File size: 11,126 Bytes
cee9fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
from mmcls.models import VisionTransformer
from torch import nn
from torch.utils.checkpoint import checkpoint
import copy

def build_2d_sincos_position_embedding(patches_resolution,
                                       embed_dims,
                                       temperature=10000.,
                                       cls_token=False):
    """The function is to build position embedding for model to obtain the
    position information of the image patches."""

    if isinstance(patches_resolution, int):
        patches_resolution = (patches_resolution, patches_resolution)

    h, w = patches_resolution
    grid_w = torch.arange(w, dtype=torch.float32)
    grid_h = torch.arange(h, dtype=torch.float32)
    grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
    assert embed_dims % 4 == 0, \
        'Embed dimension must be divisible by 4.'
    pos_dim = embed_dims // 4

    omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
    omega = 1. / (temperature**omega)
    out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
    out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])

    pos_emb = torch.cat(
        [
            torch.sin(out_w),
            torch.cos(out_w),
            torch.sin(out_h),
            torch.cos(out_h)
        ],
        dim=1,
    )[None, :, :]

    if cls_token:
        cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
        pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)

    return pos_emb



class MAEViT(VisionTransformer):
    """Vision Transformer for MAE pre-training.

    A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers
    for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_

    Args:
        arch (str | dict): Vision Transformer architecture
            Default: 'b'
        img_size (int | tuple): Input image size
        patch_size (int | tuple): The patch size
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        output_cls_token (bool): Whether output the cls_token. If set True,
            `with_cls_token` must be True. Defaults to True.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        mask_ratio (bool): The ratio of total number of patches to be masked.
            Defaults to 0.75.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    arch_zoo = {
        **dict.fromkeys(
            ['mocov3-s', 'mocov3-small'], {
                'embed_dims': 384,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 1536,
            }),
        **dict.fromkeys(
            ['b', 'base'], {
                'embed_dims': 768,
                'num_layers': 12,
                'num_heads': 12,
                'feedforward_channels': 3072
            }),
    }



    def __init__(self,
                 arch='b',
                 img_size=224,
                 patch_size=16,
                 out_indices=-1,
                 drop_rate=0,
                 drop_path_rate=0,
                 norm_cfg=dict(type='LN', eps=1e-6),
                 final_norm=True,
                 output_cls_token=False,
                 interpolate_mode='bicubic',
                 patch_cfg=dict(),
                 layer_cfgs=dict(),
                 gradientCKPT=False,
                 mask_ratio=0.75,
                 init_cfg=None):
        super().__init__(
            arch=arch,
            img_size=img_size,
            patch_size=patch_size,
            out_indices=out_indices,
            drop_rate=drop_rate,
            drop_path_rate=drop_path_rate,
            norm_cfg=norm_cfg,
            final_norm=final_norm,
            output_cls_token=output_cls_token,
            interpolate_mode=interpolate_mode,
            patch_cfg=patch_cfg,
            layer_cfgs=layer_cfgs,
            init_cfg=init_cfg)
        self.gradientCKPT = gradientCKPT
        self.pos_embed.requires_grad = False
        self.mask_ratio = mask_ratio
        self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
        # self.mask_embedding = copy.deepcopy(self.patch_embed)
        # self.mask_embedding.norm = None

    def init_weights(self):
        super(MAEViT, self).init_weights()
        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            # initialize position  embedding in backbone
            pos_embed = build_2d_sincos_position_embedding(
                self.patch_resolution,
                self.pos_embed.shape[-1],
                cls_token=True)
            self.pos_embed.data.copy_(pos_embed.float())

            w = self.patch_embed.projection.weight.data
            torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

            torch.nn.init.normal_(self.cls_token, std=.02)

            self.apply(self._init_weights)

        # mask_embedding transfers pixel level mask to token level
        # self.mask_embedding.apply(self._init_mask_embedding)
        # for para in self.mask_embedding.parameters():
        #     para.requires_grad = False

    def _init_mask_embedding(self,m):
        if hasattr(m,'weight'):
            nn.init.constant_(m.weight,1.0)
        if hasattr(m, 'bias'):
            nn.init.constant_(m.bias,0)

    def _init_weights(self, m):

        if isinstance(m, nn.Linear):
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def random_masking(self, x, mask_ratio=0.75, attn_mask=None):
        """Generate the mask for MAE Pre-training.

