File size: 2,423 Bytes
f535954
d5183eb
 
 
e5c0fcf
d5183eb
 
 
 
 
 
 
 
 
e5c0fcf
d5183eb
 
 
 
 
 
 
e5c0fcf
d5183eb
e5c0fcf
f535954
 
d5183eb
 
f535954
d5183eb
f535954
d5183eb
 
 
 
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
 
 
 
 
 
 
 
 
 
 
 
f535954
d5183eb
f535954
d5183eb
 
 
 
 
 
 
 
 
 
 
 
 
f535954
 
d5183eb
f535954
d5183eb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
tags:
- generated_from_trainer
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v2-bert-urdu
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: ur
      split: test[:100]
      args: ur
    metrics:
    - type: wer
      value: 0.6273224043715847
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-bert-urdu

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1498
- Wer: 0.6273

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.5968        | 0.1695 | 50   | 3.1737          | 1.0    |
| 3.1414        | 0.3390 | 100  | 2.9666          | 1.0    |
| 2.3694        | 0.5085 | 150  | 1.0788          | 0.6525 |
| 0.7692        | 0.6780 | 200  | 0.5647          | 0.4186 |
| 0.5488        | 0.8475 | 250  | 0.4491          | 0.3486 |
| 0.5568        | 1.0169 | 300  | 0.5883          | 0.7388 |
| 0.7925        | 1.1864 | 350  | 1.0338          | 0.7967 |
| 1.4791        | 1.3559 | 400  | 1.1474          | 0.6251 |
| 1.2758        | 1.5254 | 450  | 1.1359          | 0.6251 |
| 1.2763        | 1.6949 | 500  | 1.1497          | 0.6273 |
| 1.2789        | 1.8644 | 550  | 1.1498          | 0.6273 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1