File size: 38,483 Bytes
cee9fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
import math
import argparse

import librosa
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter


class DFTBase(nn.Module):
    def __init__(self):
        r"""Base class for DFT and IDFT matrix.
        """
        super(DFTBase, self).__init__()

    def dft_matrix(self, n):
        (x, y) = np.meshgrid(np.arange(n), np.arange(n))
        omega = np.exp(-2 * np.pi * 1j / n)
        W = np.power(omega, x * y)  # shape: (n, n)
        return W

    def idft_matrix(self, n):
        (x, y) = np.meshgrid(np.arange(n), np.arange(n))
        omega = np.exp(2 * np.pi * 1j / n)
        W = np.power(omega, x * y)  # shape: (n, n)
        return W


class DFT(DFTBase):
    def __init__(self, n, norm):
        r"""Calculate discrete Fourier transform (DFT), inverse DFT (IDFT, 
        right DFT (RDFT) RDFT, and inverse RDFT (IRDFT.) 

        Args:
          n: fft window size
          norm: None | 'ortho'
        """
        super(DFT, self).__init__()

        self.W = self.dft_matrix(n)
        self.inv_W = self.idft_matrix(n)

        self.W_real = torch.Tensor(np.real(self.W))
        self.W_imag = torch.Tensor(np.imag(self.W))
        self.inv_W_real = torch.Tensor(np.real(self.inv_W))
        self.inv_W_imag = torch.Tensor(np.imag(self.inv_W))

        self.n = n
        self.norm = norm

    def dft(self, x_real, x_imag):
        r"""Calculate DFT of a signal.

        Args:
            x_real: (n,), real part of a signal
            x_imag: (n,), imag part of a signal

        Returns:
            z_real: (n,), real part of output
            z_imag: (n,), imag part of output
        """
        z_real = torch.matmul(x_real, self.W_real) - torch.matmul(x_imag, self.W_imag)
        z_imag = torch.matmul(x_imag, self.W_real) + torch.matmul(x_real, self.W_imag)
        # shape: (n,)

        if self.norm is None:
            pass
        elif self.norm == 'ortho':
            z_real /= math.sqrt(self.n)
            z_imag /= math.sqrt(self.n)

        return z_real, z_imag

    def idft(self, x_real, x_imag):
        r"""Calculate IDFT of a signal.

        Args:
            x_real: (n,), real part of a signal
            x_imag: (n,), imag part of a signal
        Returns:
            z_real: (n,), real part of output
            z_imag: (n,), imag part of output
        """
        z_real = torch.matmul(x_real, self.inv_W_real) - torch.matmul(x_imag, self.inv_W_imag)
        z_imag = torch.matmul(x_imag, self.inv_W_real) + torch.matmul(x_real, self.inv_W_imag)
        # shape: (n,)

        if self.norm is None:
            z_real /= self.n
        elif self.norm == 'ortho':
            z_real /= math.sqrt(n)
            z_imag /= math.sqrt(n)

        return z_real, z_imag

    def rdft(self, x_real):
        r"""Calculate right RDFT of signal.

        Args:
            x_real: (n,), real part of a signal
            x_imag: (n,), imag part of a signal

        Returns:
            z_real: (n // 2 + 1,), real part of output
            z_imag: (n // 2 + 1,), imag part of output
        """
        n_rfft = self.n // 2 + 1
        z_real = torch.matmul(x_real, self.W_real[..., 0 : n_rfft])
        z_imag = torch.matmul(x_real, self.W_imag[..., 0 : n_rfft])
        # shape: (n // 2 + 1,)

        if self.norm is None:
            pass
        elif self.norm == 'ortho':
            z_real /= math.sqrt(self.n)
            z_imag /= math.sqrt(self.n)

        return z_real, z_imag

    def irdft(self, x_real, x_imag):
        r"""Calculate IRDFT of signal.
        
        Args:
            x_real: (n // 2 + 1,), real part of a signal
            x_imag: (n // 2 + 1,), imag part of a signal

        Returns:
            z_real: (n,), real part of output
            z_imag: (n,), imag part of output
        """
        n_rfft = self.n // 2 + 1

        flip_x_real = torch.flip(x_real, dims=(-1,))
        flip_x_imag = torch.flip(x_imag, dims=(-1,))
        # shape: (n // 2 + 1,)

        x_real = torch.cat((x_real, flip_x_real[..., 1 : n_rfft - 1]), dim=-1)
        x_imag = torch.cat((x_imag, -1. * flip_x_imag[..., 1 : n_rfft - 1]), dim=-1)
        # shape: (n,)

        z_real = torch.matmul(x_real, self.inv_W_real) - torch.matmul(x_imag, self.inv_W_imag)
        # shape: (n,)

        if self.norm is None:
            z_real /= self.n
        elif self.norm == 'ortho':
            z_real /= math.sqrt(n)

        return z_real


class STFT(DFTBase):
    def __init__(self, n_fft=2048, hop_length=None, win_length=None,
        window='hann', center=True, pad_mode='reflect', freeze_parameters=True):
        r"""PyTorch implementation of STFT with Conv1d. The function has the 
        same output as librosa.stft.

