"""
Args:
x: (batch_size , ...)
mixup_lambda: (batch_size,)
Returns:
out: (batch_size, ...)
"""
out = (
x.transpose(0, -1) * mixup_lambda
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
).transpose(0, -1)
return out
# from PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16,
enable_fusion=False, fusion_type='None'):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patch_stride = to_2tuple(patch_stride)
self.img_size = img_size
self.patch_size = patch_size
self.patch_stride = patch_stride
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
if (self.enable_fusion) and (self.fusion_type == 'channel_map'):
self.proj = nn.Conv2d(in_chans*4, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
self.mel_conv2d = nn.Conv2d(in_chans, embed_dim, kernel_size=(patch_size[0], patch_size[1]*3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding)
if self.fusion_type == 'daf_2d':
self.fusion_model = DAF()
elif self.fusion_type == 'aff_2d':
self.fusion_model = AFF(channels=embed_dim, type='2D')
elif self.fusion_type == 'iaff_2d':
self.fusion_model = iAFF(channels=embed_dim, type='2D')
def forward(self, x, longer_idx = None):
if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
global_x = x[:,0:1,:,:]
# global processing
B, C, H, W = global_x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
global_x = self.proj(global_x)
TW = global_x.size(-1)
if len(longer_idx) > 0:
# local processing
local_x = x[longer_idx,1:,:,:].contiguous()
B, C, H, W = local_x.shape
local_x = local_x.view(B*C,1,H,W)
local_x = self.mel_conv2d(local_x)
local_x = local_x.view(B,C,local_x.size(1),local_x.size(2),local_x.size(3))
local_x = local_x.permute((0,2,3,1,4)).contiguous().flatten(3)
TB,TC,TH,_ = local_x.size()
if local_x.size(-1) < TW:
local_x = torch.cat([local_x, torch.zeros((TB,TC,TH,TW-local_x.size(-1)), device=global_x.device)], dim=-1)
else:
local_x = local_x[:,:,:,:TW]
global_x[longer_idx] = self.fusion_model(global_x[longer_idx],local_x)
x = global_x
else:
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == 'fan_in':
denom = fan_in
elif mode == 'fan_out':
denom = fan_out
elif mode == 'fan_avg':
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
elif distribution == "normal":
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
def extra_repr(self):
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.norm_before_mlp = norm_before_mlp
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if self.norm_before_mlp == 'ln':
self.norm2 = nn.LayerNorm(dim)
elif self.norm_before_mlp == 'bn':
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
else:
raise NotImplementedError
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
# pdb.set_trace()
H, W = self.input_resolution
# print("H: ", H)
# print("W: ", W)
# pdb.set_trace()
B, L, C = x.shape
# assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, attn
def extra_repr(self):
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self):
return f"input_resolution={self.input_resolution}, dim={self.dim}"
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
norm_before_mlp='ln'):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
attns = []
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x, attn = blk(x)
if not self.training:
attns.append(attn.unsqueeze(0))
if self.downsample is not None:
x = self.downsample(x)
if not self.training:
attn = torch.cat(attns, dim = 0)
attn = torch.mean(attn, dim = 0)
return x, attn
# if self.downsample is not None:
# x = self.downsample(x)
# if not self.training:
# attn = torch.cat(attns, dim = 0)
# attn = torch.mean(attn, dim = 0)
# return x, attn
def extra_repr(self):
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
# The Core of HTSAT
class HTSAT_Swin_Transformer(nn.Module):
r"""HTSAT based on the Swin Transformer
Args:
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
patch_size (int | tuple(int)): Patch size. Default: 4
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
in_chans (int): Number of input image channels. Default: 1 (mono)
num_classes (int): Number of classes for classification head. Default: 527
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 8
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
config (module): The configuration Module from config.py
"""
def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
in_chans=1, num_classes=527,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False, patch_norm=True,
use_checkpoint=False, norm_before_mlp='ln', config = None,
