File size: 2,423 Bytes
f535954 d5183eb e5c0fcf d5183eb e5c0fcf d5183eb e5c0fcf d5183eb e5c0fcf f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb f535954 d5183eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: mit
tags:
- generated_from_trainer
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v2-bert-urdu
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ur
split: test[:100]
args: ur
metrics:
- type: wer
value: 0.6273224043715847
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-bert-urdu
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1498
- Wer: 0.6273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.5968 | 0.1695 | 50 | 3.1737 | 1.0 |
| 3.1414 | 0.3390 | 100 | 2.9666 | 1.0 |
| 2.3694 | 0.5085 | 150 | 1.0788 | 0.6525 |
| 0.7692 | 0.6780 | 200 | 0.5647 | 0.4186 |
| 0.5488 | 0.8475 | 250 | 0.4491 | 0.3486 |
| 0.5568 | 1.0169 | 300 | 0.5883 | 0.7388 |
| 0.7925 | 1.1864 | 350 | 1.0338 | 0.7967 |
| 1.4791 | 1.3559 | 400 | 1.1474 | 0.6251 |
| 1.2758 | 1.5254 | 450 | 1.1359 | 0.6251 |
| 1.2763 | 1.6949 | 500 | 1.1497 | 0.6273 |
| 1.2789 | 1.8644 | 550 | 1.1498 | 0.6273 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|