        Args:
            n_fft: int, fft window size, e.g., 2048
            hop_length: int, hop length samples, e.g., 441
            win_length: int, window length e.g., 2048
            window: str, window function name, e.g., 'hann'
            center: bool
            pad_mode: str, e.g., 'reflect'
            freeze_parameters: bool, set to True to freeze all parameters. Set
                to False to finetune all parameters.
        """
        super(STFT, self).__init__()

        assert pad_mode in ['constant', 'reflect']

        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.center = center
        self.pad_mode = pad_mode

        # By default, use the entire frame.
        if self.win_length is None:
            self.win_length = n_fft

        # Set the default hop, if it's not already specified.
        if self.hop_length is None:
            self.hop_length = int(self.win_length // 4)

        fft_window = librosa.filters.get_window(window, self.win_length, fftbins=True)

        # Pad the window out to n_fft size.
        fft_window = librosa.util.pad_center(fft_window, size=n_fft)

        # DFT & IDFT matrix.
        self.W = self.dft_matrix(n_fft)

        out_channels = n_fft // 2 + 1

        self.conv_real = nn.Conv1d(in_channels=1, out_channels=out_channels,
            kernel_size=n_fft, stride=self.hop_length, padding=0, dilation=1,
            groups=1, bias=False)

        self.conv_imag = nn.Conv1d(in_channels=1, out_channels=out_channels,
            kernel_size=n_fft, stride=self.hop_length, padding=0, dilation=1,
            groups=1, bias=False)

        # Initialize Conv1d weights.
        self.conv_real.weight.data.copy_(torch.Tensor(
            np.real(self.W[:, 0 : out_channels] * fft_window[:, None]).T)[:, None, :])
        # (n_fft // 2 + 1, 1, n_fft)

        self.conv_imag.weight.data.copy_(torch.Tensor(
            np.imag(self.W[:, 0 : out_channels] * fft_window[:, None]).T)[:, None, :])
        # (n_fft // 2 + 1, 1, n_fft)

        if freeze_parameters:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, input):
        r"""Calculate STFT of batch of signals.

        Args: 
            input: (batch_size, data_length), input signals.

        Returns:
            real: (batch_size, 1, time_steps, n_fft // 2 + 1)
            imag: (batch_size, 1, time_steps, n_fft // 2 + 1)
        """

        x = input[:, None, :]   # (batch_size, channels_num, data_length)

        if self.center:
            x = F.pad(x, pad=(self.n_fft // 2, self.n_fft // 2), mode=self.pad_mode)

        real = self.conv_real(x)
        imag = self.conv_imag(x)
        # (batch_size, n_fft // 2 + 1, time_steps)

        real = real[:, None, :, :].transpose(2, 3)
        imag = imag[:, None, :, :].transpose(2, 3)
        # (batch_size, 1, time_steps, n_fft // 2 + 1)

        return real, imag


def magphase(real, imag):
    r"""Calculate magnitude and phase from real and imag part of signals.

    Args:
        real: tensor, real part of signals
        imag: tensor, imag part of signals

    Returns:
        mag: tensor, magnitude of signals
        cos: tensor, cosine of phases of signals
        sin: tensor, sine of phases of signals
    """
    mag = (real ** 2 + imag ** 2) ** 0.5
    cos = real / torch.clamp(mag, 1e-10, np.inf)
    sin = imag / torch.clamp(mag, 1e-10, np.inf)

    return mag, cos, sin


class ISTFT(DFTBase):
    def __init__(self, n_fft=2048, hop_length=None, win_length=None,
        window='hann', center=True, pad_mode='reflect', freeze_parameters=True, 
        onnx=False, frames_num=None, device=None):
        """PyTorch implementation of ISTFT with Conv1d. The function has the 
        same output as librosa.istft.

        Args:
            n_fft: int, fft window size, e.g., 2048
            hop_length: int, hop length samples, e.g., 441
            win_length: int, window length e.g., 2048
            window: str, window function name, e.g., 'hann'
            center: bool
            pad_mode: str, e.g., 'reflect'
            freeze_parameters: bool, set to True to freeze all parameters. Set
                to False to finetune all parameters.
            onnx: bool, set to True when exporting trained model to ONNX. This
                will replace several operations to operators supported by ONNX.
            frames_num: None | int, number of frames of audio clips to be 
                inferneced. Only useable when onnx=True.
            device: None | str, device of ONNX. Only useable when onnx=True.
        """
        super(ISTFT, self).__init__()

        assert pad_mode in ['constant', 'reflect']

        if not onnx:
            assert frames_num is None, "When onnx=False, frames_num must be None!"
            assert device is None, "When onnx=False, device must be None!"