        Args:
            x (torch.tensor): Image with data augmentation applied.
            mask_ratio (float): The mask ratio of total patches.
                Defaults to 0.75.

        Returns:
            tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids
                to restore original image.

            - x_masked (Tensor): masked image.
            - mask (Tensor): mask used to mask image.
            - ids_restore (Tensor): ids to restore original image.
        """
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

        # sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)

        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        x_masked = torch.gather(
            x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
        # modified_attn_mask = None if attn_mask is None else torch.gather(attn_mask,dim=1, index=ids_keep)

        # generate the binary mask: 0 is keep, 1 is remove
        mask = torch.ones([N, L], device=x.device)
        mask[:, :len_keep] = 0
        # unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return x_masked, mask, ids_restore #, modified_attn_mask

    def generate_mask(self, pixel_level_attn_mask):
        '''
        pixel_level_attn_mask: (0,1) attn mask with the same shape as img
        '''
        if pixel_level_attn_mask is None: return None
        # H, W = patch_resolution
        # B, C = pixel_level_attn_mask.shape[:2]
        # attn_mask = torch.ones((B,C,H,W),device=pixel_level_attn_mask) 
        # H_splited = torch.chunk(pixel_level_attn_mask, H, -2)
        # HW_splited_mask = (torch.chunk(Hs, W, -1) for Hs in H_splited)

        #         if HW_splited_mask[:,:,hi,wi].sum().item() == 0:
        #             attn_mask[:,:,hi,wi] = 0

        # mask_patches = self.mask_embedding(pixel_level_attn_mask)[0]
        # attn_mask = mask_patches.sum(-1) != 0

        # return attn_mask

    def extract_feat(self, img ,attn_mask=None):
        x, *_ = self.forward(img,attn_mask)
        if self.output_cls_token:
            return x[:,0,:]
        else:
            return torch.mean(x,dim=1)

    def forward(self, x, attn_mask=None):
        if attn_mask is not None: assert self.output_cls_token
        
        B = x.shape[0]
        x = self.patch_embed(x)[0]
        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:1+x.shape[1], :]
        # masking: length -> length * mask_ratio
        if True:
            assert self.mask_ratio == 0.
        else:
            x, mask, ids_restore = self.random_masking(x, self.mask_ratio)

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.drop_after_pos(x)
        # if attn_mask is not None: 
        #     attn_mask = torch.concat((torch.ones((B,1),device=attn_mask.device) , attn_mask),dim=1)

        for i, layer in enumerate(self.layers):
            if self.gradientCKPT:
                x = checkpoint(layer,x) # ,attn_mask
            else:
                x = layer(x) # ,attn_mask
            if i == len(self.layers) - 1 and self.final_norm:
                x = self.norm1(x)
        if True: 
            return x
        else:
            return (x, mask, ids_restore)

    def forward_generator(self, x, attn_mask=None):
        if attn_mask is not None: assert self.output_cls_token
        
        B = x.shape[0]
        x = self.patch_embed(x)[0]
        # add pos embed w/o cls token
        x = x + self.pos_embed[:, 1:1+x.shape[1], :]

        # append cls token
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.drop_after_pos(x)

        for i, layer in enumerate(self.layers):
            if self.gradientCKPT:
                x = checkpoint(layer,x) # ,attn_mask
            else:
                x = layer(x) # ,attn_mask

            if i == len(self.layers) - 1 and self.final_norm:
                x = self.norm1(x)
         
            x = x if (new_x:=(yield x)) is None else new_x 

            debug = False
            if debug:
                print(f'layer {i}-th forwarded')