File size: 11,126 Bytes
cee9fbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch
from mmcls.models import VisionTransformer
from torch import nn
from torch.utils.checkpoint import checkpoint
import copy
def build_2d_sincos_position_embedding(patches_resolution,
embed_dims,
temperature=10000.,
cls_token=False):
"""The function is to build position embedding for model to obtain the
position information of the image patches."""
if isinstance(patches_resolution, int):
patches_resolution = (patches_resolution, patches_resolution)
h, w = patches_resolution
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
assert embed_dims % 4 == 0, \
'Embed dimension must be divisible by 4.'
pos_dim = embed_dims // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat(
[
torch.sin(out_w),
torch.cos(out_w),
torch.sin(out_h),
torch.cos(out_h)
],
dim=1,
)[None, :, :]
if cls_token:
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
return pos_emb
class MAEViT(VisionTransformer):
"""Vision Transformer for MAE pre-training.
A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_
Args:
arch (str | dict): Vision Transformer architecture
Default: 'b'
img_size (int | tuple): Input image size
patch_size (int | tuple): The patch size
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
output_cls_token (bool): Whether output the cls_token. If set True,
`with_cls_token` must be True. Defaults to True.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
mask_ratio (bool): The ratio of total number of patches to be masked.
Defaults to 0.75.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(
['mocov3-s', 'mocov3-small'], {
'embed_dims': 384,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 1536,
}),
**dict.fromkeys(
['b', 'base'], {
'embed_dims': 768,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 3072
}),
}
def __init__(self,
arch='b',
img_size=224,
patch_size=16,
out_indices=-1,
drop_rate=0,
drop_path_rate=0,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=True,
output_cls_token=False,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
gradientCKPT=False,
mask_ratio=0.75,
init_cfg=None):
super().__init__(
arch=arch,
img_size=img_size,
patch_size=patch_size,
out_indices=out_indices,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
norm_cfg=norm_cfg,
final_norm=final_norm,
output_cls_token=output_cls_token,
interpolate_mode=interpolate_mode,
patch_cfg=patch_cfg,
layer_cfgs=layer_cfgs,
init_cfg=init_cfg)
self.gradientCKPT = gradientCKPT
self.pos_embed.requires_grad = False
self.mask_ratio = mask_ratio
self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
# self.mask_embedding = copy.deepcopy(self.patch_embed)
# self.mask_embedding.norm = None
def init_weights(self):
super(MAEViT, self).init_weights()
if not (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# initialize position embedding in backbone
pos_embed = build_2d_sincos_position_embedding(
self.patch_resolution,
self.pos_embed.shape[-1],
cls_token=True)
self.pos_embed.data.copy_(pos_embed.float())
w = self.patch_embed.projection.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
# mask_embedding transfers pixel level mask to token level
# self.mask_embedding.apply(self._init_mask_embedding)
# for para in self.mask_embedding.parameters():
# para.requires_grad = False
def _init_mask_embedding(self,m):
if hasattr(m,'weight'):
nn.init.constant_(m.weight,1.0)
if hasattr(m, 'bias'):
nn.init.constant_(m.bias,0)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def random_masking(self, x, mask_ratio=0.75, attn_mask=None):
"""Generate the mask for MAE Pre-training.
Args:
x (torch.tensor): Image with data augmentation applied.
mask_ratio (float): The mask ratio of total patches.
Defaults to 0.75.
Returns:
tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids
to restore original image.
- x_masked (Tensor): masked image.
- mask (Tensor): mask used to mask image.
- ids_restore (Tensor): ids to restore original image.
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(
x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# modified_attn_mask = None if attn_mask is None else torch.gather(attn_mask,dim=1, index=ids_keep)
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore #, modified_attn_mask
def generate_mask(self, pixel_level_attn_mask):
'''
pixel_level_attn_mask: (0,1) attn mask with the same shape as img
'''
if pixel_level_attn_mask is None: return None
# H, W = patch_resolution
# B, C = pixel_level_attn_mask.shape[:2]
# attn_mask = torch.ones((B,C,H,W),device=pixel_level_attn_mask)
# H_splited = torch.chunk(pixel_level_attn_mask, H, -2)
# HW_splited_mask = (torch.chunk(Hs, W, -1) for Hs in H_splited)
# if HW_splited_mask[:,:,hi,wi].sum().item() == 0:
# attn_mask[:,:,hi,wi] = 0
# mask_patches = self.mask_embedding(pixel_level_attn_mask)[0]
# attn_mask = mask_patches.sum(-1) != 0
# return attn_mask
def extract_feat(self, img ,attn_mask=None):
x, *_ = self.forward(img,attn_mask)
if self.output_cls_token:
return x[:,0,:]
else:
return torch.mean(x,dim=1)
def forward(self, x, attn_mask=None):
if attn_mask is not None: assert self.output_cls_token
B = x.shape[0]
x = self.patch_embed(x)[0]
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:1+x.shape[1], :]
# masking: length -> length * mask_ratio
if True:
assert self.mask_ratio == 0.
else:
x, mask, ids_restore = self.random_masking(x, self.mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.drop_after_pos(x)
# if attn_mask is not None:
# attn_mask = torch.concat((torch.ones((B,1),device=attn_mask.device) , attn_mask),dim=1)
for i, layer in enumerate(self.layers):
if self.gradientCKPT:
x = checkpoint(layer,x) # ,attn_mask
else:
x = layer(x) # ,attn_mask
if i == len(self.layers) - 1 and self.final_norm:
x = self.norm1(x)
if True:
return x
else:
return (x, mask, ids_restore)
def forward_generator(self, x, attn_mask=None):
if attn_mask is not None: assert self.output_cls_token
B = x.shape[0]
x = self.patch_embed(x)[0]
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:1+x.shape[1], :]
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.drop_after_pos(x)
for i, layer in enumerate(self.layers):
if self.gradientCKPT:
x = checkpoint(layer,x) # ,attn_mask
else:
x = layer(x) # ,attn_mask
if i == len(self.layers) - 1 and self.final_norm:
x = self.norm1(x)
x = x if (new_x:=(yield x)) is None else new_x
debug = False
if debug:
print(f'layer {i}-th forwarded')
|