        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.center = center
        self.pad_mode = pad_mode
        self.onnx = onnx

        # By default, use the entire frame.
        if self.win_length is None:
            self.win_length = self.n_fft

        # Set the default hop, if it's not already specified.
        if self.hop_length is None:
            self.hop_length = int(self.win_length // 4)

        # Initialize Conv1d modules for calculating real and imag part of DFT.
        self.init_real_imag_conv()

        # Initialize overlap add window for reconstruct time domain signals.
        self.init_overlap_add_window()

        if self.onnx:
            # Initialize ONNX modules.
            self.init_onnx_modules(frames_num, device)
        
        if freeze_parameters:
            for param in self.parameters():
                param.requires_grad = False

    def init_real_imag_conv(self):
        r"""Initialize Conv1d for calculating real and imag part of DFT.
        """
        self.W = self.idft_matrix(self.n_fft) / self.n_fft

        self.conv_real = nn.Conv1d(in_channels=self.n_fft, out_channels=self.n_fft,
            kernel_size=1, stride=1, padding=0, dilation=1,
            groups=1, bias=False)

        self.conv_imag = nn.Conv1d(in_channels=self.n_fft, out_channels=self.n_fft,
            kernel_size=1, stride=1, padding=0, dilation=1,
            groups=1, bias=False)

        ifft_window = librosa.filters.get_window(self.window, self.win_length, fftbins=True)
        # (win_length,)

        # Pad the window to n_fft
        ifft_window = librosa.util.pad_center(ifft_window, size=self.n_fft)

        self.conv_real.weight.data = torch.Tensor(
            np.real(self.W * ifft_window[None, :]).T)[:, :, None]
        # (n_fft // 2 + 1, 1, n_fft)

        self.conv_imag.weight.data = torch.Tensor(
            np.imag(self.W * ifft_window[None, :]).T)[:, :, None]
        # (n_fft // 2 + 1, 1, n_fft)

    def init_overlap_add_window(self):
        r"""Initialize overlap add window for reconstruct time domain signals.
        """
        
        ola_window = librosa.filters.get_window(self.window, self.win_length, fftbins=True)
        # (win_length,)

        ola_window = librosa.util.normalize(ola_window, norm=None) ** 2
        ola_window = librosa.util.pad_center(ola_window, size=self.n_fft)
        ola_window = torch.Tensor(ola_window)

        self.register_buffer('ola_window', ola_window)
        # (win_length,)

    def init_onnx_modules(self, frames_num, device):
        r"""Initialize ONNX modules.

        Args:
            frames_num: int
            device: str | None
        """

        # Use Conv1d to implement torch.flip(), because torch.flip() is not 
        # supported by ONNX.
        self.reverse = nn.Conv1d(in_channels=self.n_fft // 2 + 1,
            out_channels=self.n_fft // 2 - 1, kernel_size=1, bias=False)

        tmp = np.zeros((self.n_fft // 2 - 1, self.n_fft // 2 + 1, 1))
        tmp[:, 1 : -1, 0] = np.array(np.eye(self.n_fft // 2 - 1)[::-1])
        self.reverse.weight.data = torch.Tensor(tmp)
        # (n_fft // 2 - 1, n_fft // 2 + 1, 1)

        # Use nn.ConvTranspose2d to implement torch.nn.functional.fold(), 
        # because torch.nn.functional.fold() is not supported by ONNX.
        self.overlap_add = nn.ConvTranspose2d(in_channels=self.n_fft,
            out_channels=1, kernel_size=(self.n_fft, 1), stride=(self.hop_length, 1), bias=False)

        self.overlap_add.weight.data = torch.Tensor(np.eye(self.n_fft)[:, None, :, None])
        # (n_fft, 1, n_fft, 1)

        if frames_num:
            # Pre-calculate overlap-add window sum for reconstructing signals
            # when using ONNX.
            self.ifft_window_sum = self._get_ifft_window_sum_onnx(frames_num, device)
        else:
            self.ifft_window_sum = []

    def forward(self, real_stft, imag_stft, length):
        r"""Calculate inverse STFT.

