File size: 4,874 Bytes
0f1e5b7 2c50579 84e3c76 29e5b35 5510c25 207d92c 9aae2b1 207d92c 6ed71b1 207d92c 6ed71b1 207d92c 9288eb2 207d92c 84e3c76 207d92c 84e3c76 207d92c 84e3c76 207d92c 7f7c58f 84e3c76 207d92c a86f455 207d92c 84e3c76 207d92c 7ca40da 207d92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: cc-by-nc-4.0
---
I FUCKED UP, THIS MODEL IS MEANT TO BE A BFLOAT16 MODEL, I'M CURRENTLY REDOING IT IN THE CORRECT WAY (look at the recipe, it end in float16, i'm so dumb lmao). It SHOULD be even better, I saw the problem after finetuning it, something was off. It's usable, it rank the best, but it's not even on the right float...KEK
Fixed model should be here: [NeverSleep/Mistral-11B-OmniMix-bf16](https://huggingface.co/NeverSleep/Mistral-11B-OmniMix-bf16)
Don't mind this one at the moment, I need to finetune it for RP, it's just a test.
## Description
This repo contains fp16 files of Mistral-11B-OmniMix.
My goal for this model was only to make it score the highest possible with merge and layer toying, proving that:
- Benchmark are objective
- You should try a model yourself and don't go blindly to the highest rated one
- Merge/Layer toying CAN be usable to do better model (maybe?)
## Model used
- [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
- [Mistral-7B-v0.1-Open-Platypus](akjindal53244/Mistral-7B-v0.1-Open-Platypus)
- [CollectiveCognition-v1.1-Mistral-7B](https://huggingface.co/teknium/CollectiveCognition-v1.1-Mistral-7B)
- [zephyr-7b-alpha](HuggingFaceH4/zephyr-7b-alpha)
## Prompt template
The best one after further testing is this one:
```
<|system|>
Below is an instruction that describes a task. Write a response that appropriately completes the request.
<|user|>
{prompt}
<|assistant|>
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/tWIx8yeoallv94zrhN6L-.png)
But these one work too:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
```
```
USER: <prompt>
ASSISTANT:
```
Or use any prompting system from one of the 4 source model, should work.
## The secret sauce
Mistral-11B-OpenOrcaPlatypus :
```
slices:
- sources:
- model: Open-Orca/Mistral-7B-OpenOrca
layer_range: [0, 24]
- sources:
- model: akjindal53244/Mistral-7B-v0.1-Open-Platypus
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
Mistral-11B-CC-Zephyr :
```
slices:
- sources:
- model: "/content/drive/MyDrive/CC-v1.1-7B-bf16"
layer_range: [0, 24]
- sources:
- model: "/content/drive/MyDrive/Zephyr-7B"
layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16
```
Mistral-11B-OmniMix :
```
slices:
- sources:
- model: Mistral-11B-OpenOrcaPlatypus
layer_range: [0, 48]
- model: Mistral-11B-CC-Zephyr
layer_range: [0, 48]
merge_method: slerp
base_model: Undi95/Mistral-11B-OpenOrcaPlatypus
parameters:
t:
- filter: lm_head
value: [0.75]
- filter: embed_tokens
value: [0.75]
- filter: self_attn
value: [0.75, 0.25]
- filter: mlp
value: [0.25, 0.75]
- filter: layernorm
value: [0.5, 0.5]
- filter: modelnorm
value: [0.75]
- value: 0.5 # fallback for rest of tensors
dtype: float16
```
I use [mergekit](https://github.com/cg123/mergekit) for all the manipulation told here.
## Some scoring I done myself
This was named "Mistral-11B-TestBench11", keep that in mind while looking trough this.
hf-causal-experimental (pretrained=/content/drive/MyDrive/Mistral-11B-Test), limit: None, provide_description: False, num_fewshot: 0, batch_size: 4
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.5597|± |0.0145|
| | |acc_norm|0.5819|± |0.0144|
|arc_easy | 0|acc |0.8308|± |0.0077|
| | |acc_norm|0.8215|± |0.0079|
|hellaswag | 0|acc |0.6371|± |0.0048|
| | |acc_norm|0.8213|± |0.0038|
|piqa | 0|acc |0.8134|± |0.0091|
| | |acc_norm|0.8275|± |0.0088|
|truthfulqa_mc| 1|mc1 |0.3990|± |0.0171|
| | |mc2 |0.5685|± |0.0155|
|winogrande | 0|acc |0.7474|± |0.0122|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/LggyIlV-oY7NbLwi7mnix.png)
This model seem to be the best out of my 3 latest try:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/hnqNyljs5Y8JppuA_io8w.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/b-a-sB2qRHApPX52S2nD7.png)
You can find all the work I have done trying on this [Pastebin](https://pastebin.com/nHLCxQJv).
## Others
Special thanks to Sushi, [Henky](https://github.com/KoboldAI/KoboldAI-Client) for the machine he give me for big task, and [Charles Goddard](https://github.com/cg123) for his amazing tool.
If you want to support me, you can [here](https://ko-fi.com/undiai).
|