enable_fusion = False, fusion_type = 'None', **kwargs):
super(HTSAT_Swin_Transformer, self).__init__()
self.config = config
self.spec_size = spec_size
self.patch_stride = patch_stride
self.patch_size = patch_size
self.window_size = window_size
self.embed_dim = embed_dim
self.depths = depths
self.ape = ape
self.in_chans = in_chans
self.num_classes = num_classes
self.num_heads = num_heads
self.num_layers = len(self.depths)
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.qkv_bias = qkv_bias
self.qk_scale = None
self.patch_norm = patch_norm
self.norm_layer = norm_layer if self.patch_norm else None
self.norm_before_mlp = norm_before_mlp
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
# process mel-spec ; used only once
self.freq_ratio = self.spec_size // self.config.mel_bins
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
self.interpolate_ratio = 32 # Downsampled ratio
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
freeze_parameters=True)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
freeze_parameters=True)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
freq_drop_width=8, freq_stripes_num=2) # 2 2
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
# split spctrogram into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride,
enable_fusion=self.enable_fusion, fusion_type=self.fusion_type
)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.grid_size
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=self.drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=self.depths[i_layer],
num_heads=self.num_heads[i_layer],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
norm_layer=self.norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
norm_before_mlp=self.norm_before_mlp)
self.layers.append(layer)
self.norm = self.norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.maxpool = nn.AdaptiveMaxPool1d(1)
SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
self.tscam_conv = nn.Conv2d(
in_channels = self.num_features,
out_channels = self.num_classes,
kernel_size = (SF,3),
padding = (0,1)
)
self.head = nn.Linear(num_classes, num_classes)
if (self.enable_fusion) and (self.fusion_type in ['daf_1d','aff_1d','iaff_1d']):
self.mel_conv1d = nn.Sequential(
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
nn.BatchNorm1d(64)
)
if self.fusion_type == 'daf_1d':
self.fusion_model = DAF()
elif self.fusion_type == 'aff_1d':
self.fusion_model = AFF(channels=64, type='1D')
elif self.fusion_type == 'iaff_1d':
self.fusion_model = iAFF(channels=64, type='1D')
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x, longer_idx = None):
# A deprecated optimization for using a hierarchical output from different blocks
frames_num = x.shape[2]
x = self.patch_embed(x, longer_idx = longer_idx)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for i, layer in enumerate(self.layers):
x, attn = layer(x)
# for x
x = self.norm(x)
B, N, C = x.shape
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
B, C, F, T = x.shape
# group 2D CNN
c_freq_bin = F // self.freq_ratio
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
# get latent_output
fine_grained_latent_output = torch.mean(x, dim = 2)
fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
latent_output = self.avgpool(torch.flatten(x,2))
latent_output = torch.flatten(latent_output, 1)
# display the attention map, if needed
x = self.tscam_conv(x)
x = torch.flatten(x, 2) # B, C, T
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
x = self.avgpool(x)
x = torch.flatten(x, 1)
output_dict = {
'framewise_output': fpx, # already sigmoided
'clipwise_output': torch.sigmoid(x),
'fine_grained_embedding': fine_grained_latent_output,
'embedding': latent_output
}
return output_dict
def crop_wav(self, x, crop_size, spe_pos = None):
time_steps = x.shape[2]
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
for i in range(len(x)):
if spe_pos is None:
crop_pos = random.randint(0, time_steps - crop_size - 1)
else:
crop_pos = spe_pos
tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
return tx
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
def reshape_wav2img(self, x):
B, C, T, F = x.shape
target_T = int(self.spec_size * self.freq_ratio)
target_F = self.spec_size // self.freq_ratio
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
# to avoid bicubic zero error
if T < target_T:
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
if F < target_F:
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
x = x.permute(0,1,3,2).contiguous()