        Args:
            real_stft: (batch_size, channels=1, time_steps, n_fft // 2 + 1)
            imag_stft: (batch_size, channels=1, time_steps, n_fft // 2 + 1)
            length: int
        
        Returns:
            real: (batch_size, data_length), output signals.
        """
        assert real_stft.ndimension() == 4 and imag_stft.ndimension() == 4
        batch_size, _, frames_num, _ = real_stft.shape

        real_stft = real_stft[:, 0, :, :].transpose(1, 2)
        imag_stft = imag_stft[:, 0, :, :].transpose(1, 2)
        # (batch_size, n_fft // 2 + 1, time_steps)

        # Get full stft representation from spectrum using symmetry attribute.
        if self.onnx:
            full_real_stft, full_imag_stft = self._get_full_stft_onnx(real_stft, imag_stft)
        else:
            full_real_stft, full_imag_stft = self._get_full_stft(real_stft, imag_stft)
        # full_real_stft: (batch_size, n_fft, time_steps)
        # full_imag_stft: (batch_size, n_fft, time_steps)

        # Calculate IDFT frame by frame.
        s_real = self.conv_real(full_real_stft) - self.conv_imag(full_imag_stft)
        # (batch_size, n_fft, time_steps)

        # Overlap add signals in frames to reconstruct signals.
        if self.onnx:
            y = self._overlap_add_divide_window_sum_onnx(s_real, frames_num)
        else:
            y = self._overlap_add_divide_window_sum(s_real, frames_num)
        # y: (batch_size, audio_samples + win_length,)
        
        y = self._trim_edges(y, length)
        # (batch_size, audio_samples,)
            
        return y

    def _get_full_stft(self, real_stft, imag_stft):
        r"""Get full stft representation from spectrum using symmetry attribute.

        Args:
            real_stft: (batch_size, n_fft // 2 + 1, time_steps)
            imag_stft: (batch_size, n_fft // 2 + 1, time_steps)

        Returns:
            full_real_stft: (batch_size, n_fft, time_steps)
            full_imag_stft: (batch_size, n_fft, time_steps)
        """
        full_real_stft = torch.cat((real_stft, torch.flip(real_stft[:, 1 : -1, :], dims=[1])), dim=1)
        full_imag_stft = torch.cat((imag_stft, - torch.flip(imag_stft[:, 1 : -1, :], dims=[1])), dim=1)

        return full_real_stft, full_imag_stft

    def _get_full_stft_onnx(self, real_stft, imag_stft):
        r"""Get full stft representation from spectrum using symmetry attribute
        for ONNX. Replace several pytorch operations in self._get_full_stft() 
        that are not supported by ONNX.

        Args:
            real_stft: (batch_size, n_fft // 2 + 1, time_steps)
            imag_stft: (batch_size, n_fft // 2 + 1, time_steps)

        Returns:
            full_real_stft: (batch_size, n_fft, time_steps)
            full_imag_stft: (batch_size, n_fft, time_steps)
        """

        # Implement torch.flip() with Conv1d.
        full_real_stft = torch.cat((real_stft, self.reverse(real_stft)), dim=1)
        full_imag_stft = torch.cat((imag_stft, - self.reverse(imag_stft)), dim=1)

        return full_real_stft, full_imag_stft

    def _overlap_add_divide_window_sum(self, s_real, frames_num):
        r"""Overlap add signals in frames to reconstruct signals.

        Args:
            s_real: (batch_size, n_fft, time_steps), signals in frames
            frames_num: int

        Returns:
            y: (batch_size, audio_samples)
        """
        
        output_samples = (s_real.shape[-1] - 1) * self.hop_length + self.win_length
        # (audio_samples,)

        # Overlap-add signals in frames to signals. Ref: 
        # asteroid_filterbanks.torch_stft_fb.torch_stft_fb() from
        # https://github.com/asteroid-team/asteroid-filterbanks
        y = torch.nn.functional.fold(input=s_real, output_size=(1, output_samples), 
            kernel_size=(1, self.win_length), stride=(1, self.hop_length))
        # (batch_size, 1, 1, audio_samples,)
        
        y = y[:, 0, 0, :]
        # (batch_size, audio_samples)

        # Get overlap-add window sum to be divided.
        ifft_window_sum = self._get_ifft_window(frames_num)
        # (audio_samples,)

        # Following code is abandaned for divide overlap-add window, because
        # not supported by half precision training and ONNX.
        # min_mask = ifft_window_sum.abs() < 1e-11
        # y[:, ~min_mask] = y[:, ~min_mask] / ifft_window_sum[None, ~min_mask]
        # # (batch_size, audio_samples)

        ifft_window_sum = torch.clamp(ifft_window_sum, 1e-11, np.inf)
        # (audio_samples,)

        y = y / ifft_window_sum[None, :]
        # (batch_size, audio_samples,)

        return y

    def _get_ifft_window(self, frames_num):
        r"""Get overlap-add window sum to be divided.

        Args:
            frames_num: int

        Returns:
            ifft_window_sum: (audio_samlpes,), overlap-add window sum to be 
            divided.
        """
        
        output_samples = (frames_num - 1) * self.hop_length + self.win_length
        # (audio_samples,)

        window_matrix = self.ola_window[None, :, None].repeat(1, 1, frames_num)
        # (batch_size, win_length, time_steps)

        ifft_window_sum = F.fold(input=window_matrix, 
            output_size=(1, output_samples), kernel_size=(1, self.win_length), 
            stride=(1, self.hop_length))
        # (1, 1, 1, audio_samples)
        
        ifft_window_sum = ifft_window_sum.squeeze()
        # (audio_samlpes,)

        return ifft_window_sum

    def _overlap_add_divide_window_sum_onnx(self, s_real, frames_num):
        r"""Overlap add signals in frames to reconstruct signals for ONNX. 
        Replace several pytorch operations in 
        self._overlap_add_divide_window_sum() that are not supported by ONNX.

