|
|
|
|
|
|
|
import torch |
|
from torch import nn, einsum |
|
from einops import rearrange, repeat |
|
from einops_exts import rearrange_many, repeat_many |
|
|
|
|
|
def FeedForward(dim, mult=4): |
|
inner_dim = int(dim * mult) |
|
return nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, inner_dim, bias=False), |
|
nn.GELU(), |
|
nn.Linear(inner_dim, dim, bias=False) |
|
) |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__( |
|
self, |
|
vision_width, |
|
text_width, |
|
dim_head=64, |
|
heads=8 |
|
): |
|
super().__init__() |
|
|
|
self.vision_width = vision_width |
|
self.text_width = text_width |
|
|
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
self.norm_media = nn.LayerNorm(vision_width) |
|
self.norm_latents = nn.LayerNorm(text_width) |
|
|
|
self.to_q = nn.Linear(text_width, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(vision_width, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, text_width, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
einstein notation |
|
b - batch |
|
t - time |
|
n - sequence |
|
d - dimension |
|
""" |
|
x = self.norm_media(x) |
|
latents = self.norm_latents(latents) |
|
|
|
b, m, h = *x.shape[:2], self.heads |
|
|
|
q = self.to_q(latents) |
|
|
|
kv_input = x |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
|
|
q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h) |
|
|
|
q = q * self.scale |
|
|
|
|
|
sim = einsum('... i d, ... j d -> ... i j', q, k) |
|
|
|
sim = sim - sim.amax(dim=-1, keepdim=True).detach() |
|
attn = sim.softmax(dim=-1) |
|
|
|
out = einsum('... i j, ... j d -> ... i d', attn, v) |
|
out = rearrange(out, 'b h t n d -> b t n (h d)', h=h) |
|
return self.to_out(out) |
|
|
|
|
|
class PerceiverResampler(nn.Module): |
|
def __init__( |
|
self, |
|
vision_width, |
|
text_width, |
|
depth, |
|
dim_head=64, |
|
heads=8, |
|
num_latents=64, |
|
ff_mult=4, |
|
): |
|
super().__init__() |
|
self.latents = nn.Parameter(torch.randn(num_latents, text_width)) |
|
|
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
PerceiverAttention(vision_width=vision_width, text_width=text_width, dim_head=dim_head, heads=heads), |
|
FeedForward(dim=text_width, mult=ff_mult) |
|
])) |
|
|
|
self.norm = nn.LayerNorm(text_width) |
|
|
|
def forward(self, vision_embeds=None, vision_atts=None): |
|
x = vision_embeds |
|
|
|
if x.ndim == 3: |
|
x = rearrange(x, 'b n d -> b 1 n d') |
|
|
|
latents = repeat(self.latents, 'n d -> b m n d', b=x.shape[0], m=x.shape[1]) |
|
|
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
|
|
v2t_feats = self.norm(latents).squeeze(dim=1) |
|
v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device) |
|
|
|
return v2t_feats, v2t_atts |