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
# print(x.shape)
x = x.permute(0,1,3,2,4).contiguous()
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
return x
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
def repeat_wat2img(self, x, cur_pos):
B, C, T, F = x.shape
target_T = int(self.spec_size * self.freq_ratio)
target_F = self.spec_size // self.freq_ratio
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
# to avoid bicubic zero error
if T < target_T:
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
if F < target_F:
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
x = x.permute(0,1,3,2).contiguous() # B C F T
x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
x = x.repeat(repeats = (1,1,4,1))
return x
def forward_generator(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
n = int(x.shape[1]/480000)
assert n * 480000 == x.shape[1]
x = rearrange(x, 'b (n t) -> (b n) t', n=n)
if not self.enable_fusion:
# x = x["waveform"].to(device=device, non_blocking=True)
x = x.to(device=device, non_blocking=True)
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.spec_augmenter(x)
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
x = self.reshape_wav2img(x)
# output_dict = self.forward_features(x)
# A deprecated optimization for using a hierarchical output from different blocks
longer_idx = None
frames_num = x.shape[2]
x = self.patch_embed(x, longer_idx = longer_idx)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for i, layer in enumerate(self.layers[:3]): # depth: [2,2,12,2]
if i == 2:
for blk in layer.blocks:
x, attn = blk(x)
# 512
x = rearrange(x, '(b n) t c -> b (n t) c', n=n)
x = x if (new_x:=(yield x)) is None else new_x
x = rearrange(x, 'b (n t) c -> (b n) t c', n=n)
else:
x, attn = layer(x)
def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
n = int(x.shape[1] / 480000)
assert n * 480000 == x.shape[1]
x = rearrange(x, 'b (n t) -> (b n) t', n = n)
if not self.enable_fusion:
# x = x["waveform"].to(device=device, non_blocking=True)
x = x.to(device=device, non_blocking=True)
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.spec_augmenter(x)
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
x = self.reshape_wav2img(x)
# x = self.forward_features(x)
longer_idx = None
frames_num = x.shape[2]
x = self.patch_embed(x, longer_idx = longer_idx)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for i, layer in enumerate(self.layers):
x, attn = layer(x)
# for x
x = self.norm(x)
x = rearrange(x, '(b n) t c -> b (n t) c', n = n)
return x
# B, N, C = x.shape
# SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
# ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
# x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
# B, C, F, T = x.shape
# # group 2D CNN
# c_freq_bin = F // self.freq_ratio
# x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
# x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
# # get latent_output
# fine_grained_latent_output = torch.mean(x, dim = 2)
# fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
# latent_output = self.avgpool(torch.flatten(x,2))
# latent_output = torch.flatten(latent_output, 1)
# # display the attention map, if needed
# x = self.tscam_conv(x)
# x = torch.flatten(x, 2) # B, C, T
# fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
# x = self.avgpool(x)
# x = torch.flatten(x, 1)
# return x
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type='None'):
try:
assert audio_cfg.model_name in ["tiny", "base", "large"], "model name for HTS-AT is wrong!"
if audio_cfg.model_name == "tiny":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4,4),
num_classes=audio_cfg.class_num,
embed_dim=96,
depths=[2,2,6,2],
num_heads=[4,8,16,32],
window_size=8,
config = audio_cfg,
enable_fusion = enable_fusion,
fusion_type = fusion_type
)
elif audio_cfg.model_name == "base":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4,4),
num_classes=audio_cfg.class_num,
embed_dim=128,
depths=[2,2,12,2],
num_heads=[4,8,16,32],
window_size=8,
config = audio_cfg,
enable_fusion = enable_fusion,
fusion_type = fusion_type
)
elif audio_cfg.model_name == "large":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4,4),
num_classes=audio_cfg.class_num,
embed_dim=256,
depths=[2,2,12,2],
num_heads=[4,8,16,32],
window_size=8,
config = audio_cfg,
enable_fusion = enable_fusion,
fusion_type = fusion_type
)
return model
except:
raise RuntimeError(f'Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough.')