        Args:
            s_real: (batch_size, n_fft, time_steps), signals in frames
            frames_num: int

        Returns:
            y: (batch_size, audio_samples)
        """

        s_real = s_real[..., None]
        # (batch_size, n_fft, time_steps, 1)

        # Implement overlap-add with Conv1d, because torch.nn.functional.fold()
        # is not supported by ONNX.
        y = self.overlap_add(s_real)[:, 0, :, 0]    
        # y: (batch_size, samples_num)
        
        if len(self.ifft_window_sum) != y.shape[1]:
            device = s_real.device

            self.ifft_window_sum = self._get_ifft_window_sum_onnx(frames_num, device)
            # (audio_samples,)

        # Use torch.clamp() to prevent from underflow to make sure all 
        # operations are supported by ONNX.
        ifft_window_sum = torch.clamp(self.ifft_window_sum, 1e-11, np.inf)
        # (audio_samples,)

        y = y / ifft_window_sum[None, :]
        # (batch_size, audio_samples,)
        
        return y

    def _get_ifft_window_sum_onnx(self, frames_num, device):
        r"""Pre-calculate overlap-add window sum for reconstructing signals when
        using ONNX.

        Args:
            frames_num: int
            device: str | None

        Returns:
            ifft_window_sum: (audio_samples,)
        """
        
        ifft_window_sum = librosa.filters.window_sumsquare(window=self.window, 
            n_frames=frames_num, win_length=self.win_length, n_fft=self.n_fft, 
            hop_length=self.hop_length)
        # (audio_samples,)

        ifft_window_sum = torch.Tensor(ifft_window_sum)

        if device:
            ifft_window_sum = ifft_window_sum.to(device)

        return ifft_window_sum

    def _trim_edges(self, y, length):
        r"""Trim audio.

        Args:
            y: (audio_samples,)
            length: int

        Returns:
            (trimmed_audio_samples,)
        """
        # Trim or pad to length
        if length is None:
            if self.center:
                y = y[:, self.n_fft // 2 : -self.n_fft // 2]
        else:
            if self.center:
                start = self.n_fft // 2
            else:
                start = 0

            y = y[:, start : start + length]

        return y


class Spectrogram(nn.Module):
    def __init__(self, n_fft=2048, hop_length=None, win_length=None,
        window='hann', center=True, pad_mode='reflect', power=2.0,
        freeze_parameters=True):
        r"""Calculate spectrogram using pytorch. The STFT is implemented with 
        Conv1d. The function has the same output of librosa.stft
        """
        super(Spectrogram, self).__init__()

        self.power = power

        self.stft = STFT(n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center,
            pad_mode=pad_mode, freeze_parameters=True)

    def forward(self, input):
        r"""Calculate spectrogram of input signals.
        Args: 
            input: (batch_size, data_length)

        Returns:
            spectrogram: (batch_size, 1, time_steps, n_fft // 2 + 1)
        """

        (real, imag) = self.stft.forward(input)
        # (batch_size, n_fft // 2 + 1, time_steps)

        spectrogram = real ** 2 + imag ** 2

        if self.power == 2.0:
            pass
        else:
            spectrogram = spectrogram ** (self.power / 2.0)

        return spectrogram


class LogmelFilterBank(nn.Module):
    def __init__(self, sr=22050, n_fft=2048, n_mels=64, fmin=0.0, fmax=None, 
        is_log=True, ref=1.0, amin=1e-10, top_db=80.0, freeze_parameters=True):
        r"""Calculate logmel spectrogram using pytorch. The mel filter bank is 
        the pytorch implementation of as librosa.filters.mel 
        """
        super(LogmelFilterBank, self).__init__()

        self.is_log = is_log
        self.ref = ref
        self.amin = amin
        self.top_db = top_db
        if fmax == None:
            fmax = sr//2

        self.melW = librosa.filters.mel(sr=sr, n_fft=n_fft, n_mels=n_mels,
            fmin=fmin, fmax=fmax).T
        # (n_fft // 2 + 1, mel_bins)

        self.melW = nn.Parameter(torch.Tensor(self.melW).contiguous())

        if freeze_parameters:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, input):
        r"""Calculate (log) mel spectrogram from spectrogram.

