OpenJMLA / vision_transformer.py
sino
Upload 4 files
ff4fdee
raw
history blame
6.53 kB
import math
from functools import reduce
from operator import mul
from ipdb import set_trace
import torch
import torch.nn.functional as F
import torch.nn as nn
from mmcls.models.backbones import VisionTransformer as _VisionTransformer
from mmcls.models.utils import to_2tuple
from mmcv.cnn.bricks.transformer import PatchEmbed
from torch.nn.modules.batchnorm import _BatchNorm
def build_2d_sincos_position_embedding(patches_resolution,
embed_dims,
temperature=10000.,
cls_token=False):
"""The function is to build position embedding for model to obtain the
position information of the image patches."""
if isinstance(patches_resolution, int):
patches_resolution = (patches_resolution, patches_resolution)
h, w = patches_resolution
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
assert embed_dims % 4 == 0, \
'Embed dimension must be divisible by 4.'
pos_dim = embed_dims // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat(
[
torch.sin(out_w),
torch.cos(out_w),
torch.sin(out_h),
torch.cos(out_h)
],
dim=1,
)[None, :, :]
if cls_token:
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
return pos_emb
class VisionTransformer(_VisionTransformer):
"""Vision Transformer.
A pytorch implement of: `An Images is Worth 16x16 Words: Transformers for
Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
Part of the code is modified from:
`<https://github.com/facebookresearch/moco-v3/blob/main/vits.py>`_.
Args:
stop_grad_conv1 (bool, optional): whether to stop the gradient of
convolution layer in `PatchEmbed`. Defaults to False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(
['mocov3-s', 'mocov3-small'], {
'embed_dims': 384,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 1536,
}),
**dict.fromkeys(
['b', 'base'], {
'embed_dims': 768,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 3072
}),
}
def __init__(self,
stop_grad_conv1=False,
frozen_stages=-1,
norm_eval=False,
init_cfg=None,
**kwargs):
super(VisionTransformer, self).__init__(init_cfg=init_cfg,)
self.patch_size = kwargs['patch_size']
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
self.init_cfg = init_cfg
if isinstance(self.patch_embed, PatchEmbed):
if stop_grad_conv1:
self.patch_embed.projection.weight.requires_grad = False
self.patch_embed.projection.bias.requires_grad = False
self._freeze_stages()
def init_weights(self):
super(VisionTransformer, self).init_weights()
if not (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Use fixed 2D sin-cos position embedding
pos_emb = build_2d_sincos_position_embedding(
patches_resolution=self.patch_resolution,
embed_dims=self.embed_dims,
cls_token=True)
self.pos_embed.data.copy_(pos_emb)
self.pos_embed.requires_grad = False
# xavier_uniform initialization for PatchEmbed
if isinstance(self.patch_embed, PatchEmbed):
val = math.sqrt(
6. / float(3 * reduce(mul, to_2tuple(self.patch_size), 1) +
self.embed_dims))
nn.init.uniform_(self.patch_embed.projection.weight, -val, val)
nn.init.zeros_(self.patch_embed.projection.bias)
# initialization for linear layers
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(
6. /
float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
else:
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
nn.init.normal_(self.cls_token, std=1e-6)
def _freeze_stages(self):
"""Freeze patch_embed layer, some parameters and stages."""
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
self.cls_token.requires_grad = False
self.pos_embed.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = self.layers[i - 1]
m.eval()
for param in m.parameters():
param.requires_grad = False
if i == (self.num_layers) and self.final_norm:
for param in getattr(self, 'norm1').parameters():
param.requires_grad = False
def train(self, mode=True):
super(VisionTransformer, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()