        Args:
            input: (*, n_fft), spectrogram
        
        Returns: 
            output: (*, mel_bins), (log) mel spectrogram
        """

        # Mel spectrogram
        mel_spectrogram = torch.matmul(input, self.melW)
        # (*, mel_bins)

        # Logmel spectrogram
        if self.is_log:
            output = self.power_to_db(mel_spectrogram)
        else:
            output = mel_spectrogram

        return output


    def power_to_db(self, input):
        r"""Power to db, this function is the pytorch implementation of 
        librosa.power_to_lb
        """
        ref_value = self.ref
        log_spec = 10.0 * torch.log10(torch.clamp(input, min=self.amin, max=np.inf))
        log_spec -= 10.0 * np.log10(np.maximum(self.amin, ref_value))

        if self.top_db is not None:
            if self.top_db < 0:
                raise librosa.util.exceptions.ParameterError('top_db must be non-negative')
            log_spec = torch.clamp(log_spec, min=log_spec.max().item() - self.top_db, max=np.inf)

        return log_spec


class Enframe(nn.Module):
    def __init__(self, frame_length=2048, hop_length=512):
        r"""Enframe a time sequence. This function is the pytorch implementation 
        of librosa.util.frame
        """
        super(Enframe, self).__init__()

        self.enframe_conv = nn.Conv1d(in_channels=1, out_channels=frame_length,
            kernel_size=frame_length, stride=hop_length,
            padding=0, bias=False)

        self.enframe_conv.weight.data = torch.Tensor(torch.eye(frame_length)[:, None, :])
        self.enframe_conv.weight.requires_grad = False

    def forward(self, input):
        r"""Enframe signals into frames.
        Args:
            input: (batch_size, samples)
        
        Returns: 
            output: (batch_size, window_length, frames_num)
        """
        output = self.enframe_conv(input[:, None, :])
        return output


    def power_to_db(self, input):
        r"""Power to db, this function is the pytorch implementation of 
        librosa.power_to_lb.
        """
        ref_value = self.ref
        log_spec = 10.0 * torch.log10(torch.clamp(input, min=self.amin, max=np.inf))
        log_spec -= 10.0 * np.log10(np.maximum(self.amin, ref_value))

        if self.top_db is not None:
            if self.top_db < 0:
                raise librosa.util.exceptions.ParameterError('top_db must be non-negative')
            log_spec = torch.clamp(log_spec, min=log_spec.max() - self.top_db, max=np.inf)

        return log_spec


class Scalar(nn.Module):
    def __init__(self, scalar, freeze_parameters):
        super(Scalar, self).__init__()

        self.scalar_mean = Parameter(torch.Tensor(scalar['mean']))
        self.scalar_std = Parameter(torch.Tensor(scalar['std']))

        if freeze_parameters:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, input):
        return (input - self.scalar_mean) / self.scalar_std


def debug(select, device):
    """Compare numpy + librosa and torchlibrosa results. For debug. 

    Args:
        select: 'dft' | 'logmel'
        device: 'cpu' | 'cuda'
    """

    if select == 'dft':
        n = 10
        norm = None     # None | 'ortho'
        np.random.seed(0)

        # Data
        np_data = np.random.uniform(-1, 1, n)
        pt_data = torch.Tensor(np_data)

        # Numpy FFT
        np_fft = np.fft.fft(np_data, norm=norm)
        np_ifft = np.fft.ifft(np_fft, norm=norm)
        np_rfft = np.fft.rfft(np_data, norm=norm)
        np_irfft = np.fft.ifft(np_rfft, norm=norm)

        # Pytorch FFT
        obj = DFT(n, norm)
        pt_dft = obj.dft(pt_data, torch.zeros_like(pt_data))
        pt_idft = obj.idft(pt_dft[0], pt_dft[1])
        pt_rdft = obj.rdft(pt_data)
        pt_irdft = obj.irdft(pt_rdft[0], pt_rdft[1])

        print('Comparing librosa and pytorch implementation of DFT. All numbers '
            'below should be close to 0.')
        print(np.mean((np.abs(np.real(np_fft) - pt_dft[0].cpu().numpy()))))
        print(np.mean((np.abs(np.imag(np_fft) - pt_dft[1].cpu().numpy()))))

        print(np.mean((np.abs(np.real(np_ifft) - pt_idft[0].cpu().numpy()))))
        print(np.mean((np.abs(np.imag(np_ifft) - pt_idft[1].cpu().numpy()))))

        print(np.mean((np.abs(np.real(np_rfft) - pt_rdft[0].cpu().numpy()))))
        print(np.mean((np.abs(np.imag(np_rfft) - pt_rdft[1].cpu().numpy()))))

        print(np.mean(np.abs(np_data - pt_irdft.cpu().numpy())))

    elif select == 'stft':
        device = torch.device(device)
        np.random.seed(0)

        # Spectrogram parameters (the same as librosa.stft)
        sample_rate = 22050
        data_length = sample_rate * 1
        n_fft = 2048
        hop_length = 512
        win_length = 2048
        window = 'hann'
        center = True
        pad_mode = 'reflect'

        # Data
        np_data = np.random.uniform(-1, 1, data_length)
        pt_data = torch.Tensor(np_data).to(device)

        # Numpy stft matrix
        np_stft_matrix = librosa.stft(y=np_data, n_fft=n_fft,
            hop_length=hop_length, window=window, center=center).T

        # Pytorch stft matrix
        pt_stft_extractor = STFT(n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center, pad_mode=pad_mode,
            freeze_parameters=True)

        pt_stft_extractor.to(device)

        (pt_stft_real, pt_stft_imag) = pt_stft_extractor.forward(pt_data[None, :])

        print('Comparing librosa and pytorch implementation of STFT & ISTFT. \
            All numbers below should be close to 0.')
        print(np.mean(np.abs(np.real(np_stft_matrix) - pt_stft_real.data.cpu().numpy()[0, 0])))
        print(np.mean(np.abs(np.imag(np_stft_matrix) - pt_stft_imag.data.cpu().numpy()[0, 0])))

        # Numpy istft
        np_istft_s = librosa.istft(stft_matrix=np_stft_matrix.T,
            hop_length=hop_length, window=window, center=center, length=data_length)

        # Pytorch istft
        pt_istft_extractor = ISTFT(n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center, pad_mode=pad_mode,
            freeze_parameters=True)
        pt_istft_extractor.to(device)

        # Recover from real and imag part
        pt_istft_s = pt_istft_extractor.forward(pt_stft_real, pt_stft_imag, data_length)[0, :]

        # Recover from magnitude and phase
        (pt_stft_mag, cos, sin) = magphase(pt_stft_real, pt_stft_imag)
        pt_istft_s2 = pt_istft_extractor.forward(pt_stft_mag * cos, pt_stft_mag * sin, data_length)[0, :]

        print(np.mean(np.abs(np_istft_s - pt_istft_s.data.cpu().numpy())))
        print(np.mean(np.abs(np_data - pt_istft_s.data.cpu().numpy())))
        print(np.mean(np.abs(np_data - pt_istft_s2.data.cpu().numpy())))

    elif select == 'logmel':
        dtype = np.complex64
        device = torch.device(device)
        np.random.seed(0)

        # Spectrogram parameters (the same as librosa.stft)
        sample_rate = 22050
        data_length = sample_rate * 1
        n_fft = 2048
        hop_length = 512
        win_length = 2048
        window = 'hann'
        center = True
        pad_mode = 'reflect'

        # Mel parameters (the same as librosa.feature.melspectrogram)
        n_mels = 128
        fmin = 0.
        fmax = sample_rate / 2.0

        # Power to db parameters (the same as default settings of librosa.power_to_db
        ref = 1.0
        amin = 1e-10
        top_db = 80.0

        # Data
        np_data = np.random.uniform(-1, 1, data_length)
        pt_data = torch.Tensor(np_data).to(device)

        print('Comparing librosa and pytorch implementation of logmel '
            'spectrogram. All numbers below should be close to 0.')

        # Numpy librosa
        np_stft_matrix = librosa.stft(y=np_data, n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center, dtype=dtype,
            pad_mode=pad_mode)

        np_pad = np.pad(np_data, int(n_fft // 2), mode=pad_mode)

        np_melW = librosa.filters.mel(sr=sample_rate, n_fft=n_fft, n_mels=n_mels,
            fmin=fmin, fmax=fmax).T

        np_mel_spectrogram = np.dot(np.abs(np_stft_matrix.T) ** 2, np_melW)

        np_logmel_spectrogram = librosa.power_to_db(
            np_mel_spectrogram, ref=ref, amin=amin, top_db=top_db)

        # Pytorch
        stft_extractor = STFT(n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center, pad_mode=pad_mode,
            freeze_parameters=True)

        logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=n_fft,
            n_mels=n_mels, fmin=fmin, fmax=fmax, ref=ref, amin=amin,
            top_db=top_db, freeze_parameters=True)

        stft_extractor.to(device)
        logmel_extractor.to(device)

        pt_pad = F.pad(pt_data[None, None, :], pad=(n_fft // 2, n_fft // 2), mode=pad_mode)[0, 0]
        print(np.mean(np.abs(np_pad - pt_pad.cpu().numpy())))

        pt_stft_matrix_real = stft_extractor.conv_real(pt_pad[None, None, :])[0]
        pt_stft_matrix_imag = stft_extractor.conv_imag(pt_pad[None, None, :])[0]
        print(np.mean(np.abs(np.real(np_stft_matrix) - pt_stft_matrix_real.data.cpu().numpy())))
        print(np.mean(np.abs(np.imag(np_stft_matrix) - pt_stft_matrix_imag.data.cpu().numpy())))

        # Spectrogram
        spectrogram_extractor = Spectrogram(n_fft=n_fft, hop_length=hop_length,
            win_length=win_length, window=window, center=center, pad_mode=pad_mode,
            freeze_parameters=True)

        spectrogram_extractor.to(device)

        pt_spectrogram = spectrogram_extractor.forward(pt_data[None, :])
        pt_mel_spectrogram = torch.matmul(pt_spectrogram, logmel_extractor.melW)
        print(np.mean(np.abs(np_mel_spectrogram - pt_mel_spectrogram.data.cpu().numpy()[0, 0])))

        # Log mel spectrogram
        pt_logmel_spectrogram = logmel_extractor.forward(pt_spectrogram)
        print(np.mean(np.abs(np_logmel_spectrogram - pt_logmel_spectrogram[0, 0].data.cpu().numpy())))

    elif select == 'enframe':
        device = torch.device(device)
        np.random.seed(0)

        # Spectrogram parameters (the same as librosa.stft)
        sample_rate = 22050
        data_length = sample_rate * 1
        hop_length = 512
        win_length = 2048

        # Data
        np_data = np.random.uniform(-1, 1, data_length)
        pt_data = torch.Tensor(np_data).to(device)

        print('Comparing librosa and pytorch implementation of '
            'librosa.util.frame. All numbers below should be close to 0.')

        # Numpy librosa
        np_frames = librosa.util.frame(np_data, frame_length=win_length,
            hop_length=hop_length)

        # Pytorch
        pt_frame_extractor = Enframe(frame_length=win_length, hop_length=hop_length)
        pt_frame_extractor.to(device)

        pt_frames = pt_frame_extractor(pt_data[None, :])
        print(np.mean(np.abs(np_frames - pt_frames.data.cpu().numpy())))

    elif select == 'default':
        device = torch.device(device)
        np.random.seed(0)

        # Spectrogram parameters (the same as librosa.stft)
        sample_rate = 22050
        data_length = sample_rate * 1
        hop_length = 512
        win_length = 2048

        # Mel parameters (the same as librosa.feature.melspectrogram)
        n_mels = 128

        # Data
        np_data = np.random.uniform(-1, 1, data_length)
        pt_data = torch.Tensor(np_data).to(device)

        feature_extractor = nn.Sequential(
            Spectrogram(
                hop_length=hop_length,
                win_length=win_length,
            ), LogmelFilterBank(
                sr=sample_rate,
                n_mels=n_mels,
                is_log=False, #Default is true
            ))

        feature_extractor.to(device)

        print(
            'Comparing default mel spectrogram from librosa to the pytorch implementation.'
        )

        # Numpy librosa
        np_melspect = librosa.feature.melspectrogram(np_data,
                                                     hop_length=hop_length,
                                                     sr=sample_rate,
                                                     win_length=win_length,
                                                     n_mels=n_mels).T
        #Pytorch
        pt_melspect = feature_extractor(pt_data[None, :]).squeeze()
        passed = np.allclose(pt_melspect.data.to('cpu').numpy(), np_melspect)
        print(f"Passed? {passed}")



if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='')
    parser.add_argument('--device', type=str, default='cpu', choices=['cpu', 'cuda'])
    args = parser.parse_args()

    device = args.device
    norm = None     # None | 'ortho'
    np.random.seed(0)

    # Spectrogram parameters (the same as librosa.stft)
    sample_rate = 22050
    data_length = sample_rate * 1
    n_fft = 2048
    hop_length = 512
    win_length = 2048
    window = 'hann'
    center = True
    pad_mode = 'reflect'

    # Mel parameters (the same as librosa.feature.melspectrogram)
    n_mels = 128
    fmin = 0.
    fmax = sample_rate / 2.0

    # Power to db parameters (the same as default settings of librosa.power_to_db
    ref = 1.0
    amin = 1e-10
    top_db = 80.0

    # Data
    np_data = np.random.uniform(-1, 1, data_length)
    pt_data = torch.Tensor(np_data).to(device)

    # Pytorch
    spectrogram_extractor = Spectrogram(n_fft=n_fft, hop_length=hop_length,
        win_length=win_length, window=window, center=center, pad_mode=pad_mode,
        freeze_parameters=True)

    logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=n_fft,
        n_mels=n_mels, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
        freeze_parameters=True)

    spectrogram_extractor.to(device)
    logmel_extractor.to(device)

    # Spectrogram
    pt_spectrogram = spectrogram_extractor.forward(pt_data[None, :])

    # Log mel spectrogram
    pt_logmel_spectrogram = logmel_extractor.forward(pt_spectrogram)

    # Uncomment for debug
    if True:
        debug(select='dft', device=device)
        debug(select='stft', device=device)
        debug(select='logmel', device=device)
        debug(select='enframe', device=device)

        try:
            debug(select='default', device=device)
        except:
            raise Exception('Torchlibrosa does support librosa>=0.6.0, for \
                comparison with librosa, please use librosa>=0.7.0!')